International Journal of Innovative
Computing, Information and Control ICIC International (©)2012 ISSN 1349-4198
Volume 8, Number 5(B), May 2012 pp. 3727-3740

ADAPTIVE NEURAL CONTROL DESIGN FOR A CLASS OF
PERTURBED NONLINEAR TIME-VARYING DELAY SYSTEMS

RuLIANG WANG! AND JIE L1?

!College of Computer and Information Engineering
2School of Mathematical Sciences
Guangxi Teachers Education University
No. 4, Yanziling Road, Nanning 530023, P. R. China
wrl@gxtc.edu.cn; lijie.xt@163.com

Received November 2010; revised March 2011

ABSTRACT. In this thesis, Some adaptive neural control design ways are presented for
a class of multi-input multi-output (MIMO) nonlinear systems in block-triangular form
with disturbance input and state time-varying delay. Neural networks are employed to ap-
proximate the unknown continuous functions. By combining the use of a novel quadratic-
type Lyapunov-Krasovskii functionals and adaptive NN backstepping, an adaptive neural
controller is obtained, which efficiently avoids the controller singularity. The proposed
control guarantees that all closed-loop signals remain bounded, while the output tracking
error dynamics converges to a neighborhood of the desired trajectories. The feasibility is
investigated by a simulation example.

Keywords: Adaptive neural control, Nonlinear MIMO system, Lyapunov-Krasovskii
functional, Backstepping

1. Introduction. Time delays are frequently encountered in many real control systems.
The existence of the time delays may be the source of instability of serious deterioration in
the performance of the closed-loop systems. Meanwhile, perturbations, nonlinearity also
exist in most of control systems. Thus, the problem of controlling uncertain time-delay
systems has been widely considered in recent years. In [1], T. P. Zhang and S. S. Ge
extended the aforementioned result to the adaptive control for a class of MIMO nonlinear
state time-varying delay systems. By using Nussbaum type function and Lyapunov-
Krasovskii functional, the controller with dead zone was designed. The closed-loop system
was proved to be semi-globally uniformly bounded (SGUUB). In [2], the works in Z. Lin
and H. Fang (2007), concerned a class of linear input delay systems. By state feedback, the
input delay system was transformed into a state delay system. In [3], a class of uncertain
time-varying delay system H., control problem is considered, and the corresponding state
feedback controller using linear matrix inequalities is proposed.

Neural network control has made great progress in the past decades. Because of their
inherent capability for modeling and controlling highly uncertain, nonlinear and complex
systems, many neural network control schemes have been introduced to solve the control
problem of time delay systems [4-10]. A class of nonlinear state-delay systems is discussed
in [4]. Neural network is utilized to estimate the unknown function. By backstepping
method, a delay-independent controller is designed. The closed-loop system is proved to
be globally uniformly ultimately bounded (GUUB). In [5], a control scheme combined
with backstepping, radius basis function (RBF) neural networks and adaptive control is
proposed for the stabilization of nonlinear system with input and state delay. By using
state transformation the original system is converted to the system without input delay.
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In [6], based on a wavelet neural network (WNN) online approximation model, a state
feedback adaptive controller is obtained by constructing a novel integral-type Lyapunov-
Krasovskii functional, which also efficiently overcomes the controller singularity problem.
In [7], based on a neural network (NN) online approximation model, a novel adaptive
neural controller is obtained by constructing a novel quadratic-type Lyapunov-Krasovskii
functional, which not only efficiently avoids the controller singularity, but also relaxes
the restriction on unknown virtual control control coefficients. In [8], by integrating
neural-network approximation and the Lyapunov theory into the sliding-mode technique,
a neural-network-based sliding-mode control scheme is proposed. In [9], neural networks
(NNs) are utilized to approximate and compensate for unknown functions in the system
dynamics, including the unknown bounds of the functions of delayed states. The use of
a separation technique removes the need for any assumption on the function of delayed
states, and allows the handling of multiple delays in each function of delayed states. In [10],
the adaptive tracking for a class of nonlinear time delay systems was presented by using a
delay state feedback controller. In [11-17,23,24], the problems of the bounded control for
delay oscillator uncertain input delay chemistry procedure and the tracking control for
nonlinear delay system are considered. In [18], a class of uncertain linear systems with
both non-delayed input and delayed input is studied. The controller with delay feedback
for the robust stabilization of the system is proposed. The stability criterion of the closed-
loop system is derived in terms of LMIS. The main deficiency of [18] is that the system
has a non-delayed input so that it cannot be regarded as a pure input delay system. In
[19], a class of uncertain linear time-delay systems is considered. By introducing a state
predictor, the original system is converted to a normal system without input delay. In
[20], neural networks are employed to estimate the unknown continuous functions. The
control scheme ensures that the closed-loop system is semi-globally uniformly ultimately
bounded (SGUUB). The tracking error is proved to be bounded and ultimately converges
to an adequately small compact set. In [22], the state feedback and output feedback
adaptive neural network control approaches were presented for a class of strict-feedback
discrete time nonlinear systems.

