
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2011 ISSN 1349-4198
Volume 7, Number 8, August 2011 pp. 4729–4739

A TWO-STEP IN-CLASS SOURCE CODE PLAGIARISM DETECTION
METHOD UTILIZING IMPROVED CM ALGORITHM AND SIM

Asako Ohno1 and Hajime Murao2

1Department of Life Design
Shijonawate Gakuen Junior College

4-10-25, Hojo, Daito, Osaka 574-0011, Japan
asako.ohno@mulabo.org

2Graduate School of Intercultural Studies
Kobe University

1-2-1, Tsurukabuto, Nada 657-8501, Japan
murao@i.cla.kobe-u.ac.jp

Received May 2010; revised October 2010

Abstract. Source code plagiarism is becoming one of the most serious problems in
academia. There have been many proposed methods that attempt to detect source code
plagiarism in programming classes. Most of them extract algorithmic features from the
source code and measure the similarity between them. These methods show high levels
of accuracy in evaluation experiments, and however, it is concerning that the similarity
detected by the methods might not be caused by plagiarism. As a result, we propose a
method called the CM Algorithm, which utilizes a student’s coding style, the way the stu-
dent writes source code, to check whether the source code submitted by the student was
produced by him/her. In this paper, we propose a combined method that measures the
similarity between source codes by using SIM [7], one of the well-known in-class source
code plagiarism detection systems, and then checks the outputs of SIM against our im-
proved CM Algorithm. The new method is expected to reduce false positives in plagiarism
detection systems. This paper also gives a detailed explanation of the improved CM Algo-
rithm, which assumes fluctuations in the source code produced by a student’s coding style.
Keywords: Coding style, In-class source code plagiarism, Coding model, Hidden Markov
model

1. Introduction. World-wide Internet access enables students to find many examples of
programming source code, and so it is not difficult for these to be a source of plagiarism.
Also, since it is becoming more common for students to edit or submit exercises electron-
ically, it has become easier for a student to copy another student’s work and misrepresent
it as his/her own work. Recently, a number of methods have been proposed to solve one
of the serious and growing problems in academia, namely source code plagiarism. The
most popular approach is to measure structural, algorithmic, or metric-based similari-
ties of the source code [1, 2, 3]. This type of method has been successfully utilized in
industrial fields, such as source code refactoring. Many methods make tokenization and
normalization as a preprocessing step to represent the source code by using graphs [4, 5, 6]
or token sequences [7, 8, 9, 10, 11], and then make pair-wise comparisons. Other methods
generate feature vectors, which are quantitative representations of source code based on
such features such as size, complexity, or a number of specific types of tokens contained
in the source code [12, 13]. In another example, D’Souza [14] developed a tool that finds
similar contents that might be plagiarized from the Internet. Source codes produced as
exercises in programming classes, hereinafter called in-class source codes, generally have

4729


