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ABSTRACT. In most multiobjective evolutionary algorithms (MOEA) based on aggregat-
ing objectives, the weight vectors are user-supplied or generated randomly, and they are
static in the algorithms. If the Pareto front (PF) shape is not complex, the algorithms
can find a set of uniformly distributed Pareto optimal solutions along the PF; otherwise,
they might fail. A dynamic weight design method based on the projection of the current
nondominant solutions and equidistant interpolation is proposed in this paper. Even if
the PF is complex, we can find evenly distributed Pareto optimal solutions by this method.
Some test instances are constructed to compare the performance of the MOEA/D using
dynamic weight design method with that of MOEA/D. The results indicate that the dy-
namic weight design method can dramatically improve the performance of the algorithms.
Keywords: Equidistant interpolation, Multiobjective optimization, Evolutionary algo-
rithm, Uniformly distribution

1. Introduction. Multiobjective optimization problem (MOP) has been widely applied
in science, engineering, management, military and other fields [1, 2]. Generally, it is hard
to find its exact solutions. Evolutionary algorithms play an important role in solving
problems with multiple conflicting objectives. They can obtain a set of nondominant
solutions which are close to the PF in a single run. The model of MOP is described as
follows:

min(fi(x), -, fm(2)) (1)

where D is the decision space and m indicates the number of the objectives.

A variety of MOEAs [1-17] have been developed in the past decade. They can be di-
vided into two types: one is domination-based fitness assignment such as strength Pareto
evolutionary algorithm IT (SPEA-II) [5], Pareto archived evolutionary strategy (PAES) [6]
and nondominant sorting genetic algorithm IT (NSGA-II) [10], and the other is objectives-
based fitness assignment such as the weighted sum method and min-max strategy [11-16].
MOEA/D [11] performs the MOP via decomposing it into several single objective opti-
mization subproblems. It approximates the PF by using a combination of the subprob-
lems’ solutions. It features low computational complexity and fast convergence.

In many real-life applications of multiobjective optimization, the decision maker may
not be interested in having an unduly large number of Pareto optimal solutions. Therefore,
it is a non-trivial task to find a manageable number of Pareto optimal solutions which are
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evenly distributed along the PF. The existing MOEAs have adopted various strategies
to obtain such solutions. For example, the algorithms in [12, 13, 15] adopt the proper
weighted vectors, NSGA-II employs the crowding distance technique and the MOEA /D
utilizes the advanced decomposition technique.

The MOEA/D is one of the most successful objectives-based fitness assignment MOEAs.
There are two weight design methods for MOEA /D. These weight vectors are uniformly
spread on the first quadrant of hyperplane f; + fo + ---+ f,, = 1 or of hypersphere
[+ f24- -+ f% = 1. It works well if the PF is closed to the hyperplane fi+ fo+- -+ f, = 1
in the former case or to the hypersphere fZ+ fZ+---+f2 = 1 in the later case. However, for
the other PF shapes, it may not find the evenly distributed solutions. As m = 2, as shown
in Figure 2, let (wy,ws), (w}, w3), (w}, w3) be three weight vectors uniformly distributed
on the first quadrant with unit circle. The solutions (fi(x4), fo(x4)), (fi(zB), f2(zB)),
(fi(ze), fo(xe)) will be found by using MOEA /D with these weight vectors. Obviously,
the distance from A to B is greater than the distance from B to C. Therefore, we cannot
obtain the uniformly distributed Pareto optimal solutions by using this weight design
method. Additionally, for the Pareto optimal point xp, there are a number of weight
vectors such that xp is the Pareto optimal solution. As a result, if the PF is discontinuous,
there are many subproblems obtaining the same Pareto optimal solutions. It is bad to
maintain the population diversity and improve the performance of the algorithm.