Much work has been done for state-delay nonlinear systems, while less work has been
done for state time-varying delay nonlinear systems. However, for the neural-networks
control combined with backstepping for the nonlinear system with both state time-varying
delay and disturbance input, there is no relevant study.

The above observation motivates the research in this paper. A adaptive neural control
design procedure is proposed for state time-varying delay MIMO nonlinear systems in
block-triangular form, and a control scheme combined with backstepping, adaptive control
and neural networks is presented for the nonlinear system with both state time-varying
delay and disturbance input. Radius basis function (RBF) neural network is employed
to estimate the unknown continuous function. The proposed control scheme guarantees
the boundedness of all the signals in the closed-loop system, and at the same time output
tracking is achieved.

2. Problem Statement. Consider the MIMO nonlinear time delay system described by
m‘.jvij = fjvij ('f.jv’LJ) + gjfij ('f.],zj >xj7ij+1 _'_ hjvij (jijij ) + wj’ij (t)’

:tj,mj = fj,m]- (X> + gj,mj (X)uj + hj,mj (X7'> + wj,mj (t)a (1)
Yj = Tj1 jzla"'7n7ij:17"'7mj_17
where z; = [z;1, -+ ,2jm,|T € R™ are the delay-free state variables of the jth sub-

system, u;(t) € R is control input for the first j subsystems, y = [y, ,y.)7 €
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R™ is the output, f;: (.), g;.,(.) and h;; (.) are unknown smooth nonlinear functions,
Tji, = [xj1,---,25,,]" € RY is the vector of delay-free states for the first i; differen-
tial equations of the jth subsystem, X = [zT, ... 2T]T contains all delay-free states,
Tryo = Tji, (t — 7j4,)) denotes the time-varying delayed state, and Tr,, and X; are de-
T

s T _
fined as: Z = = [Tr 1, ’ITM]-] y X = [Ty T 3 Ty 5 Ty |, and

max{7;;, |1 < j < n,1 <id; < my}, wjy(t) are the disturbance input for the first j
subsystems, |w;;; ()| < dj;; < 1 for t € [—70,0]. We have x;;,(t) = Bj4,(t), By (t) is
smooth and bounded.

The following assumptions and lemmas are made throughout the paper

7j4,(t) is the unknown time-varying delay, |7, (t)] < 74, |75:,(0)] < 71 < 1, 10 =

Assumption 1. The desired trajectories yq; j = 1,2, - ,n, and their time derivatives
up to the nth order, are continuous and bounded.
Assumption 2. There exist positive functions ;;J (z,,) for I =1,2,--- ,4;. Such that
G
|hj7ij <i'7'j,ij)| < ZZ Qj:;g (ij,z)'
‘ =1
Assumption 3. The signs of g;; (), for j = 1,2,--- ,n, i; = 1,2,--- ,m; are known,

and there exist constants g;o and unknown smooth functions g;;,(.), such that 0 < g;o <
954, ()] < gj,4,(.) < oo, without loss of generality. We further assume g;;,(.) > gjo > 0.

