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Abstract. In many evolutionary algorithms, as fitness functions, penalty functions play
an important role. In order to solve zero-one nonlinear optimization problems, a new
objective penalty function is defined in this paper and some of its properties for solving
integer nonlinear optimization problems are given. Based on the objective penalty func-
tion, an algorithm with global convergence for integer nonlinear optimization problems
is proposed in theory. As a further application of the objective penalty function, a sim-
ple novel evolutionary algorithm is presented for solving zero-one nonlinear optimization
problems. Numerical results on several examples show that the proposed evolutionary al-
gorithm seems effective and efficient for some zero-one nonlinear optimization problems.
Keywords: Evolutionary algorithm, Zero-one optimization problems, Objective penalty
function, Fitness function

1. Introduction. It is well-known that evolutionary algorithms have been successfully
applied to a variety of optimization problems, such as, constrained optimization problems
[1], integrate linear programming [2] and mixed-integer bilevel programming problems
[3]. Hu pointed out that evolutionary algorithms have many advantages [1]. Although
the penalty function method is one of the most common approaches used in many evolu-
tionary algorithms, the main drawback of the penalty function is that it is very difficult
to control the penalty parameters which directly affect the efficiency and effectiveness of
the algorithms [1]. 0-1 nonlinear programming is an NP-hard problem. To solve such a
problem, a new simple evolutionary algorithm is proposed in this paper by introducing a
new objective penalty function as a fitness function.

The problem to be considered in this paper is the following inequality constrained
optimization problem:

(COP) min f0(x)

s.t. fi(x) ≤ 0, i ∈ I = {1, 2, · · · ,m},

where fi : R
n → R, i ∈ I0 = {0, 1, 2, · · · ,m}. Its feasible set is denoted by X = {x ∈

Rn | fi(x) ≤ 0, i ∈ I}.
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The penalty function method provides an important approach to solving (COP). It is
well-known that a penalty function for (COP) is defined as

F (x, ρ) = f0(x) + ρ
∑
i∈I

max{fi(x), 0}2,

with the corresponding penalty optimization problem for (COP) given by

(Pρ) min F (x, ρ) s.t. x ∈ Rn.

The penalty function F (x, ρ) is smooth if the constraints and objective function are
differentiable, but it is not necessarily exact. Here, a penalty function F (x, ρ) is exact
if there is some ρ∗ such that an optimal solution to (Pρ) is also an optimal solution to
(COP) for all ρ ≥ ρ∗. In 1967, Zangwill [4] presented the following penalty function:

F1(x, ρ) = f0(x) + ρ
∑
i∈I

max{fi(x), 0},

with the corresponding penalty optimization problem of (COP) given by

(EPρ) minF1(x, ρ) s.t. x ∈ Rn.

The penalty function F1(x, ρ) is exact under certain assumptions, but it is not smooth.
Exact penalty functions have attracted much attention from many researchers. In

order to find out a better solution, the existing exact penalty function algorithms need
to increase the penalty parameter to a very large value, and are also not differentiable.
Hence, it is not easy for us to adopt an efficient algorithm, such as Newton Method, to
solve constrained optimization problems via those exact penalty function methods. In
fact, from a computing point of view, it is impossible to take a very big value of the
penalty parameter ρ due to the limited precision of a computer.
The penalty function methods with an objective penalty parameter have been discussed

in [5, 6, 7, 8, 9], where the penalty function is defined as

φ(x,M) = (f0(x)−M)p +
∑
i∈I

fi(x)
p

with p > 0. Suppose x∗ is an optimal solution and f ∗ is the optimal value of the ob-
jective function. Then a sequential penalty function method can be envisaged, in which
a convergent sequence ({Mk} → f ∗) is generated so that the minimizers x(Mk) → x∗.
Morrison [5] considered the problem min{f(x)|g(x) = 0} and defined a penalty function
problem: min (f(x) − M)2 + |g(x)|2. Without convexity or continuity assumptions, a
sequence of problems is constructed by choosing an appropriate convergent sequence Mk.
Fletcher [6, 7] discussed a similar type of φ(x,M). Furthermore, Burke [8] considered a
more general type. Fiacco and McCormick [9] gave a general introduction of sequential
unconstrained minimization techniques. Mauricio and Maculan [10] discussed a Boolean
penalty method for zero-one nonlinear programming and defined another type of penalty
functions:

