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ABSTRACT. Smoothing function method and filled function method are two of the most
efficient methods for global optimization problems. The former can eliminate many local
minima during the optimization process, but it often loses some useful information on
looking for descent directions. The later can escape from local minima and find a better
minimum, but it is usually parameter sensitive. To overcome these shortcomings, an
auzxiliary function is designed which integrates the advantages of both smoothing function
and filled function; that is, it not only can eliminate many local minima and escape from
local minima, but also cannot lose the useful information and is not parameter sensitive.
By using such a function, many local minima will be eliminated and the algorithm succes-
sively goes from one local minimum to another better local minimum during optimization
process, and finds the global minimum finally. To enhance the efficiency of the algorithm,
a local search called square search is designed and integrated into the algorithm. Based on
these techniques, a minimum-elimination-escape memetic algorithm called MEEM is pro-
posed in this paper. The simulations are made on 30 standard benchmark problems and
the performance of the proposed algorithm is compared with that of some well performed
existing algorithms. The results indicate the performance of the proposed algorithm is
more effective.

Keywords: Memetic algorithm, Minimum elimination, Smoothing function, Square
search, Global optimization

1. Introduction. Global minimization problems considered in this paper can be formu-
lated as follows:

min f (z) (1)

reD
where D C R"is a bounded closed set. For convenience, the global minimization problems
are denoted as GPs for short. They can be divided into two groups: differentiable GPs
in which the objective function f(z) is differentiable and non-differentiable GPs in which
the objective function f(z) is nondifferentiable.

For differentiable GPs, many traditional optimization methods have been developed,
such as Newton method, quasi Newton methods, steepest descent method, trust region
method, conjugate gradient method. These methods can converge rapidly to a solution
with high precision, but the solution found is usually not the global optimal solution.
For the review of recent development of this kind of methods one can refer to the work
[1]. Another type of traditional methods is auxiliary function methods, in which an aux-
iliary function is designed to help algorithms to escape from the local optimum. Some
well known methods have been proposed, such as filled function method [2, 3], stretching
function method [4], tunneling function method [5] and cut-peak function method [6]. It
has been proved that, with proper parameters, these methods have good performance in

3689



3690 L. FAN AND Y. WANG

jumping out the local optimal solutions; however, most of them (e.g., stretching function
method, filled function method and tunneling function method) will appear the so called
“Mexican hat” effect [7] if the parameters are improperly chosen [8]. Therefore, these ex-
isting algorithms are parameter sensitive. Smoothing function [9] is a simple but effective
auxiliary function, which can eliminate the solutions worse than the best solution found
so far. Thus, it can reduce the number of local optimal solutions and make the search for
global optimal solutions much easier. However, by using the smoothing function, some
useful information such as descent direction will lost, and this makes the local search more
difficult.

For nondifferentiable GPs with many local optima, it is more difficult and challengeable
for solution algorithms. When designing an algorithm for nondifferentiable GPs, one has
to face the following three issues: (1) how to escape from the local optima; (2) how to
improve the convergent speed with high precision efficiently; (3) the gradients cannot be
used.

Over the past decades, nondifferentiable global optimization has found many applica-
tions in real life and attracted more and more attention. Many efficient and effective
algorithms have been developed for nondifferentiable optimization problems in order to
deal with aforementioned three issues. For example, evolutionary algorithms (EAs) are
one of the most efficient and popular such algorithms, but the convergent speed of EAs
is often slow, and the solution found is often not the global optimal solution for high-
dimensional problems with a large number of local optimal solutions. In order to overcome
these shortcomings, many techniques have been developed and incorporated into EAs to
enhance their performance [10, 11]. One of the most popular strategies is to embed lo-
cal search (LS) techniques into EAs to form a new kind of algorithms called memetic
algorithms (MAs) [12-15]. The local search techniques are often employed to speed up
the search procedure [12]. Based on the usage of local search techniques, MAs can be
classified into the following two groups [16]:

e LS is applied to each or some individuals of each population directly, aiming to
find better solutions. Quasi-Newton, conjugate gradient, SQP, and steepest descent
direction, etc. are examples of this kind of LS [15, 17-19].

e LS is integrated into the evolutionary operators to improve the performance of the
evolutionary operators, such as crossover-based LS. Using crossover-based LS can
produce several offspring around the parents [20)].

In an MA, the attention has to be paid to both global search ability and local search
ability. As mentioned in [16], global search can provide reliability and local search can
provide accuracy for an MA. By keeping the diversity of the population, the global search
ability can be improved, while a proper local search scheme can greatly improve the
performance of an MA. When designing an efficient and powerful MA, one has to balance
the global search and the local search [13].

The following sections are arranged as follows. In Section 2, smoothing function [9]
and filled function [2] are introduced. In Section 3, a new local search method is pro-
posed based on the minimum-elimination-escape function. Sections 4 and 5 introduce the
uniform design based crossover operator and square search respectively. The proposed
algorithm MEEM is proposed in Section 6. Section 7 presents the experimental results.
The conclusions are made at last.