Lemma 2.1. For any constant & > 0 and any variable | € R, %in& tan h2(1/€)/1 = 0.
—

Lemma 2.2. For a given ¢ > 0 there exists the NN WTS(Z) can approzimate any
continuous function f(Z) € R", Qz C R"

[(2)=W'S(Z2)+0(Z), |0(Z)| <e, (2)
where the input vector Z € Qy C R*. W = [wy,wy, -+ ,w]’ is the weight vector;
S(Z) = [51(Z),82(Z), -+, s1(Z2)]F, with | > 1 being the number of the NN nodes and s;(2)

are defined as s;(z) = exp [%ﬁi(z—’”)}, i= 1,2, 1, with w; = [, oy + s fin)©

the center of the receptive field and ¢; the width of the Gaussian function.

3. Adaptive NN Control Design. In this section, we develop a novel adaptive NN
control design procedure for the jth subsystem. The jth subsystem is composed of m;
design steps. In each step, we employ radial basis function (RBF) NN to approximate
the unknown nonlinear function f;; (Z;,,). Thus, define an unknown constant as

1
;= — max{[[Wy,, I 1< < my},
g]()

where gjo is defined as in Assumption 3, function fﬂj and vector Zj ;. will be specified in
each step. Furthermore, we choose the virtual control law alpha;;, and the real control
law u;, respectively, as follows:

1 4
iy = =(kjs; + 1250 = 5703245 (Z34,)8(Zs,), (3)
Jsij
Uj = —(kj,mj + 1)Zj,mj — Fajzj,ijT(Zj,mj)S(Zj,mj)7 (4)
7,5
for j=1,2,---,n,i;=1,2,--- ,my; where k;;. > 0, and a;;, > 0 are design parameters,

3]- is the estimation of the unknown constant ¢;, and S(.) is the basis function vector. The
error of each step, z;;, is defined as:

Zji; = Tji; — Qg 251 = Tj1 — Ydjs (5)
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forj=1,---,n,i; =2,--- ,m;. The adaptive laws 3j are defined by:

2 (N N
=2 Qaj %50,9"(Z1,)5(Z;4,) = b0, (6)
i;=1 ij

where r; > 0 and b; > 0 are design parameters, when w;; (t) #0,1 < j <n,1 <i; <my:
Step 7,1 (j =1,2,--- ,n) the first step for the jth subsystem. Consider the first equation
of the jth subsystem. Consider the Lyapunov function as follows:

940 52

1,
Vain = EZj’l + 2r;

where 2,1 = ;1 — Y4, 6= 0; — 5}-. The derivative of V., | is given by:
. X _ g‘o ~ X
Ve = zja(fin + gjan — Ya + hja (7)) +wia (1)) + 21951252 — %51@'- (7)

j
As a result of Assumption 2 and completion of squares, the following inequality is obtained

1

§Zj71 + wj,l(t)) + 23,195,1%5,2 + = [Qg 1(xTJ 1)}

2

. gjo = ¢
sz <z (fj,l + gina1 — Ygj + — =245,6;.

T
(8)
To deal with the delay term in (8). Consider the Lyapunov-Krasovskii functional as
follows:
2

t
1 .
Vu.l :/ - J,l 21 (s ds.
" t—7j1(t) 2(1 — 7-1) [ J71( 31( ))}

Differentiating V,,, , with respect to time, we obtain

,1

. . 2 2
Visn < sy (@1 (250 ()] =3 [Q (20 (8 = 72 (D))] (9)
We consider the Lyapunov-Krasovskii functional as follows:
Vit=V,, + Vi,
Differentiating Vj; and using (7), (8) and (9).

“/}71 S Zj71 (fj,l(Zj,l) + gj71aj,1 —|—wj71(t)) 9905 6 —I—Z] 1gj 12]2+ |:1 — 2tan h2 (nj7 ):| Uj71.
] j,1
(10)
B 1 2
Zj1 = [:cj,l,ydj,ydj,éj] ;o U= =) [Q71(z0)]
and

1 2
= f. — tan h? U,
f]7 (Zj1) = fin =Yg + 233,1 + Zin an (77]7 ) AT

)

with n;, > 0.
From Lemma 2.1, we know that the function ltan h? (f}) is defined even at z = 0.