In order to overcome the above drawbacks, we propose a dynamic weight design method
for the MOEAs based on aggregating objectives. In this method, equidistant interpola-
tion is used to approximate the PF after several generations over time according to the
projection of the current nondominant solutions. We design the weight vectors according
to the mean of several neighboring interpolation points on the estimative PF. Since the
interpolation points are relatively evenly distributed along the estimative PF, the points
used to design weights are relatively evenly distributed along it. Some dynamic weight
aggregation are presented in [18, 21, 22]. They work well in bi-objective evolutionary
algorithms. However, The weight design method proposed in this paper can be applied to
almost all of the objectives-based fitness assignment MOEAs. In our experimental study,
we apply the dynamic weight design method to MOEA/D. The improved MOEA/D is
denoted as DMOEA/D. A set of weight vectors are designed according to the geometric
significance of min-max strategy. In this paper, we construct six test instances with dif-
ferent PF shapes to compare the performance of DMOEA /D with that of MOEA/D. The
experiments have verified the feasibility and efficiency of the weight design method.

This paper is organized as follows. Section 2 gives the geometric significance of weighted
sum method and the min-max strategy and proposes the weight design method for these
algorithms. Section 3 approximates the PF and discusses the uniformity. Section 4
presents the DMOEA /D algorithm in detail. Section 5, we construct some test instances
and use them to evaluate the performance of the weight design method. Finally, we draw
a conclusion in Section 6.

2. The Dynamic Weight Design Method.

2.1. The geometric significance and the weight design method for weighted
sum method. The weighted sum method is the simplest approach and is probably the
most widely used approach. This method aggregates a set of objectives into a single objec-
tive with appropriate weight vectors and then optimizes the following scalar optimization

problem:
m

i=1
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where w = (wy,ws, -+ ,wy,) is a weight vector. Obviously, each optimal solution of Equa-
tion (2) is a Pareto optimal solution of Equation (1) [3].

For m = 2, the PF and the objective space of Equation (1) can be depicted in Figure 1.
When the PF is convex, the normal vector of PF is 77 = (n;,n5) at point A. The straight
line with normal vector 7 can be described as follows: Z = 2, n;fi(z). It is tangent
to PF at point A. Obviously, rxréilrjl S22 nifilz) = 27 nifi(xa). The x4 is one Pareto

optimal solution of Equation (1).

A (fl (x‘;)a .f_ (x_i ))

objectve space

(”1.-”:)

X =t
pareto front

FIGURE 1. The geometric significance of weighted sum method

For m = 3, as mentioned above, the normal vector of the PF is i = (ny,no, n3) at
point A. The plane with normal vector 7 is tangent to PF at point A. Then, x4 is a
Pareto optimal solution of géizrjl Z?:l n;fi(x). Generally, in m dimension objective space,

i = (ny,na, - ,npy) is the normal vector of the PF at point A. Since the PF is convex,
the hyperplane with normal vector 7 will be tangent to the PF at point A. x4 is one
Pareto optimal solution of rxréilrjl Yo nfi(z).

From the above analysis of the geometric significance of the weighted sum method, it
can be concluded as follows. If we obtain the normal vectors of the PF at the points
evenly distributed along the PF, a set of evenly distributed solutions will be obtained by
using the weighted sum method based on these normal vectors. Therefore, the main task
is to find a set of evenly distributed points over the PF. The normal vector of point A can
be approximated by the normal vector of the hyperplane which is determined by point A
and the latest m — 1 points to A.

2.2. The geometric significance and the weight design method for min-max
strategy. The min-max strategy focuses on the following problem:

min max {w;f;(z)} (3)
For each Pareto optimal point x*, there is at least one weight vector w such that z* is the
optimal solution of (3) and each optimal solution of (3) is a weak Pareto optimal solution
of (1). Therefore, one is able to obtain different Pareto optimal solutions by solving a set
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of single objective optimization problems defined by the min-max strategy with different
weight vectors.