2. Smoothing Function and Filled Function.

2.1. Smoothing function. Smoothing function [9] is utilized to eliminate the worse
solutions which might influence the search ability of the solution algorithm. By using the
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smoothing function, the number of the local minima of the original global optimization
problem will be reduced substantially. According to [9], we transform the formula of the
smoothing function to an equivalent form as follows:

F(z,27) = min{f(z), f(«")} (2)

where f(x) is the original objective function, and x* is the best solution found so far
(changed with generation). Thus, at any point x no better than x*, its function value is
changed to f(z*), i.e., F(x,z*) = f(z*), meanwhile, at any point = better than z*, its
function value keeps unchanged, i.e., F(x,z*) = f(x). This can be intuitively illustrated
by smoothing a function f(z) of one variable as an example in Figure 1, in which the
dashed line represents the original function, the black solid line represents the smoothing
function, and z* is the best solution found so far. The idea of the smoothing function
method is that, when a local minimum z* is found, a smoothing function is constructed
by Formula (2), and it is minimized to get another better local minimum. Then, the
smoothing function is updated by using the new local minimum and it is minimized
again. The process is repeated until the global minimum is found.

The advantage of the smoothing function method is as follows, it may eliminate many
local minima at each iteration and speed up the search for global minimum. However,
after flattened by the smoothing function, there will be a large plat area, in which some
information such as descent direction will lost. This might bring difficulties for local
search.

2.2. Filled function. The filled function method, proposed by Ge [2] in 1990, is a pop-
ular and an efficient approach to look for the global minima of multi-modal functions.
Suppose that z* is the best solution found so far. The filled function at z* was con-
structed as follows [2]:

Pl ) = e (- 200 ®)

where r and p are parameters which need to be chosen properly. Motivated by this idea, a
number of efficient filled functions have been designed (e.g., [2, 3]). However, these filled
functions are often sensitive to their parameters. Improper parameters will lead to the
phenomenon called “Mexican hat” effect [7] which will cause difficulties for minimization
process.

To overcome the shortcomings of both smoothing function and filled function, a simple
auxiliary function called minimum-elimination-escape function is proposed and is denoted
as MEE function. The function has only one parameter and is not parameter sensitive.

3. Minimum-Elimination-Escape Function Method.

3.1. Minimum-elimination-escape function. The minimum-elimination-escape func-
tion can be defined as follows:

P, ") = F(z,2%) = 7llz = 27| (4)

where v > 0 is a parameter, and x* is the best solution found so far.

Figure 1 shows the original function, smoothing function and MEE function with one
variable as an example. Figures 2 to 4 show the original function, its smoothing function
and its MEE function with two variables as an example. It can be seen from Figure 4
that, after minimum elimination at the best solution z* found so far, descent directions
can be found easily for MEE function. Thus, a better local minimum can be found easily
by using MEE function from z*.
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Ficure 1. 2-D  example: FiGure 2. 3-D  example:
MEE function at z* Original function

FIGURE 3. 3-D example: FIGURE 4. 3-D example:
Smoothing function MEE function

Also note that for MEE function in (4)

I, 2, 7) P(z*,z*,v) — P(x,z*,v) F(a*,2*) — F(x,z*)
T, T =
o ||z — 2] ||z — x|

with x € D and = # z*. Obviously, it has the following properties:

1) For Yz € D, one has P(z,x*,v) < P(z*, 2*,v) = F(z*,2*) = f(x%).

2) If z is a local minimum of (4), then z is located in a basin' of (2), and also in a basin

of the objective function f(x).

3) If v # 2* and f(z) > f(z*), then F(z,z*) = f(z*) and J(z,z*,v) = 7;

4) If © # o* and f(z) < f(z*), then F(z,z*) = f(x) and J(z,z*,v) > 7.
The first property means that z* is the unique global maximum of P(z,z*,v). It can be
seen from the second property that for Vx € D, if x # z*, the direction from x* to z is a
descent direction of P(z,z*, 7). Also, from properties 3) and 4), one can see that if z is
no better than z*, J(z,xz*,v) = v holds. If z is better than x*, J(z,z*,~) > v holds.

[>

+ (5)

LA basin [21] of f(X) at an isolated minimizer x} is a connected domain B; which contains ] and in
which starting from any point the steepest descent trajectory of f(X) converges to 7, but outside which
the steepest descent trajectory of f(X) does not converge to z7.



MEEM FOR GLOBAL OPTIMIZATION 3693

Another issue is that how to estimate the parameter v. In the existing auxiliary function
methods, estimating parameters is usually a hard task. However, in the proposed MEE
function, parameter v can be easily estimated and is not sensitive. Generally, when z* is
the best solution found so far, the search will go away from z*. However, when the search
goes to a point x far away from z* (usually z is away from z* in order to jump out the
current basin), the main problem arisen will be that ||z — x*|| is too large to result in
arithmetic overflow. So - should be small in order to avoid ||z — z*|| too large. Thus, in
the proposed algorithm, it is no problem if v is taken not too large. It is suggested that
parameter 7 is taken in (0,1]. In experiments, parameter v was taken as 1.0 and 10~°
respectively to test its influence.

3.2. Minimum-elimination-escape function method. Based on the above strategies,
we design a new local search method called minimum-elimination-escape function method.
In the designed method, the best solution found so far is employed as a reference point.
In the search process, a solution with poor objective value might locate in a lower basin.
Therefore, in the proposed local search method, not only the best solution found so far
but also any other solution will be updated. It is expected that using this strategy
could increase the chance of finding a better solution. This idea can be described by the
framework of the following Algorithm 1.