H(x,M) = max{f0(x)−M, f1(x), · · · , fm(x)}.
Meng et al. also studied an objective penalty function method as follows:

F (x,M) = Q(f0(x)−M) +
∑
i∈I

P (fi(x)),

which is a smooth penalty function, while they did not consider integer nonlinear opti-
mization problems in [12, 13]. Li et al. considered a pth power Lagrangian method for
integer programming which differs from the objective penalty function method in [14, 15].
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This paper will study an evolutionary algorithm with an objective penalty function for
0-1 optimization problems as follows. The remainder of the paper is organized as follows.
In Section 2, a more general type of the penalty functions with some nice prospects to
solve integer nonlinear optimization problems is presented. In Section 3, a new simple
evolutionary algorithm with a new objective penalty function as a fitness function to
solve 0-1 optimization problems is proposed and some numerical examples are given,
which show that the number of iterations of the algorithm is small. In Section 4, the
paper is concluded.

2. An Objective Penalty Function Method. In this section, the following integer
optimization problem is considered:

(IOP ) min f0(x)

s.t. fi(x) ≤ 0, i ∈ I = {1, 2, · · · ,m},
x ∈ Y = Zn,

where fi : R
n → R, i ∈ I0 = {0, 1, 2, · · · ,m}, integer set Z = {0,±1,±2, · · · }. Its feasible

set is denoted by X = {x ∈ Y | fi(x) ≤ 0, i ∈ I}.
Let functions Q : R → R ∪ {+∞} and P : R → R ∪ {+∞} where Q(t) = 0 if and only if t ≤ 0,

Q(t) > 0 if and only if t > 0,
Q(t2) > Q(t1) if and only if t2 > t1 > 0,

and  P (t) = 0 if and only if t ≤ 0,
P (t) > 0 if and only if t > 0,
P (t2) > P (t1) if and only if t2 > t1 > 0.

For example, P (t) = Q(t) = max{0, t}2. The definitions of Q and P differ from those in
[13]. Given such Q and P , a penalty function with objective parameters could be defined
as

F (x,M) = Q(f0(x)−M) +
∑
i∈I

P (fi(x)), (1)

where the objective parameter M ∈ R. Then, based on some theorems for the penalty
function F (x,M), an algorithm to solve the integer problem with global convergence
without any convexity conditions is presented.

The objective penalty function is defined as (1), whose corresponding integer optimiza-
tion problem given by:

(P(M)) min F (x,M), s.t. x ∈ Y.

Given an M ′, if an optimal solution x∗ to (IOP ) is also an optimal solution to (P(M))
for ∀M < M ′, then F (x,M) is called an exact objective penalty function.

It is easy to prove the following theorems on the penalty function.

Theorem 2.1. If x∗ is an optimal solution to (IOP) and M = f0(x
∗), then, x∗ is also an

optimal solution to (P(M)) with F (x∗,M) = 0.

Theorem 2.2. Let M∗ = min
x∈X

f0(x). Suppose that for some M , x∗
M is an optimal solution

to (P(M)). Then the following three assertions hold:
(i) If F (x∗

M ,M) = 0, then x∗
M is a feasible solution to (IOP) and M∗ ≤ f0(x

∗
M) ≤ M .

(ii) If F (x∗
M ,M) > 0 and x∗

M is not a feasible solution to (IOP), then M < M∗ and
f0(x

∗
M) < M∗.
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(iii) If F (x∗
M ,M) > 0 and x∗

M is a feasible solution to (IOP), then x∗
M is an optimal

solution to (IOP).

Proof: (i) The conclusion is obvious from the conditions of P and Q.
(ii) Let x∗ be an optimal solution to (IOP ). Since F (x∗

M ,M) > 0,

0 < F (x∗
M ,M) ≤ F (x∗,M) = Q(f0(x

∗)−M).

According to the definition of Q, M < f0(x
∗) = M∗. If f0(x

∗
M) ≤ M , then f0(x

∗
M) < M <

M∗. If f0(x
∗
M) > M , then

0 < Q(f0(x
∗
M)−M) ≤ F (x∗

M ,M)

≤ F (x∗,M) = Q(f0(x
∗)−M).