For m = 2, the PF and the objective space can be depicted in Figure 2. The equation

of the straight line across the origin point with the direction vector {%, ﬁ} can be
1 2

described as w%f1 = w%fQ. As shown in Figure 2, it is intersected with PF at point
(fi(za), f2(xa)). Obviously

: 1 _ 1
minmax {w; f;()} = max{w; fi(za)}

x4 is one Pareto optimal solution of (1) [3].

f wy A: [_f:(-\-_g)ef:[:\-_:‘ ))
B: (_}(;II'TS‘ ?_f:(“‘l—s ))

C: (f_("lc )ef:(x[‘ ))
D: ':l,f:_lz.\’:.).-hf:('\,‘l_'_- I)

FIGURE 2. The geometric significance of min-max strategy

Through the above analysis of the straight line wj f; = w3 f2 in the objective space, we
can obtain the following conclusions:

a. If it is intersected with PF at point (fi(x*), fo(x*)), then z* is the solution of the
. 1r
min max{w; f;(z)}.
b. If it is non-intersect with PF, as shown in Figure 2, the point D is the latest from the

PF to the straight line, and then xp must be the solution of the miB ' ag:{w}fl(x)}
xeD 1=1,

As m = 3, the equation of the straight line across the origin point with the direction

vector {L, L L} can be described as follows:
’LUI ’LU2 ’LU3

wyfi = wyfy = wi fs
If the line is intersected with the PF defined in Equation (1), then the intersection point
is (fi(z*), fo(x*), f3(x*)). The value x* is the solution of min max {w; f;(x)}.

zeD 1<i<3
All in all, in m dimension objective space, the equation of the straight line across the
origin point with the direction vector #, #, s wl* } can be described as follows:
1 2 m

wffl = w§f2 == w:nfm
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If it is intersected with the PF defined in Equation (1), then the intersection point is
(fi(z®), fo(z*), -+, fm(x*)). The value x* is the solution of the min max {w fi(x)}.

zeD 1<i<

We can conclude from the geometric significance of the min-max strategy. If (fi(xa),

fo(za), -+, fm(za)) is a point on the PF, we can obtain the Pareto optimal solution

. . 1 1

x4 according to Equation (3) with weight ( e haa ’M)' Let Py, P, , Py

be a set of points which are evenly distributed along the PF. The coordinates of these

pOintS in the objective space are (flla f217 e Jfrln)a (f127 f227 e 7f72n)7 T (f1N7 fQNJ e 7f7]r\zf)

We can obtain a set of evenly distributed Pareto optimal solutions by using the min-max
strategy with weights (f—lll,f%l, ,i) , (fo’f_lg’ ,é) e (ﬁ,ﬁ, ,ﬁ)

3. Approximate the PF and Discuss the Uniformity. From the analysis above, if
there are a set of evenly distributed points along the PF, we can obtain a set of evenly
distributed solutions by using the above weight design approach. However, the PF is
unknown in advance. We can approximately estimate the PF by using the current non-
dominant solutions, and then uniformly generate some points on the estimated PF. The
detailed description of the weight design approach is stated as follows.

+The current nondominant solutions
*Interpolation points on £,
«Interpolation points on _f'

objectve space

i N a7 . i .
T A 34 5 6 T 8 f'
pareto front J1

Ficure 3. Illustration of weight design method for two objectives

For m = 2, the current nondominant solutions, represented by rhombic black points in
Figure 3, are the nodes of interpolation P. Let the number of the interpolation points be
10N, where N is the size of the population. We compute the number of the interpolation

points to ith objective function values N; = %, where Dj is the maximum value of
j=1"7

the projection of the current nondominant solutions on the ith sub objective. We fit a
curve to the data in P by using piecewise linear interpolation (marked with solid line).
N interpolation points, of which the projections on the first sub objective are uniform,
are generated. And then we delete the points of which the distance between them to
the nearest nodes of interpolation is bigger than 2 T+ We can obtain some points which
are represented by red solid circles in Figure 3. The other N, interpolation points are
generated by the same method, of which the projections on the second sub objective are
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uniform. M points generated by these two interpolations is served as an approximate
estimate of the PF. These points are ordered by fi;. And then [%] or [%] + 1 points
which are adjacent in f; are divided into a group, where [z] identify the largest integer
less than or equal to x. These M points are divided into N groups. The mean of the
points in the same group is considered as a point to design weight.

