
International Journal of Innovative
Computing, Information and Control ICIC International c©2010 ISSN 1349-4198
Volume 6, Number 9, September 2010 pp. 3887–3909

PROBABILISTIC SERVICE PARTITION FOR PARALLEL AND
DISTRIBUTED COMPUTING

Kuen-Fang Jea1 and Jen-Ya Wang1,2

1Department of Computer Science and Engineering
National Chung-Hsing University

Taichung 40227, Taiwan
kfjea@cs.nchu.edu.tw; jywang@sunrise.hk.edu.tw

2Department of Computer Science and Information Management
Hungkuang University
Sha Lu 43302, Taiwan

Received March 2009; revised September 2009

Abstract. In this paper, we consider an optimization problem that aims to minimize
the average waiting time for distributed services with different processing complexities
and access probabilities. It is motivated by the fact that there are many large-scale sci-
entific projects and commercial applications (e.g., image processing in astronomy), and
their waiting time needs to be lowered down in order to maintain customer satisfaction.
We first demonstrate several useful properties of this problem by mapping it to the Eu-
clidean space Rn. Utilizing them, we then develop a gradient-based method for dividing
and distributing services to multiple machines. The theoretical analyses show that the
proposed method converges linearly and the resultant average waiting time is near op-
timal. Finally, we present experimental results that confirm the convergence speed and
solution quality of the proposed method. Using the proposed method, a service provider
requires only a little execution time to deploy his/her services on multiple machines and
provides users with a near-optimal average waiting time for their service requests. The
proposed method can be extended to other similar optimization problems (e.g., vehicle
routing problem) and promisingly achieves the same near-optimal results.
Keywords: Optimization, Gradient, Distributed computing, Parallel computing, Aver-
age waiting time

1. Introduction. Today’s computing is increasingly data-intensive or time-consuming
and it should be partitioned into many services and allocated among multiple machines.
It is commonly found in practice that parallel computing or grid computing succeeds in
supporting large-scale projects or applications. This can be seen in a variety of scientific
projects; several concrete examples of which include: protein folding [45], image process-
ing in astronomy [42], satellite data archiving [26], and physics data sharing [11]. Likewise,
many types of commercial applications requiring intensive computing are quite often seen
today, such as online games [33], Google search [15], and dynamic instantiation [40]. Most
of the above examples process petabyte-scale datasets and serve a great many users. Ow-
ing to the enormous amount of data and considerable computational complexity, such a
project or an application is not suitable for implementation on a single machine; there-
fore the datasets/services need to be divided and distributed among multiple machines.
However, an arbitrary partition will lead to poor performance (e.g., a long waiting time).
As a result, many partition methods have been developed to improve the performance for
these projects or applications.

3887