Hence, f0(x
∗
M) < M∗.

(iii) From the given conditions, and the fact that x∗
M is a feasible solution, we have

0 < Q(f0(x
∗
M)−M) ≤ F (x,M) = Q(f0(x)−M), ∀x ∈ X. (2)

(2) implies that
f0(x

∗
M)−M ≤ f0(x)−M, ∀x ∈ X.

So x∗
M is an optimal solution to (IOP).

Theorem 2.2 points out a possible way to solve (IOP). The exact objective parameter
M required in Theorem 2.2 may exist, as shown in the following example.

Example 2.1. Consider the problem:

(P2.1) min x2
1 + x2

2

s.t. −x1 ≤ 0, −x2 ≤ 0, (x1, x2) ∈ Z2.

It is clear that (x∗
1, x

∗
2) = (0, 0) is an optimal to (P2.1) and the objective value is 0. Let

us take M < 0. Define the penalty function:

F (x,M) = max{x2
1 + x2

2 −M, 0}2 +
(
max{0,−x1}2 +max{0,−x2}2

)
.

It is clear that (x1, x2) = (0, 0) is an optimal solution to (P (M)) (with M < 0). Since
F ((0, 0),M) > 0, (x1, x2) = (0, 0) is of course an optimal solution to (P2.1) by Theorem
2.2. And M is the exact objective penalty parameter.

Based on Theorem 2.2, we will develop an algorithm to compute a globally optimal
solution to (IOP) which differs from the proposed objective penalty function in [13] in
detail. As it solves the problem (P (M)) sequentially, we name it as Integer Objective
Penalty Function Algorithm (IOPFA for short).

IOPFA Algorithm:

Step 1: Choose ε ≥ 0, x0 ∈ X and a1 < min
x∈X

f0(x). Let k = 1, b1 = f0(x
0) and

M1 =
a1+b1

2
.

Step 2: Solve min
x∈Y

F (x,Mk). Let x
k be a global minimizer.

Step 3: If F (xk,Mk) = 0, let ak+1 = ak, bk+1 = f0(x
k), Mk+1 = ak+1+bk+1

2
, and go to

Step 2. Otherwise, if F (xk,Mk) > 0, go to Step 4.
Step 4: If xk is not feasible to (IOP), let bk+1 = bk, ak+1 = max{f0(xk),Mk}, Mk+1 =

ak+1+bk+1

2
, and go to Step 2. Otherwise, stop and xk is an optimal solution to (IOP).

In the IOPFA algorithm, it is assumed that we can always get a1 < min
x∈X

f0(x). The

convergence of the IOPFA algorithm is given in the following theorem. Let

S(L, f0) = {xk | L ≥ Q(f0(x
k)− yk), k = 1, 2, · · · },
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which is called a Q-level set. We say that S(L, f0) is bounded if, for any given L > 0,
{yk} is a convergent sequence with yk → y∗. In [12], the assumption that X is compact
and connect is too strong. Therefore, the assumption is not adopted in this paper as we
have better global convergence theorem as follows.

Theorem 2.3. Let M∗ = min
x∈X

f0(x). Suppose that Q and fi (i ∈ I0) are continuous on

Rn, and the Q-level set S(L, f0) is bounded. Let {xk} be the sequence generated by the
IOPFA algorithm.

(i) If {xk} (k = 1, 2, · · · , k̄) is a finite sequence (i.e., the IOPFA algorithm stops at the

k̄-th iteration), then xk̄ is an optimal solution to (IOP).
(ii) If {xk} is an infinite sequence, then {xk} is bounded and any limit point of it is an

optimal solution to (IOP).

Proof: The sequence {ak} increases and {bk} decreases with

ak ≤ M∗ ≤ bk, k = 1, 2, · · · (3)

and

bk+1 − ak+1 ≤
bk − ak

2
, k = 1, 2, · · · (4)

is proved according to the induction method as follows.

1. It is clear that from the IOPFA algorithm a1 ≤ M∗ ≤ b1, b2 − a2 ≤ b1−a1
2

, b2 ≤ b1
and a2 ≥ a1 for k = 1.