Algorithm 1 Minimum-Elimination-Escape Function Method

Step 1) Given the parameter v > 0. Suppose that z* € D is the best solution found so
far, and z, is one picked solution needs to be updated.

Step 2) Generate the smoothing function F'(x,z*) according to (2); then, generate the
auxiliary function P(z,z*, ) according to (4).

Step 3) Randomly generate K uniformly distributed vectors e; (i = 1 ~ K) on the unit
ball.

Step 4) Let X = ®. Along each ¢; (i = 1 ~ K), using line search scheme to obtain a
solution Z; € D. If P(z;,2*,v) > v, let X = X U {z;}. If X # ®, go to Step 5);
else, go to Step 3);

Step 5) For each Z; € X, minimize F(Z;,z*) till a local minimum Z; is obtained. Select
7, which satisfies F'(z,2*) = min F'(Z;,2*). Let z* = Z, stop.

J

4. Crossover Operation Based on Uniform Design. First we denote
Cn = {(xlax%"' 7xn)|0 S L1, ", Tn S 1}

The uniform design methods [22] aim to generate several uniformly distributed points in
C,. By the following two steps, ¢ approximately uniformly distributed points in C,, can
be generated.

Step 1. Construct an n-dimensional reference vector v = (v1, 72, - , 7n) using any of the
following 3 methods (i = 1,2,--+ ,n):
a) vi = /Di, where py,- -+, p, are the first n positive primes.
b) 7; = p*, where \ = n}rl and p is a positive prime.
¢) v = 2cos(iw), where p > 2n + 3 is a positive prime and w = 27 /p.
Step 2. Let {a} denote the decimal part of the real number «. Generate a set of ¢
approximately uniformly distributed points in C), as follows:

{({kfyl}a {k72}7 B {k7n})|k =1~ Q}
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Suppose that * = (z1,---,z,) and y = (y1,--- ,yn) are any two parents chosen for
crossover. Let [; = min{z;,y;} and u; = max{z;,y;} for i = 1 ~ n. Now, a new
crossover operator is designed to generate ¢ approximately uniformly distributed points
in set [l,u] = {z|l; < x; <w;, i =1 ~ n}. The crossover operator is described in the
following Algorithm 2.

Algorithm 2 Crossover Operator Based on Uniform Design [9]

Step 1) Generate ¢ approximately uniformly distributed points in C, by the above
steps, and denote the set of these points by {(ckl,--- JCen)|k = 1 ~ q} =

Step 2) Generate ¢ uniformly distributed points in set [[,u] by B = {(bkl, oo b)) |k =
li+crj(uj—1), j=1~n k=1~ q}. Then, the points in B are offspring of x
and y.

5. Square Search. Flattened by the smoothing function, the flat area of f(x) will be
very large, especially at the end of the evolution process. In order to find a better point,
it is needed to explore the domain as completely as possible. Therefore, we propose a new
search method called square search in this paper to search the domain effectively. In the
square search, a group of squares will be constructed according to some selected solutions,
and several uniformly distributed points in (or on) each square will be sampled.

At the end of the process, the focus of a global optimization algorithm will turn to
improve the precision of the solutions. Enlarging the search squares only can not improve
the precision effectively, which also might bring much computational cost. In order to
handle this issue, we do the square search outward and inward from the initial square
alternately. Under this way, a better solution can be found with less computational cost
and also the solution precision can be improved. The detail is described in Algorithm 3.

Algorithm 3 Square Search

Step 1) Let I' > 0 be the maximum number of search squares and L = (ly,ls,--- , 1),
U = (uy,us,- - ,u,) be the lower bound and upper bound of the search domain
respectively. Suppose that T = (T, Zs,- -+, T,) is the best solution in the current
population. Let k£ = 1;

Step 2) If k is odd, let o = %; else, let o = ﬁ Go to Step 3);

Step 3) Compute L = (Iy,+-+,1I,) and U = (uy, -+ ,Uy), in which [; = z; — a(2; — I;), 1u; =
x; +a(u; — T;), for i =1 ~ n. Generate .J points uniformly in the hyperrectangle
between L and U.

Step 4) Compute the smoothing function values of these J points. If there is a point x”
such that F(7,27) < f(Z), go to Step 5); Otherwise, let k = k + 1, go to Step 2);

Step 5) Use a local search method to update x’. Denote the updated solution as Z. Let
T = x, stop.

6. Minimum-Elimination-Escape Memetic Algorithm: MEEM. Based on the
above techniques, we propose a novel memetic algorithm called minimum-elimination-
escape memetic algorithm (MEEM) as follows.
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Algorithm 4 Minimum-Elimination-Escape Memetic Algorithm: MEEM

Step 1) (Initialization) Given population size N, crossover probability p. > 0 and up-
date probability p,. Randomly generate initial population POP(0). Find out the
best individual Zy in POP(0). Let k£ = 0.

Step 2) (Smoothing Function) Define smoothing function F(z,z) by Formula (2).

Step 3) (Crossover) Randomly choose [p. X N/2| pairs of parents from POP(k), where
[a] represents the integer part of number . For each pair, use Algorithm 2 to
produce offspring. The set of all these offspring is denoted as O;.

