FEEDBACK STABILIZATION FOR NONLINEAR AFFINE STOCHASTIC SYSTEMS

WEIHAI ZHANG¹, BOR-SEN CHEN² AND ZHIGUO YAN³

¹Shandong Key Laboratory of Robotics and Intelligent Technology College of Information and Electrical Engineering Shandong University of Science and Technology Economic and Technical Development Zone, Qingdao 266510, P. R. China w_hzhang@163.com

> ²Department of Electrical Engineering National Tsing Hua University No. 101, Sec. 2, Kuang-Fu Road, Hsin Chu 30013, Taiwan bschen@ee.nthu.edu.tw

³School of Electrical Engineering and Automation Tianjin University No. 92, Weijin Road, Tianjin 300072, P. R. China yanzg500@sina.com

Received May 2010; revised September 2010

ABSTRACT. This paper studies the state feedback stabilization of nonlinear affine stochastic systems. Sufficient conditions for the local and global asymptotic stabilization in probability are presented by means of Hamilton-Jacobi inequalities. As corollaries, some previous results are improved. For a class of nonlinear stochastic perturbed systems, the output feedback stabilization problem is also considered. One example is given to show the validity of our main results.

Keywords: Asymptotic stability in probability, Hamilton-Jacobi inequality, Feedback stabilization, Linear matrix inequality

1. Introduction. Stochastic stability for Itô systems has been studied for a few decades; see [1-5] for the discussion of stochastic Lyapunov stability and [6] for the work of Lyapunov exponent of linear stochastic systems. For a stochastic control system, stochastic stabilization is a problem that should be first considered in the system analysis and design. It should be noted that the study on stochastic stabilization has received a great deal of attention and has become a popular research issue in recent years; see [7-15]. How to stabilize an unstable stochastic system via state or output feedback is without doubt a very valuable topic in practice. [8, 9, 14] discussed the mean square stabilization of linear stochastic control systems. In recent years, the stabilization of nonlinear stochastic systems has been studied extensively. By means of a positive symmetric solution of a class of generalized algebraic Riccati equations (GAREs), one can construct a quadratic Lyapunov function to present some sufficient conditions for local stabilization of bilinear or general nonlinear stochastic systems with state-dependent noise [7, 11]. By combining the stochastic Lyapunov technique with stochastic version of LaSalle's invariance principle [3], the global stabilization of affine stochastic systems was also discussed based on the assumption that the unforced systems are stable in probability [12], and the H_{∞} stabilization was studied in [13]. For the case when the system state is not completely available, [15] first initiated the study on output feedback stabilization of a class of nonlinear stochastic