2. Suppose that (3) and (4) hold for some k ≥ 1. Consider k + 1. In Step 3, we have

ak+1 = ak, bk+1 = f0(x
k), Mk+1 =

ak+1+bk+1

2
and xk is feasible to (IOP). Thus,

ak+1 = ak ≤ M∗ ≤ f0(x
k) = bk+1,

and

bk+1 ≤ Mk =
ak + bk

2
≤ bk.

Therefore,

bk+1 − ak+1 ≤ Mk − ak =
bk − ak

2
.

In Step 4, we have bk+1 = bk, ak+1 = max{f0(xk),Mk}. Thus,

ak+1 ≥ Mk =
ak + bk

2
≥ ak + ak

2
= ak,

and
ak+1 ≤ M∗ ≤ bk = bk+1.

Therefore,

bk+1 − ak+1 = bk −max{f0(xk),Mk} ≤ bk −Mk =
bk − ak

2
.

With the induction method, (3) and (4) follows immediately.

From the algorithm, it is obvious that {ak} is increasing and {bk} is decreasing. Thus,
both {ak} and {bk} converge. Let ak → a∗ and bk → b∗. By (3), we have a∗ = b∗ = M∗.
Therefore, {Mk} also converges to M∗.

(i) If the IOPFA Algorithm terminates at the k̄th iteration and the second situation of

Step 4 occurs, by Theorem 2.2, xk̄ is an optimal solution to (IOP).
(ii) The sequence {xk} is bounded is proved first. Since xk is an optimal solution to

min
x∈Y

F (x,Mk),

F (xk,Mk) ≤ Q(f0(x
0)−Mk), k = 1, 2, · · · .
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Due to Mk → a∗ as k → +∞, we conclude that there is some L > 0 such that

L > F (xk,Mk) ≥ Q(f0(x
k)−Mk), k = 1, 2, · · · .

Since the Q-level set S(L, f0) is bounded, the sequence {xk} is bounded.
Let M∗ = min

x∈X
f0(x). Without loss of generality, we assume xk → x∗. We have proved

that
ak ≤ M∗ ≤ bk, k = 1, 2, · · ·

and all the sequences {ak}, {bk} and {Mk} converge to a∗. Let k → +∞, we obtain
a∗ = M∗. Let y

∗ be an optimal solution to (IOP). Then M∗ = f0(y
∗). Note that

F (xk,Mk) ≤ F (y∗,Mk) = Q(f0(y
∗)−Mk).

By letting k → +∞ in the above equation, we obtain

F (x∗,M∗) ≤ 0,

which implies M∗ = f0(x
∗). Therefore, x∗ is an optimal solution to (IOP).

Theorem 2.3 proves that the sequence {xk} generated by the IOPFA algorithm may
converge to an optimal solution to (IOP) under some conditions. However, it is very
difficult to find out an optimal solution to problem min

x∈Y
F (x,Mk) in Step 2 of the IOPFA

algorithm. Hence, we will introduce a simple evolutionary algorithm to replace Step 2 of
the IOPFA algorithm. This evolutional algorithm is efficient as shown in the numerical
experiments in Section 3.

3. 0-1 Objective Penalty Function Algorithm. In this section, we will modify IOPFA
to obtain an evolutionary method. In the following proposed algorithm, the objective
penalty function is employed as a fitness function and generation population has only
one individual in every step. Hence, the algorithm has two mutation operators, in which
Step 2 as a mutation operator solves an unconstraint optimal problem (P (M)), Step 3
to Step 4 as another mutation operator modifies the bound of ak and bk to obtain a new
unconstraint optimal problem (P (M)).
Now, with the IOPFA algorithm, a simple evolutionary algorithm can be built to solve

the following class of 0-1 nonlinear programming problems:

(PNL− 01) min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · ,m
x ∈ Bn = {0, 1}n.

Few exact penalty function methods can be used to solve this problem when n > 32 ([10]).
Now, suppose that f , gi (i ∈ I) are differentiable in Rn. The nonlinear penalty function
is defined as

F (x,M) = Q(f(x)−M) +
m∑
i=1

P (gi(x)). (5)

P (M) min F (x,M) s.t. x ∈ Bn = {0, 1}n.
The first mutation operator is defined as that any second individual x(i+1) ∈ Bn is

obtained by the descend direction −∇x(i)(j)F (x(i),Mk) of the first individual such that its
objective function may decrease. The second mutation operator is defined as that new
bounds of ak and bk are obtained by objective function of individual x(i+1) ∈ Bn such
that its interval of objective function may shrink. This evolutional strategy is successful
and efficient as shown in the following numerical experiments. In order to solve P (M), a
0-1 OPFF algorithm is shown as follows.