Step 4) (Square Search) Randomly choose [p, x N] individuals from POP(k)UO;. For
each individual, use Algorithm 3 to generate offspring. Denote the set of all these
spring as Os.

Step 5) (Selection) Select the first [INV/2] best individuals from POP(k)UO;UO, to put
into POP(k + 1) using original function f(z), then randomly select N — [N/2]
individuals from POP(k)U Oy U Oy to put into POP(k + 1).

Step 6) (Local Search) Find out the best individual Z; 1 in POP(k+1). Use Algorithm
1 to update Z,;. Randomly choose [p, x (N —1)] individuals from POP(k+1).
Use Algorithm 1 to update each individual.

Step 7) (Termination) If stop condition is satisfied, stop; otherwise, let k = k + 1, go
to Step 2.

TABLE 1. Basic characteristics of test functions Fs;.39

Func n Search Space frnin Func n | Search Space | fin
Fy (see f14 in [23]) | 2 | [-65.536,65.536]™ | 0.9980 || Fae (see f23 in [23]) | 4 [0, 10]™ —10.54
Fyy (see fg in [23]) |30 [—100, 100]™ 0 Fy; (see fg in [24]) |30| [-32,32]" 0
Fy3 (see f7 in [23]) |30| [—1.28,1.28]" 0 Fys (see f10 in [24]) | 30| [—600,600]™ 0
Fyy (see fay in [23]) | 4 [0, 10]™ —10.15|| F59 (see f7 in [24]) |30 [-5, 5] 0
F25 (see f22 in [23]) 4 [0, 10]” —10.54 F30 (see f12 in [24]) 30 [—512,512]” 0

7. Experimental Results.

7.1. Test problems and existing algorithms for comparison. 30 widely used and
challenging benchmarks are selected to test the performance of the proposed algorithm
MEEM, where F; to Fy, are the same as that used in [29], and F3; to F3p are chosen
from [23] to [28]. The basic properties of the last 10 problems are listed in Table 1, where
fmin represents the function value at minimum and n the dimension of the problem. In
each table from Table 2 to Table 7, Func, M-fun, Best, Worst, M-best, Std represent test
functions, the mean number of function evaluations, the best function value, the worst
function value, the mean best function value and the standard deviation of best function
values respectively in 50 runs. “NA” represents the results are not provided in the related
reference, and “—” means the experiment was not carried out on the related function.

We choose 8 algorithms for comparison: Fast Evolutionary Programming with Cauchy
Mutation (FEP) [23], Comprehensive Learning Particle Swarm Optimizer (CLPSO) [24],
Hybrid Estimation of Distribution Algorithm (EDA/L) [25], Hybrid Taguchi-Genetic Al-
gorithm (HTGA) [26], Orthogonal Genetic Algorithm with Quantization (OGA/Q) [27],
Evolutionary Programming with Adaptive Levy Mutation (ALEP) [28], Evolutionary Al-
gorithm based on the Level-set Evolution and Latin Squares (LEA) [29], and DE with
Global and Local Neighborhoods and Self-adaptive Weight Factor (DEGL/SAW) [30].
Each of the above algorithms was executed to solve some of the test functions, and the
results are reported in related articles. We use these existing results for a direct compar-
ison.
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7.2. Parameters setting for MEEM. The proposed algorithm MEEM is executed 50
independent runs for each test problem. In experiments, we adopted the parameters as
follows:

e Population size: N = 20.

e Crossover and mutation parameters: p, = 0.1, p. = 0.2, p=5,q="1.

e Parameters in Algorithms 1 and 3: v =1.0e —9 and 1.0, I' = 6, K = [n/10], where
n is the dimension of the problem, and [«] denotes the smallest integer no less than
Q.

Stopping criterion: when the best solution can not be improved further in successive
50 generations or after 400 generations, the execution of the algorithm is stopped.

7.3. Results and comparisons. In the experiments, in order to test the influence of
parameter v, we took parameter v as 1.0 and 1.0e-9 respectively, and the results are pre-
sented in Tables 2 and 3. From Tables 2 and 3, we can find that for test functions, except
for F7g12, the mean best function values found by MEEM are very close to the global
optimal values, and the standard deviations of the results are very small. Comparing the
results listed in Tables 2 and 3, one can find obviously that the difference between the
results in these two tables is so slight that it can be ignored. This confirms that parameter
v has no big influence for the proposed algorithm.

From Table 7, it can be seen that, for 100-dimensional problems F.g, MEEM can find
close-to-optimal solutions with high precision. Also, in the 50 independent runs for each
test function, the difference of the objective function values between the best solutions and
the worst solutions is very small except for F%7, which indicates that the proposed algorithm