Generally, in m dimension objective space, D; is the maximin value of the projection

of the current nondominant solutions on the ith sub objective fore.=1,2,---,m. Let

the number of the interpolation points be 10™ 'N. N; = S o NI ,j
Z 1H] 1];&1 J

of interpolation points to ith coordinate plane H] 1HézD ,fore =1,--- ,m. We fit a
hypersurface of the form f; = ¢;(f1,---, fi1,--+, fix1,- -+, fm) to the data in the current
nondominant solutions by using piecewise linear interpolation. N; interpolation points
are generated by using linear griddata method, of which the projections on ith coordinate
plane are uniform. All the points generated by these m interpolations are served as an
approximate estimate of the PF. The mean of some adjacent points is considered as a
point to design weights.

The uniformity of the points used to estimate the PF is discussed in detail below. It

confirms that the points for designing weights are evenly distributed along the estimated
PF.

is the number

Theorem 3.1. Let v be a hyperplane in m dimension space, of which the area is S, S is
the total area of the projections of v on to each coordinate plane.

1) S gets the mazimum value vmS if and only if the angle contained by v and every
coordinate plane is the same.

2) S gets the minimum value S if and only if ~ is parallel to one coordinate plane.

Proof: Let the unit normal vector of v be @@ = (ny,ng, -+, ), deeyn? = 1. The
normal vector of each coordinate plane is €; = (0,---,1;,---,0) for i = 1,2,--- ;m. €
represents a vector that ith component is 1 and the other components are 0. The area of
the projection of v on to ith coordinate plane is S; = 7.6;S =n;S fori =1,2,--- ,m

1. Proof of Conclusion 1
Since the angles contained by v and each coordinate plane is the same, then €7.77 =
€1 = -+ = ep.ni. That is, n; = ﬁ for i = 1,2,---,m. Thus, S = > S; =

S niS =+/mS. Using the Cauchy inequality, we then have Y " n; < \/m (D" n?) =
v/m. If and only if n; = f’ the equality is satisfied. That means the maximum value of
S is /mS.
2. Proof of Conclusion 2

Since 7 is parallel to one coordinate plane, let v be parallel to ¢th coordinate plane.
That is, n; =1, n; =0, j # i for j =1,2,--- ,m. Since 0 < n; < 1, then n? < n;. If and
only if n; = 1 or n; = 0, the equality is satisfied. That means the minimum value of S is
S=30 8=y msS > s =S

The PF is a hypersurface in m dimension space. Suppose the area of a small element
which is cut out of the hypersurface is S. When the small element is smaller, it could be
considered as a hyperplane. Since the uniform grid interpolation is used in the projections
of the small element on to each coordinate plane, the number of the interpolation points
N is proportional to the total area of the projections. It is given as

S
- dm—1 (4)

where d is the distance of two adjacent grid. From Theorem 3.1, it can be seen that the

. . mS .
maximum value of N is Np.x = &{n_ . Since

and the minimum value of NV is Nyjn = dm%



MULTIOBJECTIVE EVOLUTIONARY ALGORITHM 3683

the hypersurface is fitted to the data in the current nondominant solutions, any small
element cannot be parallel to a coordinate plane. Then the number of the interpolation
points in a small element is bigger than N,,;,. Therefore, if the area of both small elements
is the same, the ratio between the number of projection points in them is A. Then

Nrnin A
A > = — (5)
Nmax M
It is obvious that the points for designing weights are relatively even.

For m = 3, the projection of a small element of which area is S on to the coordinate
planes is depicted in Figure 4. The small element like a plane with normal vector 7 =
(n1,n2,n3). S1, Se, Sy are the projection of the small element on to the coordinate planes.