0-1 OPFF Algorithm:
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Step 1: Choose ε ≥ 0 and a1 < min
x∈X

f(x). Let k = 1, b1 > a1 and M1 =
a1+b1

2
.

Step 2: Solve min
x∈Bn

F (x,Mk). A solution xk is obtained in steps from Step 3 through

to Step 7.
Step 3: (Initialization) Let tmax > 0 be the maximum evolutionary generation with
t = 0, f̄ and pop(t) = {}. Let N be the number of mutation.

Step 4: (Generation) Generate only one individual as initial population pop(t), where
the individual point x(t) = (x(t)(1), x(t)(2), · · · , x(t)(n))
∈ Bn defined by
a = randperm(n);
b = randperm(n);
for j = 1 : 1 : n
x(t)(j) = mod(a(j) + j ∗ b(j), 2);
end
Let x̄ = x(t) be put in pop(t).

Step 5: (Fitness) Evaluating the individual x(t) as per fitness function defined by
F (x(t),Mk).

Step 6: (Mutation) Execute the mutation operator defined by
let x(0) = x(t);
for i = 1 : 1 : N
c = randperm(n);
for j = 1 : 1 : c(1)
if ∇x(i)(j)F (x(i),Mk) < 0

x(i+1)(j) = mod(x(i)(j) + 3, 2);
end
end
if x(i+1) is a feasible solution and f0(x(i+1)) < f̄
let x̄ = x(i+1) replace x̄ in pop(t), and f̄ = f0(x(i+1)).
end
end.

Step 7: If t < tmax, select the next generation population pop(t+1). Let t = t+1, go
to Step 4. Otherwise, the best solution xk = x̄ obtained from p(tmax), go to Step 8.

Step 8: (Mutation) If F (xk,Mk) = 0, let ak+1 = ak, bk+1 = f(xk), Mk+1 =
ak+1+bk+1

2
,

and go to Step 2. If F (xk,Mk) > 0 and xk is not feasible to (IOP), let bk+1 = bk,

ak+1 = max{f(xk),Mk}, Mk+1 =
ak+1+bk+1

2
, and go to Step 2; otherwise, go to Step

9.
Step 9: (Termination) If |bk+1 − ak+1| ≤ ε, stop and xk is a solution to (IOP). Other-
wise, let k = k + 1, and go to Step 2.

If we can obtain an optimal solution in every Step 2 of the 0-1 OPFF algorithm, the
0-1 OPFF algorithm is convergent under some conditions by Theorem 2.3. Therefore, in
order to show the efficiency of the 0-1 OPFF algorithm, the following examples of 0-1
nonlinear programming are solved with the proposed algorithm in Matlab.

Example 3.1. Consider the following problem (Example 1 in [11]):

(P3.1) min f(x) = x1 + x2x3 − x3

s.t. g1(x) = −2x1 + 3x2 + x3 − 3 ≤ 0

x1, x2, x3 = 0 or 1.
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The nonlinear penalty function is defined as

F (x,M) = (f(x)−M)2 + βmax{g1(x), 0}2.
Let β = 10000, a1 = −200, b1 = 0, M1 = −100. Choose tmax = 5 as the maximum
evolutionary generation and N = 3 as the number of mutation. For k = 1 in 0-1 OPFF
algorithm, we get an optimal solution x∗ = (0, 0, 1) and f(x∗) = −1, which is the same
as those in [11, 13].

Example 3.2. Consider the following problem (Example 6 in [11]):

(P3.2) min f(x) = 4x1x3x4 + 6x3x4x5 + 12x1x5

−2x1x2 − 8x1x3

s.t. g1(x) = 8x1x4 + 4x1x3x5 + x2x3x4

+x1x5 − 5x2x5 − 5 ≤ 0

g2(x) = 6x3x4 + 3x1x2x3 + 2x1x2x4

−x3x5 − 4 ≤ 0

g3(x) = −2x2x3 − 9x2x3x5 + 8 ≤ 0

x1, x2, x3, x4, x5 = 0 or 1.