Thus, the unknown function f;1(Z;,) can be approximated by the NN W7 S(Z). Such
that for given €;; > 0

Fin(Zin) = WiiS(Zi) +0;0(Z50), 1051(Z5)| < g5
A straightforward calculation shows that

ziafin(Zin) < 5 2 ~9j0%] 200;5T(Z;1)5(Z;1) + 3031 + 3950751 + 3631950 (11)
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~

From (6), it can be verified that for any initial conditions d;(t,) > 0, d,(t) > 0, for all
t > ty. Consequently, if follows that
Zj1951045.1 S %gjgzil + %d?,lg;ol (13)
Thus, substituting (11), (12) and (13) into (10) result in
Vi1 < —kj1950%5, + 5 (a az, + 5?19]_01 + d? 193_01) + 2j,195,1%5,2

+205; (74 Y2 ST(2,)S(Z,) — ) + [t - 2amn® ()] 05 (14)

Stepj,i; (j =1,2,---,n,i; =2,--- ,m;—1) the i;th step for the jth subsystem. Consider
the following Lyapunov-Krasovskii functional:

_ 12
2iiy T o s
The derivative of ‘/Zj,ij is given by
Ve, = %id; (fj,z'j + Gy T = Q-1+ (fn,ij> + Wi (ﬂ) (15)
Note that cy;;-1(Z;i;,-1) can be written as:
. k ._1 8a] (3 -—1
Qi1 = oo ik + 9ikTiner + wik)
k=1 (16)
Zj_l Zj—l

aag 7, 71

Oaji;—1  (k+1) 9@ ij—1
+ Z ](k) dj > 5 + Z Zin k(T )

As a result of Assumptlon 2, and completion of squares, the inequality can be rewritten
as
i;—1

80@ ’L —1

Vi, < Zj; (fj,z‘]- + G5, i1 + Wi, Z g Jik + ikikr1 + Wik)

+ i L, _ijz_jl 3aj,ij—1 (k+1) _'_ z z 2z |:a°‘“'—1:|2 . 60@:%—_13 (17)
k=1 2N S o) dj — o 2 Lo o5
2
+§;[Jm@ﬂ+gﬂ§%mﬂ

To deal with the delay term in (17), we consider the Lyapunov-Krasovskii functional as
follows:

%mzﬁﬁ%m%ﬂjmmmﬂw+22L”2 s @it eaon] ds

Differentiating V., We obtain

2 7:jfl k 2
Z s [ @ )]+ &% ey (@20 )]
i ];1 Q(Ii’ﬁ) [ j:kj (x‘l'j,ij )] (1 - Tj,k) - Z Z 2(1i7.1) [ ;:f(ZL’TjJ)} (1 — Tj,l)

i .

J .. 2
<Up, = 33 | Q)] -

< zwzz tan h? (n

JJJ

—zz[@mwﬁ

=11=1
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where
ij 9 i].,l k 1 9
U =3 @) L oem)]
J5tj Z 2(1 _ 7-1) QJ» ( Lk ( )) + Z Z 2(1 _ 7_1) Q],l (%J( ))
k=1 k=1 =1
We consider the Lyapunov-Krasovskii functional as follows:
Vi, = Vi, + Vi,

Differentiating V;;, and using (15), (17) and (18).

aaji._l A

Vii, < %, <90j,z'j - Té@') + 95i; %3 gt + [1 — 2tanh’ <
+2j4, (fj,z‘]- + 94, Qi +1 wj,i]-),

Mjij )] Usi (19)
where

_ L da; I I (k+1)
Fiiy = Fii; — Z gt (fik + Giniprn +win) + 22 5250 — Do~ dr Vg
k=1 k=0 Yaj (20)

Ui — i
77]’1],> VA2 gp]ﬂj

8a] ’L —1

2
+Z ZQZM[ D } T

The NN WﬁjS (Z;4,) is used to approximate the unknown function fj;;, such that for
given €;;. > 0,

tan h? (

ij

Fii; = Wi 8(Z3a) + 056,(Z50,), 054,(Zja))| < €5

)

Then, by following a similar line used in the procedure from (11), (12) and (13) to (10)

we obtain
‘./j,ij S k] ljg,]o j ij + % <a’§l + E’?,ijg‘]o + deng]() ) |:1 - Qtan h2 ( s >i| Uj’ij (21)
JQa 2.57(Z54,)8(Zj;) + 244, (%yu - T5 ) + 9ji; i Zivig1

g]05 aaﬂ ij—1

Step j, m; (j = 1, 2, .-+, n) the last step for the jth subsystem. Consider the following
Lyapunov-Krasovskii functional:

1
‘/j,ij = 52‘727777,]- + VUj’mj7
where
n  mj Jm -1 k ‘ 2
Vism, = 2 3 ) oy 7t | P aels)] s+ S XS e @ a(s)] ds.
—1 k=1 7 k=1 I=1 ’

Differentiating Vuj’mj, we obtain

Vuj,ij < Zjm, Zj%n] tan h? (77] ) im; + [1 — 2tan h? (ﬁ)] Ujm,
n my J 1 k 2
L [ere,] - X S ete]
where
Jrm 2 Mt 1 J:k 2
MJZZMJ )]+ X2 ke @1 )]

Differentiating Vj;,, similar to (21), we obtain

. Oaj,m.,1 2 [ %imy
o s~ 250) 1 [ 2 ()],
"—Zj,mj (fj,mj + Gjm;Uj + Wj,mj) s
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. J U
k—1 ZJ (nj 15 > I

where

= 80{ -1
fim; = Fim; — Z (;:L‘mk (fik + 9ikTins1 + Wjk)

o — - 2
? 4 aa',m- 1 k:+1 J aa',m-—l
et 2 b = 2 S 253%%[&£]’
n MmMj
let Vi, = Zlkz Vi, then (14), (21) and (22) imply that
j=1k=1
n mj n Mmj
-2 kz K902k 2 Py 3 (Gh + 50950 + Gr950)
: : ]: =
n my X
+35925, (5 TS @) - ) 23
; m; = , n mj 9
CER e ()]0 £ B e 25)
= : ]: =
when w;; () =0,1<j<n,1<i; <m; Step j, 1 (j=1,2,---,n) the first step for the

7th subsystem. Consider he first equation of the jth subsystem Cons1der the Lyapunov
function as follows: R
_ 1.2 | gj052
Ve, = 3251+ ﬁé :

Zj,1 27J,1

where z;1 = ;1 — Yaj, 6= 0; — 5j. The derivative of V_,, is given by:

Vi = 2ia(fi1 + 950050 = Gy + Py (T7,1)) + 20951252 — 428,05 (24)

As a result of Assumption 2 and completion of squares, the following inequality is
obtained

. . 2 Y
Var < 21 (fin + giacia — 9 + 52i1) + 250950252 + 5 [Qf1 (24, — 228505 (25)

To deal with the delay term in (25). Consider the Lyapunov-Krasovskii functional as

follows: ' ,
Vi = Jin oy 5y (@G (5 (5))] ds.

Differentiating V,,,, with respect to tlme we obtain

1
Vs < sty (@ @ia )] = § [t = 7 @) (26)
We consider the Lyapunov-Krasovskii functional as follows:
Vie ="V + V.
Differentiating V;; and using (24), (25) and (26).

V] 1 < ZJ 1 (fj 1( ) —+ g] 10637 ) — %gjgj + Zj’lgj,lzjg -+ [1 — 2tan h2 (;;—’1)} Uj,h (27)
where
T 1 jl 2
Zj,l = [$j,1,ydj,ydj,5j] ) Uj,l ~ 2(1-m) [Qj;(%l)} )
and B
fj,l(Zj,l) = fj, yd; + Zj,l + o tan h? ( ) U],la

with 7,1 > 0. From Lemma 2.1, we know that the function 1 1 tan h? % is defined even at

z = 0. Thus, the unknown function f;,(Z;,) can be approxunated by the NN W1S(Z).
Such that for given €51 > 0

fin(Zia) = WHS(Zia) + 0;1(Z;1),  10;1(Z1)] < &1
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A straightforward calculation shows that
21 fi1(Z1) < ﬁgjozf,ﬂsjST(ZJJ)S(ZJ‘J) + 5051+ 5950251 + 3651950 (28)

From (6), it can be verified that for any initial conditions d;(t,) > 0, d,(t) > 0, for all
t > ty. Consequently, if follows that