TABLE 2. The results of the test problems obtained by MEEM with v = 1.0

Func M-fun Best Worst M-best Std
13 49924.12 | —1.256948661e+04 | —1.256948660e+04 | —1.256948661e+04 | 3.876432735871869¢-06
s 25302.98 0 9.563732975¢ -15 2.385643531e-15 4.253762041054699¢-15
F3 18690.20 2.534801583e-11 4.859312462¢-09 5.863520138e-10 1.487512863528164e-10
Fy 77524.42 0 2.683972689%¢-13 3.013643561e-14 2.698293760435360e-14
Fs 55711.10 1.023842523e-21 4.364281265¢e-18 2.936533168e-19 5.853531283624362¢-19
Fs 65104.32 1.862383517e-20 6.401352262¢-17 4.912532839%¢-18 2.439256246437241e-17
Fr 179872.46 —79.451305826 —58.880842725 —62.828383918 7.183906351
Fy 165704.12 2.001825360e-10 9.351017386e-09 2.134326693e-09 1.028960234328506¢e-09
Fy 95536.74 —78.332331407 —78.332331407 —78.332331407 2.563836025327626e-12
Fip 99079.32 2.103102871e-10 3.831378210e-05 3.933672977e-06 5.130753647238653e-04
Fuu 42693.54 2.563120346e-32 1.242309943e-19 4.001034528e-20 2.351462532870132¢-20
Fi» 70086.52 1.114137321e-04 5.925609e-03 1.962119¢-03 2.019351623024e-03
Fi3 18633.58 0 0 0 0
Fia 59706.76 0 8.968561882¢-07 5.7211068e-07 1.092125583397502e-07
Fis 46398.14 7.783253659¢-37 1.359300187e-19 3.495821643¢-20 6.365208636133355e-20
Fig 3088.98 —1.031363937 —1.031363937 —1.031363937 4.763836925132368e-13
Fiy 3216.64 0.397894048 0.397894068 0.397894051 5.231853576703662¢-09
Fig 3673.18 3.00000000 3.00000000 3.000000000 6.768234664933617e-10
Fig 29690.40 3.075076257e-04 3.094726485e-04 3.084352577e-04 6.024336152192296e-07
Fs 19267.82 —3.321995171 —3.321995171 —3.321995171 6.001478135963665e-14
F>, 2057.86 0.998003837 0.998003851 0.998003844 7.000540134362388e-10
F»; 1913.06 0 0 0 0
Fos 64683.36 6.203724630e-06 8.996438931e-03 1.078365295e-03 2.536096236499¢-03
Fsy 2480.20 —10.15319968 —10.15319968 —10.15319968 4.061362765391308e-12
Fys 2301.34 —10.40294057 —10.40294057 —10.40294057 2.143625673177430e-12
Fas 1960.50 —10.53640982 —10.53640982 —10.53640982 5.332604361917626e-13
F>; 20713.78 2.683717056e-11 3.846620132e-09 2.836725823e-10 5.967314836240213e-10
Fyg 63503.30 0 2.106947426e-11 1.019589723e-12 5.896137584260245e-12
Fsg 27217.60 0 5.671335579%¢-14 2.7683576211e-15 | 5.667133105338553e-15
F3 25788.04 8.964351672e-16 3.907643761e-14 1.837695134e-14 5.169810359235277e-15
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TABLE 3. The results of the test problems obtained by MEEM with

v =1.0e-9
Func M-fun Best Worst M-best Std
F 49783.26 | —1.256948661e+04 | —1.256948660e+04 | —1.256948661e+04 | 4.352138463579719e-06
F> 25467.30 0 1.635368369¢-14 1.635368369e-15 3.001841704840774e-15
F3 18873.44 4.270635796e-11 7.258964376e-09 6.536389265e-10 1.976553225148764e-10
Fy 76825.62 0 4.258563867e-13 1.954283295e-14 1.856258415716020e-14
F; 56482.38 8.8567391e-21 1.225327620e-18 6.859725426e-19 8.041890784161613e-19
Fs 64946.76 3.261482385e-20 2.312488697e-17 7.341356412e-18 1.250142385318736e-17

Fr 179906.78
Fy 165468.26
Fy 95977.46
Fip 99532.62
Fi 42563.28
Fis 69745.18
Fis 18752.02
Fiy 59587.90
Fis 46532.20

Fis 3241.52
Fi7 3241.52
Fig 3712.22

Fi9 | 29487.54
Fy 19358.62

F5 2087.42
Fyy 1865.22
Fhs 65011.40
Fyy 2498.22
Fys 2287.68
Fhg 1936.28

Fyr | 20634.80
Fys | 63271.44
Fyy | 27088.72
F3p | 25906.38

—179.736346712
1.457934631e-10
—78.332331407
1.956350635e-10
1.274130266e-32
1.008759429e-04
0
0
1.394520156e-36
—1.031363937
0.397894048
3.00000000
3.075076256e-04
—3.321995171
0.998003837
0
9.430563839e-06
—10.15319968
—10.40294057
—10.53640982
3.545370923e-11
0
0
7.253845211e-16

—56.074589249
1.715238622e-08
—78.332331407
4.762456031e-05
2.057164352e-19
6.746284e-03
0
1.135081479¢-06
2.571603077e-19
—1.031363937
0.397894069
3.00000000
3.096398825e-04
—3.321995171
0.998003851
0
1.441165279e-02
—10.15319968
—10.40294057
—10.53640982
5.925740054e-09
5.425720268e-11
7.103625845e-14
2.309263891e-14