The nonlinear penalty function is defined as

F (x,M) = (f(x)−M)2 + β
3∑

i=1

max{g1(x), 0}2.

Let β = 10000, a1 = −200, b1 = 0, M1 = −100. Choose tmax = 5 as the maximum
evolutionary generation and N = 5 as the number of mutation. With one iteration, an
optimal solution x∗ = (0, 1, 1, 0, 1) with f(x∗) = 0 is obtained.

Example 3.3. Consider the following problem (Problem 1 in [10]):

(P3.3) min f(x) =
n∑

i=1

(x2
i − 1.8xi) + 0.81n

s.t. g1(x) =
n∑

i=1

xi − n+ 1 ≤ 0

xi = 0 or 1, i = 1, 2, · · · , n.
The nonlinear penalty function is defined as

F (x,M) = (f(x)−M)2 + βmax{g1(x), 0}2.
Let β = 108, a1 = −2000, b1 = 0.81n, M1 = (a1+b1)/2. Choose tmax = 5 as the maximum
evolutionary generation and N = n as the number of mutation. The numerical results are
given in Table 1. It is easily known that the optimal solution x∗ = (0, 1, 1, · · · , 1)T and
the optimal objective value f(x∗) = 0.01n+ 0.8.
In Table 1, f ∗ is the objective value of a feasible solution to (P3.3). The testing results

in Table 1 show that the 0-1 OPFF algorithm may get an optimal solution within fewer

Table 1. Numerical results of Example 3.3

n 256 380 500 1000 2000 4000 6000 10000

The OPFF algorithm
Iter 1 1 1 1 1 1 1 1
f ∗ 3.36 4.6 5.8 10.8 20.8 40.8 60.8 100.8

n: number of variables, Iter: number of iterations, f∗: the objective value.
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iterations than the OPFA Algorithms in [13]. For n > 380, it is very difficult for the
OPFA Algorithms in [13] to obtain optimal solution to (P3.3).

Example 3.4. Consider the following problem (Problem 2 in [10]):

(P3.4) min f(x) = sin

(
π + (π/n)

n∑
i=1

xi

)

s.t. g1(x) =
n∑

i=1

xi − n/2 + 1 ≤ 0

xi = 0 or 1, i = 1, 2, · · · , n.

The nonlinear penalty function is defined as

F (x,M) = (f(x)−M)2 + βmax{g1(x), 0}2.

Let β = 108, a1 = −2000, b1 = 0, M1 = (a1 + b1)/2. Choose tmax = 5 as the maximum
evolutionary generation and N = n as the number of mutation. Numerical results are
given in Table 2.

Table 2. Numerical results of Example 3.4

n 100 300 600 1000 3000

The OPFF algorithm
Iter 1 1 4 8 3
f ∗ –0.999507 –0.999945 –0.999986 –0.999995 –0.999999

n: number of variables, Iter: number of iterations, f∗: the objective value.

As shown in Table 2, we can always obtain a good feasible solution with the 0-1 OPFF
algorithm, even when different maximum evolutionary generation tmax and number of
mutation N are chosen. Even when the penalty parameters M , β, a1, b1 change, the 0-1
OPFF algorithm can always keep and obtain the same solution which is good after several
iterations.

Mauricio and Maculan ([10]) pointed out that for n > 30 it is hard to solve (PNL-
01). It is well-known that (PNL-01) is an NP-hard problem. However, the numerical
results in Table 1 and Table 2 show that the 0-1 OPFF algorithm is capable of solving
larger scale (PNL-01) with n > 1000. The above numerical experiments show that the
number of iterations of the 0-1 OPFF algorithm is very small. We can also say that it is
easy to control the value of penalty parameter in the 0-1 OPFF algorithm by numerical
experiments.

4. Conclusion. Based on an objective penalty fitness function, the paper has presented
a novel algorithm – IOPFA algorithm, to solve integer nonlinear optimization problems.
Its global convergence without differentiability and convexity has been proved. Then,
a 0-1 OPFF algorithm based on the objective penalty fitness function is proposed to
solve zero-one nonlinear programming. Numerical experiments show that the 0-1 OPFF
algorithm may be efficient for some 0-1 nonlinear optimization problems.
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