3o
We can conclude that the number of the projection points is N = %S by Equation
(4). From the analysis above, It can be concluded as follows:

a. If the PF is a plane, the normal vector at any point of the PF is the same, then we
can obtain uniformly distributed interpolation points along the PF.

b. If the PF is in other shapes, The ratio between the number of projection points in
any both small elements with the same area is bigger than ? Thus, the distribution
of the interpolation points is relatively even.

c. The number of the interpolation points is not related to the position of the small
element in the objective space. Even if the different objectives take different scaling,
it can also obtain a set of uniformly distributed interpolation points along the PF.

f2

FIGURE 4. The projection of a small element on to the coordinate planes

4. Dynamic Weight Design Method Applied to MOEA /D. The proposed dy-
namic weight design method based on the current nondominant solutions can be applied
to almost all of the objectives-based fitness assignment MOEAs. Since the objective is to
study the feasibility and efficiency of the dynamic weight design method, we only apply
the weight design method to MOEA/D.
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We denote the MOEA /D with the dynamic weight design method as DMOEA /D. The
steps of the algorithm DMOEA /D are as follows:
Algorithm of DMOEA /D
Step 1 Initialization:
Step 1.1 give the current generation gen = 1, the maximum number of evolution
generation Max_gen and the weight vectors updated frequency F
Step 1.2 set the number of the subproblems N, N initialized weight vectors A, .-,
AN the number of the weight vectors in the neighborhood of each weight vector T’
Step 1.3 compute the Euclidean distances between any two weight vectors and then

work out the T' closest weight vectors. For each i =1,--- | N, set B(i) = {iy,--- ,ir},
where \t,--- X7 are the T closest weight vectors to \’;

Step 1.4 generate an initial population z',--- , 2" randomly and initialize the refer-
ence point z = (21, -+, 2m)".

Step 2 Update:
For:=1,---,N, do
Step 2.1 randomly select two indexes k, [ from B(i), and then generate a new solution
y from z¥ and 2! by using genetic operator;
Step 2.2 update of z: For each j =1,---,m, if z; < f;(y), then set z; = f;(v);
Step 2.3 update of neighboring solutions: For each index j € B(i), if y dominant 27,
then set 2/ = v.

Step 3 gen = gen + 1. If mod(gen, F)) = 0, update the weight vectors A',--- AV and
B(i).

Step 4 If gen < Max_gen, go to Step 2. Otherwise, go to Step 5.

Step 5 Stop and output the Pareto optimal solutions.

5. Experiments. The DTLZ suite of benchmark problems [19] are easy to scalable to
any number of objectives and control the PF shapes. However, the PS shapes of DTLZ
test suite are often strikingly simple. Zhang devised a way of controlling the PS shapes
in [14]. We constructed four 2-objective test instances F1-F4 and two 3-objective test
instances F5 and F6 by combination of these methods. Its objectives to be minimized
take the following form:

filz) = 1+ g(xrr — B(xr)))on (z)

Jm(x) = (1 + g(zrr — B(2r)))am(wr)

where © = (@1, ,2,) € [[2,[li, i, ; is the low boundary of z; and wu; is the upper
boundary of ;. x; = (z1, -+ ,¥m_1) and z;; = (T, ,T,) are two subvectors of z. g
is a function from R"™*! to RT. ¢g(z) = 0 if and only if z = 0. f is a function from
117 s wa) to [T, [l wil- a; (i = 1,-++ ,m) are functions from [, '[l;,u;] to R. g is
used to change the complexity of the test instances. «; are to control the PF shapes and
B is to control the PS shapes. In this paper, g = Y1 ,(z; — sin(2mz; + £m))?, 2 € [0,1] x
[—1,1]""%, n =10 for the 2-objective test instances and g = Y7 ,(2; — sin(27z; + 7))?,
r € [0,1]* x [-1,1]""2, n = 10 for the 3-objective test instances. The setting of ; and
the PF shapes are shown in Table 1.

In order to evaluate the performance of algorithm in a quantitative way, the IGD-metric
[14, 15, 20] is used in this paper. Suppose Q* is the set of points uniformly distributed
along the PF and () is an approximation to the PF. The distance between the Q* and @)