—62.813745231
1.001152733e-09
—78.332331407
5.210146351e-06
2.790214303e-20
2.311738e-03
0
7.5120743e-07
2.539301883e-20
—1.031363937
0.397894050
3.000000000
3.085263685e-04
—3.321995171
0.998003845
0
1.890234872e-03
—10.15319968
—10.40294057
—10.53640982
4.404834726e-10
1.560637523e-12
4.1165372231e-15
2.004678520e-14

7.372856190
1.237674872836286e-09
5.649273206701539e-12
1.752761639218210e-04
1.021283535413243e-20

1.769245736822e-03
0
1.216234973490162e-07
4.450167997062091e-20
5.895904638713140e-13
8.763941758498781e-09
5.357141679044328e-10
5.546848450346350e-07
5.023768938325215e-14
5.283475729653587e-10
0
1.999768845546e-03
2.413624840505037e-12
4.634421329174964e-12
7.215419216734349e-13
2.365725342586147e-10
7.706591561478561e-12
6.352710467247366e-15
4.873012534776256e-15

is robust and effective. Figure 5 shows the convergence results of several problems. It can
be seen obviously that MEEM can rapidly converge to the solutions which are very close
to the global optimal solutions using few function evaluations. These results indicate that
MEEM can find close-to-optimal solutions and has a good performance.

From Tables 4, 5 and 6, one can find that MEEM can find much better solutions with
much fewer function evaluations than FEP and ALEP for high dimensional problems
Fig11,14. It seems that both FEP and ALEP have difficulty in solving high dimensional
problems. For 2-dimensional problems Fig 15, MEEM and ALEP perform equally. Thus,
MEEM outperforms FEP and ALEP, especially in solving high dimensional problems.

Compared the results obtained by OGA/Q and MEEM, it can be seen that, for Fy 151415,
although OGA/Q obtains better results than MEEM, MEEM can use much fewer func-
tion evaluations to get the results with relatively high precision. For F7, neither OGA/Q
nor MEEM can find close-to-optimal solution. For the 100-dimensional problems, the
results obtained by MEEM are closer-to-optimal and much better than those obtained
by OGA/Q. For the remaining problems, the results obtained by MEEM are as good as
OGA/Q. Thus, MEEM outperforms OGA/Q in dealing with high dimensional problems.

Compared with HTGA, it can be seen that MEEM can find better solutions using
fewer function evaluations than HTGA on problems F}5459. However, for Fyy, MEEM
obtains much better solution using more function evaluations than HTGA, so that it is
difficult to judge which one has better performance for this problem. It can be found
easily that, MEEM can find better solutions using fewer function evaluations for almost



MEEM FOR GLOBAL OPTIMIZATION 3699

TABLE 4. Comparisons between MEEM and other algorithms on F}.q

Func MEEM FEP OGA/Q HTGA EDA/L ALEP | CLPSO LEA
Fy M-fun 49,783 900,000 302,116 163,468 52,216 150,000 - 287,365
M-best | —12569.49 | —12554.5 | —12569.4537 | —12569.46 | —12569.48 | —11469.2 - —12569.4542
Std 4.532e-06 52.6 6.447e-04 0 NA 58.2 - 4.831e-04
F, M-fun 25,467 500,000 224,710 16,267 75,014 150,000 | 200,000 223,803
M-best | 1.635e-15 0.046 0 0 0 5.85 4.85e-10 | 2.103e-18
Std 3.002e-15 0.012 0 0 NA 2.07 3.63e-10 | 3.359e-18
F3 M-fun 18,873 150,000 112,421 16,632 106,061 150,000 | 200,000 121,435
M-best | 4.270e-11 0.018 4.440e-16 0 4.141e-15 0.019 0 2.5993
Std 1.976e-10 0.021 3.989%e-17 0 NA 0.001 0 0.09245
Fy M-fun 76,825 200,000 134,000 20,999 79,096 150,000 | 200,000 130,498
M-best | 1.954e-14 0.016 0 0 0 0.024 3.14e-10 | 6.104e-16
Std 1.856e-14 0.022 0 0 NA 0.028 4.64e-10 | 3.001e-17
Fs M-fun 56,482 150,000 134,556 66,457 89,925 150,000 - 132,642
M-best | 6.860e-19 | 9.2e-06 6.019e-06 | 1.000e-06 | 3.654e-21 | 6.0e-06 - 2.482e-06
Std 8.042e-19 | 3.6e-06 1.159e-06 0 NA 1.0e-06 - 2.276e-06
Fs M-fun 64,946 150,000 134,143 59,003 114,570 150,000 - 130,213
M-best | 7.341e-18 | 1.6e-04 1.869e-04 | 1.000e-04 | 3.485e-21 | 9.8e-05 - 1.734e-04
Std 1.250e-17 | 7.3e-05 2.615e-05 0 NA 1.2e-05 - 1.205e-04
F; M-fun | 189,906 - 302,773 265,693 169,887 - - 289,863
M-best | 54.279 - 92.83 —92.83 | —94.3757 — - —93.01
Std 9.037 - 0.02626 0 NA — - 0.02314
F3 M-fun | 165,468 - 190,031 186,816 124,417 - - 189,427
M-best | 1.001e-09 - 4.672e-07 | 5.869e-05 | 3.294e-08 — - 1.627e-06
Std 1.237e-09 - 1.293e-07 | 8.325e-05 NA — - 6.527e-03
Fy M-fun 95,977 - 245,930 216,535 153,116 - - 243,895
M-best | —78.3323 - —78.3000296 | —78.303 | —78.31077 — - —78.31
Std 5.469e-12 - 6.288e-03 0 NA — - 6.127e-04
Fio M-fun 99,532 - 167,863 60,737 128,140 - 200,000 168,910
M-best | 5.210e-06 - 0.752 0.7 4.324e-03 — 2.1e+01 0.5609
Std 1.483e-05 - 0.114 0 NA - 2.98e+00 0.1078