Zj1gj10j1 < 512315 (Zj1)S(Zj1) — (kja 4+ 1)gjo25 . (29)
Thus, substituting (28) and (29) into (27) results in
Via < = (g + 3 apoa + 3 (a0 + <20 + [1 - 2tamn (22)] 0
+220; <2(:_%12]2}IST(Z]}1)S(Z]}1) - 5j) + 2j,195,1%52-
75

Stepj,i; (j =1,2,--- ,n,i; =2,--- ,m;—1) the i;th step for the jth subsystem. Consider
the following Lyapunov-Krasovskii functional:

(30)

_ Lo
sz,ij - QZj:ij'
The derivative of Vz]-,ij is given by
Vaia, = %idy (fj,ij + iy i1 — Qjim1 T g, (frj,ij)> (31)
Note that ¢j;;,-1(Zji,-1) can be written as:
B=1 e
N 7,0, —1 Qi —1 ¢
Gji—1 = ) azl (fik + Gjntjper) + —5—0;
=1 (32)
j—1 (k+1) 8‘131-—1
+ Z 8 (k) d] + Z 81‘ k <xTJ k>

k=0
As a result of Assumption 2, and completion of squares, the inequality can be rewritten
as

15—
J aa”._l

‘./Zj,ij S Zj,ij (fj,ij + gj,ijiCj,ij+1 - kz—:l 075 1 (f]k + g]’kl']’]prl)
i G Gagin (et 2
F35 de = 3 Syt 4 S [ w)] (3)

+”§2k: 22111 [a?o;k_lr) aa”._ld * Z Z [ ( Tj’l)r

=11l=1

To deal with the delay term in (17). We consider the Lyapunov—Krasovskii functional as
follows:

ooy J 2 o koo, " 2
Vg, = kz_:l ft—rm 2(1in) [Q; K (25, ’f(s)ﬂ ds + kz_:l 1—231 ft—rj,l 2(1;1) [ i (xj,l<3))} ds

Differentiating Vuj,i., we obtain
7> J
J

Vi, < 2, 1”2 tan h? (77,7,1']> Uji, + [1 — 2tan h? <

H

(34)

where
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We consider the Lyapunov-Krasovskii functional as follows:

Viig = Vi, + Vg,
Differentiating V;;, and using (31), (33) and (34).
Vii, = ‘/z“ + Vo,
" by
S Zj 21 SO,] i T(S > + g] Z]Z]al]Z]’Z]Jrl (35>
+ [1 — 2tan h? ( >} Uj i + Zji (fj,ij + gj,ijaj7ij+1) ,
where
_ ij—1 Ba] ij i1 8aj7ij,1 (k+1)
fia; = Fiay = 2—31 o, 1 (fyk + 9jkTik+1) — kE_Z oy yd] '+ Z 2705
Q-1 k Bers e 112 0 (36)
1, . il 2 A
+ 121 lzzl 2751 [ o } T zj i tan o (mz> Uji; — $iis-

The NN WY S(Z;;,) is used to approximate the unknown function f;;, such that for
B stg () ()
given g;;. > 0,
Fiiy = WS(Zis,) +050,(Zjiy)s 105.6,(Zi;)| < gy

Then, by following a similar line used in the procedure from (28) and (29) to (27), we
obtain

ij] < _(kj,ij + %)gjozzi, + % (%Q‘ir + 532',@9;01) gjo 5] ga ST( gz])S(Zj,ij)
.7

o o (37)
+Zj,ij <90j,i]- — Té ) + g], Zj,ijzj,ij—l-l + |:]. —2tanh <T]j,ij )] Uj,ij

Step j, m; (j = 1,2,---,n) the last step for the jth subsystem. Consider the following
Lyapunov-Krasovskii functional:

where

n . 2
“J m; ]Zl ]; ft Tjk 2 1 T1) |: ;:ZIJ <xj’k(8))} ds
m;—1 k

FS L e Q)]