can be defined as:
ZvEQ* d(U, Q)
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TABLE 1. The setting of a; and the PF shapes for all test instances
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Instance | The setting of o The PF shape
F1 a=n , Linear, Disconnected
ay =2 — 1 — sign(cos(2mxy))
a; =1 —cos (‘%lw) .
F2 . Convex, Different value range
oy = 10 — 10sin (%lw)
a1 = T
F3 1—192; if z;1 <0.05 Convex
“2=] L_u else
19 19
o) = 1 Convex, Disconnected,
F4 .
g = 2 — 2297 cos(3xim)? Different value range
o = (1 — COS (‘”2—17r)) (1 — COS (%ﬁ))
F5 gy = (1 — CoS (‘”2—17)) (1 — sin (%Tr)) Convex
a3 =1 —sin (%ﬂ')
= (1 — coS (%ﬁ)) (1 — coS (%ﬁ))
F6 y = (1 — cos (“52—17()) (1 — sin (%Tr)) Convex, Disconnected
oz =2 —sin (&) — sign(cos(4xiT))

where d(v, Q) is the minimum Euclidean distance from the point v to Q. Obviously, the
smaller value of IGD, the better performance of the algorithm. We uniformly selected

1000 points to construct the set @@* along the PF.
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FiGURE 5. The left and right plots are respectively nondominated solutions

with the smallest IGD-value in 30 runs of DMOEA /D and MOEA/D for
all test instances F1-F6

In the experiment, we compare DMOEA/D with MOEA/D. The weight vectors of
MOEA/D uniformly spread on the first quadrant with line f; + fo = 1 for 2-objective
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tests and on the first part with plane f;+4 fo+ f3 = 1 for 3-objective tests. Furthermore, the
common parameters are set at the same values as those used in the algorithm MOEA /D
[11]. The population size N is set at 100 for all the 2-objective test instances and 300 for
the other two 3-objective test instances respectively. The maximum number of generation
is Max_gen = 1000 and the weight vectors updated frequency is F = Max_gen/20.
DMOEA/D and MOEA/D are run 30 times independently for each test instance. Figure
5 shows the nondominated solutions with the smallest IGD-value in 30 runs of MOEA/D
and DMOEA/D. Table 2 shows the comparison result of IGD-value between these two
algorithms.

TABLE 2. The IGD-value of DMOEA /D and MOEA/D in 30 independent
runs for all test instances

IGD-value DMOEA/D MOEA/D

Example best mean std best, mean std
F1 0.002507 0.002562 2.8912e-8 | 0.004468 0.004575 5.1324e-8
F2 0.027132 0.027883 4.6723e-8 | 0.402172 0.459411 2.5671e-5
F3 0.005123 0.005559 5.3912e-8 | 0.028102 0.030804 8.3089e-6
F4 0.006021 0.006712 2.2371e-8 | 0.012371 0.014072 4.2314e-5
F5 0.022132 0.023100 9.5612e-8 | 0.030781 0.035962 9.7307e-6
Fé6 0.018923 0.019817 2.1329e-7 | 0.028913 0.031779 6.1645e-5

Table 2 presents the best, the mean and standard deviation of IGD-value of the final
solutions obtained by both algorithms for all test instances. This table reveals that in
terms of IGD-value, the final solutions obtained by DMOEA /D are better than MOEA /D
for all test instances. Figure 5 shows in the objective space, the distribution of the final
solutions obtained in the run with the lowest IGD-value of both algorithms for all test
instances. It is evident that as to the uniformness of final solutions, DMOEA/D is also
better than MOEA /D for all instances. We can conclude from the above results that the
dynamic weight design method can improve the uniformness of final solutions for various
PF shapes. Although the shape of the PF is simple in F1, the final solutions obtained by
DMOEA/D are still better than MOEA/D because there are many subproblems obtain-
ing the same Pareto optimal solution in MOEA/D. When the different objectives take
different scaling in instance F2, MOEA /D should work well if the objective normalization
is considered. But DMOEA/D still obtain a set of uniformly distributed Pareto optimal
solutions along the PF without normalizing objectives.

6. Conclusion. In this paper, we have proposed a dynamic weight design method based
on the projection of the current nondominant solutions and equidistant interpolation. It
can be applied to almost all of the MOEAs which are based on aggregating objectives.
The numerical simulations on seven difficult problems have been shown that MOEA /D
with the dynamic weight design method is able to generate a very uniform distribution
of Pareto optimal solutions on the PF.
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