100-dimensional problems. For Fb.4 111415, HTGA can found exactly optimal solutions
using fewer function evaluations than MEEM. For Fi3, both MEEM and HTGA can find
the exactly optimal solution, but HTGA uses fewer function evaluations. By comparing
Figure 5 and the convergence graphs reported in [26], we can find that the convergence
speed of MEEM is much faster than HTGA. Therefore, MEEM outperforms HTGA in
solving high-dimensional problems.

The results of EDA /L are shown in Table 4, where one can find that both MEEM and
EDA/L can find optimal or close-to-optimal solutions except for F7. For F} g 19, MEEM
can find better solutions with fewer function evaluations than EDA /L. For Fy.5, MEEM
obtains a little worse solutions, while uses much fewer function evaluations than EDA /L.
From the above, it can be concluded that MEEM outperforms EDA /L.

Comparing MEEM and CLPSO, it can be found that for Fj4101127~30, MEEM can
obtain solutions with higher precision using much fewer function evaluations. For Fj,
the result obtained by CLPSO looks a little better than that obtained by MEEM, but
the function evaluations used by MEEM are much fewer than CLPSO. Thus MEEM
outperforms CLPSO.

The results of LEA and MEEM show that, MEEM can find optimal or close-to-optimal
solutions except for Fy 15 (with precision 1.0e-4 or better). However, for F} 36.10,12,20, the
solutions obtained by LEA can not reach the precision 1.0e-4. For 15 problems, MEEM
can use fewer function evaluations to find better solutions than LEA. On the remaining
problems, MEEM can use much fewer function evaluations than LEA to find solutions
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TABLE 5. Comparisons between MEEM and other algorithms on Fi;.9

Func MEEM FEP OGA/Q |HTGA |EDA/L| ALEP | CLPSO LEA
Fi1 M-fun 42,563 | 150,000 | 112,559 | 20,844 - 150,000 | 200,000 | 110,647
M-best | 2.790e-20 | 5.7e-04 0 0 — 6.32e-04 | 4.46e-14 | 4.727e-16
Std 1.021e-20 | 1.3e-04 0 0 — 7.6e-05 | 1.73e-14 | 6.218e-17
Fio M-fun 69,745 — 112652 | 20,065 — — — 111,093
M-best | 2.312e-03 — 6.301e-03 | 0.001 — — — 5.136e-03
Std 1.769e-03 — 4.069e-04 0 — — — 4.432e-4
Fi3 M-fun | 18,752 [200,000| 112,612 | 14,285 | — - - 110,031
M-best 0 8.1e-03 0 0 — — — 4.247e-19
Std 0 7.7e-04 0 0 - - - 4.236e-19
Fi4 M-fun 59,5687 | 500,000 | 112,576 | 26,469 - 150,000 - 11,064
M-best | 7.512e-07 | 0.016 0 0 - 0.04185 - 6.783e-18
Std 1.216e-07 | 0.014 0 0 - 0.05969 - 5.429e-18
Fis M-fun | 46,532 |500,000| 112,893 | 21,261 | — -~ -~ 111,105
M-best | 2.539e-20 0.3 0 0 — — — 2.683e-16
Std 4.450e-20 0.5 0 0 — — — 6.257e-17
Fig M-fun 3,241 10,000 — — — 3,000 — 10,823
M-best | —1.0314 | —1.03 — — — —1.031 — —1.03108
Std 5.896e-13 | 4.9e-07 — — — 0 — 3.364e-07
Fi7 M-fun 3,792 10,000 — — — — — 10,538
M-best | 0.39789 0.398 — — — — — 0.398
Std 8.764e-09 | 1.5e-07 — — — — — 2.652e-08
Fis M-fun | 3,712 | 10,000 - - - 3,000 - 11,721
M-best | 3.0000 3.02 — — — 3.000 — 3.0003
Std 5.357e-10| 0.11 — — — 0 — 6.245e-05
Fi9 M-fun 29,487 | 400,000 — — — — — 55,714
M-best | 3.085e-04 | 5.0e-04 — — — — — 3.512e-04
Std 5.547e-07 | 3.2e-04 — — — — — 7.361e-05
Fyy M-fun | 19,358 | 20,000 - - - - - 28,428
M-best | —3.322 —-3.27 — — — — — —-3.301
Std 5.024e-14 | 0.059 — — — — — 7.832e-03
TABLE 6. Comparisons between MEEM and other algorithms on Fyiosot
Func MEEM FEP | CLPSO Func MEEM FEP | CLPSO
Fpy M-fun | 2,087 | 10,000 | — | Fa M-fun | 1,936 |10,000] —
M-best | 0.9980 1.22 — M-best | —10.5364 | —6.57 —
Std 5.283e-10 | 0.56 — Std 7.215e-13 | 3.14 —
F59 M-fun 1,865 150,000 — Fy7; M-fun 20,634 - 200,000
M-best 0 0 — M-best | 4.4048e-10 — 3.43e-04
Std 0 0 — Std 2.366e-10 — 1.91e-04
F53 M-fun 65,011 | 300,000 — Fys M-fun 63,271 - 200,000
M-best | 1.890e-03 | 7.6e-03 — M-best | 1.5606e-12 — 7.04e-10
Std 2.000e-03 | 2.6e-03 — Std 7.706e-12 — 1.25e-11
F5y M-fun 2,498 10,000 — Fyg M-fun 27,088 — 200,000
M-best | —10.1532 | —5.52 — M-best | 4.1165e-15 — 4.36e-10
Std 2.414e-12 1.59 — Std 6.353e-15 — 2.44e-10
Fys M-fun 2,287 10,000 — F3y M-fun 25,906 — 200,000
M-best | —10.4029 | —5.52 — M-best | 2.0047e-14 — 3.46e+01
Std 4.634e-12 | 2.12 — Std 4.873e-15 — 4.59e+00