Differentiating Vitjm;» We Obtain

Vi < 2, =2 tanh2( ) i [1—2tanh2 (—m>] U
Jotj Zj,m 13, J nj,m "
n i—1 Kk .
-3 S @) - 5 S (@]
j=1k= ’ k=1 I=1

where

n MmMj ) 2
Uiy = 3= 3 gty (@7 @100
]_ =
mj—l k

2
+ X St (@)
Differentiating Vj;,, similar to (21), we obtain

. aaj,m-71 A 2 Zj:m‘
V},mj S Zj7mj <S0j,7mj - 83; 5J> + []_ — Qtanh <_77j,m; >:| Uj,mj (38)
+2jm; (fj}mj + gjvmjuj) ’
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where
7 e 90, m ;-1 e dajm;—1 (k+1)
fim; = fim; = 22 =g (fin + GinTina) = 220 ——Yg ~ — Pim,
k= ’ k=0 Y4
1 mj—l k 1 aaj,mjfl 2 h2 m;
+ z EZijj + Z Z izjm] |: 81’]’6 i| + ij tan ( 5, > Uj,m]'7
k=1 I=1 ’ i i
n my
let Vi, = > Z Vik, then (27), (37) and (38) imply that
j=1k=
. n mj n Mmj
Vigna < =30 30 (ki + 3) 9025 22 30 5 (a3 + €50950)
j=1k=1 j=1k=1
n . mj
+ Zl 20 (k 1 2t 205 (23S (Z5) = ) (39)
j= -

#523 [1-2tanne (3] U 35 3% 2 (e = 2520)
k=1 —1k=
So far, we have completed the completed the control law design.

4. Stability Analysis.

Theorem 4.1. For system (1), under Assumptions 1, 2 and 3, control law (4) and the
NN adaptation law (6), all closed-loop trajectories remain bounded.

Proof: From (23), (39) it can be seen that the last term may be positive or negative.
So we first determine the functions ¢;; such that

—iZz]kajk—aa““W)SO. (40)

j=1lk=

0 < ST(.)S(.) < L. L is the number of neural network weights.
From (6), we obtain

m; R . k—
_kZQZ]kaagk 15 < Z Zik (b.(&aag,!cl _ Z 804(;; 12[7;[2)’ ST( gl)S(Zj,l))

=1

P
+szk(22 ij2|z]l s 1|>

Thus, by choosing ¢, ;. as

S 0oy p— r
ik = —b;j0; ag;{, - - zajjk Gk E
(40) holds. Simﬂarly, we obtain

i=1 "

. Bajz 1| 4 E Bajk 12TJ2 ?JST<Zj,l)S(Zjvl>>'

a,l

At the present stage, choose Lyapunov functional as V' =V, ,,.. Then, combining (23),
(39) and (40), (41) results in

Vnmn_—zlkzkjkgjozjk 29J0b152+21k21[1—2tanh2( 20| U+ D, (42)
J J

where D is as follows:

n mj 1 n )
D=3 > 5 (a5 +e5ug0 +dage) + D %5]2
j=1 7

j=1 k=1
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Thus, by (42) the boundedness follows immediately form following the same line used in
the proof of References [9]. The proof is thus completed.

5. Simulation Studies. When the disturbance input wy;(t) = wi2(t) # 0, wa1(t) =
wa2(t) # 0. Consider the following nonlinear Systems with time-varying delay and distur-
bances as follows:

l“l,l = —Z11 + (1 -+ COS2(.’13171))$1 2 + $7_1 1 + (JJLl(t),
1'31,2 = T1,1%1,2 —+ T2,1 + Z22 + (1 + 0.5 cos (95272))111 -+ xn,g + wl,g(t), <43)
Toq = —To1 + Top + Try, +won(t),
Tgo = (T12+ T21)To2 + T1 U2 + Try 1 Try g + wa2(t),
where z,, . =z (t — 754;), 7 = 1,2, i = 1,2, and the time-varying delays are:

711 = 0.8 4 0.2sin(t), 72 = 1 4 0.5sin(t), 721 = 0.45 + 0.05cos(t), T2 = 2 4 0.1 cos(?).
Given the reference output signals as: yq = 0.5(sin(t) + sin(0.5¢)), yqe = 0.5sin(t) +
sin(0.5t). We choose the design parameters as: ki1 = kyjo = koy = koo = 20, a11 =
Q12 = 2,a21 = azy = 1, r; = ry = 400, by = by = 0.025. The disturbance in-
put are chose as: wy(t) = wia(t) = 0.04sin(27t), wa(t) = waa(t) = 0.04cos(2xt).
For the first subsystem, define the variables z1; = %11 — Ya1,212 = T12 — a11. De-
fine the virtual control ay; = —(ki1 + 1)211 — 5 ) (Z11)S(Z11). Define the