T There is no result obtained by OGA/Q, HTGA, EDA/L, ALEP and LEA on Fb;.30
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TABLE 7. Comparisons between MEEM and DEGL/SAW
Func MEEM DEGL/SAW Func MEEM DEGL/SAW
F; M-fun 279,308.72 5,000,000 Fy17 M-fun 3792.30 5,000,000
M-best | —4.189828872e+4-04 | —4.18983e+04 M-best| 0.397894050 0.39788170
Std 2.22462888be-06 6.98e-06 Std 8.763941758e-09 | 8.544e-04
Fy M-fun 137,970.14 5,000,000 F13 M-fun 3712.22 5,000,000
M-best| 3.438618648e-15 1.7728e-22 M-best| 3.000000000 3.000000
Std 1.013791431e-14 3.838e-23 Std 5.357141679e-10 NA
F3 M-fun 192,341.26 5,000,000 F19 M-fun 29487.54 5,000,000
M-best| 3.485860489e-10 3.52742e-17 M-best | 3.085263685e-04 | 3.7041849e-04
Std 5.217535743e-10 1.365e-16 Std 5.546848450e-07 2.11e-09
Fy M-fun 375,756.00 5,000,000 Fy; M-fun 2087.42 5,000,000
M-best| 8.817814987e-16 4.11464e-15 M-best| 0.998003845 0.99800390
Std 9.734963968e-16 6.02e-16 Std 5.283475729e-10 1.15e-18
F5 M-fun 156,937.82 5,000,000 Fy4y M-fun 2498.22 5,000,000
M-best | 3.625324561e-17 8.00496e-19 M-best| —10.15319968 —10.15323
Std 1.269571356e-17 4.82e-17 Std 2.413624840e-12 | 7.341e-08
Fs M-fun 112,358.60 5,000,000 | Fys M-fun 2987.68 5,000,000
M-best| 1.685358743e-20 —1.142823 M-best| —10.40294057 —10.40295
Std 2.073497151e-17 9.032e-05 Std 4.634421329e-12| 5.923e-04
Fg M-fun 99532.62 5,000,000 Fys M-fun 1936.28 9,000,000
M-best| 5.210146351e-06 1.5463e-25 M-best| —10.53640982 —10.53641
Std 5.64927320e-12 7.301e-22 Std 7.215419216e-13 3.90e-08
Fis M-fun 3241.52 5,000,000
M-best| —1.031363937 —1.031630
Std 5.895904638e-13 1.749e-10

with very high precision. These indicate that the performance of MEEM is better than
that of LEA.

In order to compare with the algorithm DEGL/SAW, we expand the dimension of
Fi.6 to 100. The global optimal value of 100-dimensional F} is —41898.3, and the global
optimal values of F5.g are still 0. The properties of the other functions in Table 7 are
the same as those listed in Table 1. Table 7 presents the results obtained by MEEM
and DEGL/SAW. From Table 7, it can be seen that, MEEM uses much fewer function
evaluations than DEGL/SAW. Also, MEEM can find better solutions than DEGL/SAW
on F41921. For the remaining problems, the solutions obtained by DEGL/SAW are a
little better than those obtained by MEEM, but the difference is very small. On average,
DEGL/SAW needs much more computational cost than MEEM to find a solution with
the same precision.

It can be indicated from the above comparison and analysis that MEEM outperforms
the compared algorithms (except for EDA /L and HTGA for a few problems), especially
on solving high dimensional problems. In addition, the standard deviations of function
values given by MEEM is very small, which indicates that the performance of MEEM is
stable.

8. Conclusions. In this paper, a minimum-elimination-escape function is proposed to
eliminate all the local minima no better than the best solution found so far, and it can
provide a proper descent direction for the local search method. Then, we designed a local
search method which can jump out from the current local minimum quickly and find the
better local minimum with high precision. Also, in order to improve the global search
ability of the proposed algorithm, a new search scheme called square search is proposed.
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This search scheme can explore the overall domain effectively. Based on these strategies,
a minimum-elimination-escape memetic algorithm (MEEM) is designed. The simulation
results indicate the effectiveness and soundness of MEEM.
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