(Z11)S(Z141). For the second sub-
system, define the variables 201 = %21 — Ya2, 222 = T22 — ag,1. Define the virtual con-
trol ap; = —<k52 1+ )22 L — ;2522'2 157(Z91)S(Z3,1). Define the real control law uy =

—(koo+1)220— (Z 2) (Z3,2). Select initial values: z;, (V) = 0, -7 < ¥ <0,
j=1,2,z’j=1,2and[61<>5<>] = [0,0]".

real control law u; = —(ki1 + 1)z11 — 52

Time(sec)

FIGURE 1. System state x12(“—") and z9(“—.—")

The result of the control scheme is shown in Figures 1-3. Figure 1 shows the responses
of state variables x; » and x4 5. Figure 2 shows the control input signals u; and uy. Figure
3 displays the boundedness of adaptive parameters 61 and 0. It can clearly be seen that
the proposed controller guarantees the boundedness of all the signals in the closed-loop
system.

When the disturbance input wy 1(t) = wia(t) = 0, wai1(t) = was(t) = 0. Consider the
following nonlinear systems with time-varying delay as follows:

1 =—x11+ (1+ COSQ(xl,l))Il 2+ Ll 3
T19 = X112T12 + T21 + T2 + (14 0.5cos?(222))us + L7y s (44)
Toy = —X21 + Xo2 + Tpy

Too = (12 + T21)T22 + T1 Uz + Ty 1 Try s
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FIGURE 2. The control input u;(“—") and us(“—.—=")
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FIGURE 3. The adaptive parameters 6,(“ — ") and dy(“ — . —7)
where Trp = Tjg, (t —74), J = 1,2, 45 = 1,2, and the time-varying delays are:

T11 = 0.8+0.2 sin(t), T2 = 1+0.5 Sin(t), T21 = 0.45 + 0.05 COS(t), To2 = 2+0.1 COS(t).
Given the reference output signals as: yg = 0.5(sin(¢) + sin(0.5¢)), ys2 = 0.5sin(t) +
sin(0.5t). We choose the design parameters as: ki3 = k1o = ko1 = koo = 20, a11 =
Q12 = 2, ay1 = agy = 1, 1 = ry = 400, by = by = 0.025. For the first subsys-
tem, define the variables 211 = %11 — Ya1,212 = 12 — oq,1. Define the virtual con-
trol o = —(k1g +1)z11 — ﬁéleST(ZLl)S(ZM). Define the real control law u; =

—(k11 + Dz — ﬁglzl,lST(Zm)S(Zm). For the second subsystem, define the vari-

ables 291 = %21 — Ya2, 222 = T22 — Qa;. Define the virtual control asy = —(ka1 +
1)z91 — ﬁ5222,15T<Z271)S(2271). Define the real control law uy = —(kao + 1)229 —
2,1

(Z22)S(Zs2). Select initial values: :L’j,ij(ﬁ) =0,—1m <9 <0,5 =12,
i; =1,2 and [51(0),52(0)]T = [0,0]".

The result of the control scheme is shown in Figures 4-6. Figure 4 shows the responses
of state variables x; » and x4 9. Figure 5 shows the control 1nput signals u; and u,. Figure
6 displays the boundedness of adaptive parameters 6, and bs. It can clearly be seen that
the proposed controller guarantees the boundedness of all the signals in the closed-loop
system.
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FIGURE 4. System state z12(“—") and x92(“—.—=")

Time(sec)

F1GURE 5. The control input u;(“—") and ua(“—.—=")

o 10 20 30 40 50
Time(sec)

FIGURE 6. The adaptive parameters d;(“ —7) and d5(“ — . —7)

6. Conclusion. An adaptive neural network tracking control design scheme has been
addressed for a class of nonlinear systems with state time-varying delay and disturbances.
RBF neural networks are employed to estimate the unknown continuous functions. The
suggested control law guarantees that the tracking errors remain bounded within a neigh-
borhood of the origin. In addition, all other signals in the closed-loop system remain
bounded. Simulation has been conducted to show the performance of the proposed ap-

proach.
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