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Abstract. In this paper, we develop a new model to describe a dynamic revenue-sharing
problem between an online shopping mall and a store in an E-commerce market. We for-
mulate the revenue-sharing problem as a dynamic principal-agent problem, which is then
transformed to a risk-sensitive stochastic optimal control problem where the objective of
the risk-averse shopping mall is to find a risk-sensitive revenue-sharing strategy and to ad-
vise an incentive-compatible effort to the store. Sufficient conditions for the existence of
a risk-sensitive revenue-sharing strategy and an incentive-compatible effort are obtained.
A numerical example is solved to show the existence of such strategy and its sensitivity
to the risk. Moreover, as a comparsion, we also discuss a myopic revene-sharing strat-
egy and find that dynamic revenue-sharing strategy is more effective in expanding the
expected profit of the shopping mall.
Keywords: E-commerce, Revenue-sharing strategy, Dynamic principal-agent problem,
Risk-sensitive stochastic control

1. Introduction. E-commerce can be viewed as an online two-sided market. In two-
sided markets, platforms play important roles. They provide infrastructures and make
business rules so that different user groups in the market can conduct their businesses
smoothly. A typical example of a platform is Rakuten. Rakuten is the biggest online
shopping mall operator in Japan with over 50 million registered users. Rakuten brings
stores and customers together to form a two-sided market or a two-sided network.

It is well known that the so-called cross-side network effects exist in a two-sided market,
and sellers and buyers in a platform are attracted to each other. Because of the cross-
side network effects, increasing the number of users on one side will benefit the users on
the platform’s other side. In other words, sellers will have more business chances as the
number of buyers in a platform increases, and buyers will have more choices and better
purchase conditions or better services if more sellers join the platform.

In the early studies on two-sided markets, considerable attention has been paid to how
a platform should charge two different user groups in a two-sided market. Theoretical
frameworks have been established to explain how the structure of prices is determined. It
is well known that the pricing structure in a two-sided market is asymmetric because of
different types of users on the two sides [1-4].

E-commerce is a special two-sided market where the online shopping mall only charges
stores. The issues faced by a shopping mall in E-commerce are not only to induce partic-
ipations of stores and customers in the market, but also to make an incentive scheme to
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stores such that stores can make more efforts to improve the quality of their products or
services.
In this paper, we develop a new model to describe a revenue-sharing problem between an

online shopping mall and a store. We formulate the problem as a dynamic principal-agent
problem where the shopping mall is the principal and the store is the agent. Different from
[6], we also assume that the shopping mall is a risk-averse decision maker. Shopping mall’s
problem is to find a risk-sensitive revenue-sharing strategy and to advise an incentive
compatible effort to the store [7]. Sufficient conditions for the existence of a risk-sensitive
revenue-sharing strategy and an incentive-compatible effort to the store are obtained. It
is believed that the results obtained in this paper can be used as a kind of benchmark
for the platform and the seller to determine their contracting condition in practice. A
numerical example is solved to show the existence of such strategy and its sensitivity to
the risk.

2. Problem Formulation. Consider an E-commerce market which consists of one plat-
form (online shopping mall), many sellers (stores) and numerous buyers (customers).
Sellers who wish to join the electronic commerce market are required to sign a contract
with the platform on the ratio of revenue-sharing. Without loss of generality, we assume
that the platform will sign the contract with one seller because homogeneous sellers will
be considered in this paper.
Suppose that the initial number of platform’s registered members at time t = 0 is N0,

which is known by both the platform and the seller. The number of buyers who purchase
the seller’s products or services, simply the buyers, varies depending on the initial number
N0, the seller’s continuous efforts to improve products or services and some other uncertain
factors in the market. If the seller makes more efforts to improve the quality of products
or services, the number of the buyers will increase. It is assumed in this paper that the
number of the buyers can be observed by both the platform and the seller. However, the
seller’s real effort level is not observable to the platform.
The cumulative number of the buyers at time t is denoted byXt which evolves according

to
dXt = q(at)N0dt+ σN0dZt, (1)

where Z = {Zt,Ft; 0 ≤ t < ∞} is a standard Brownian motion, σ is a constant, and
{Ft; 0 ≤ t < ∞} is the filtration determined by {Xt; 0 ≤ t < ∞}. at is the seller’s choice
of effort level and q(at) is the quality function of the seller’s products or services which
is affected by the seller’s effort level at. The seller’s effort range is denoted by at ∈ [0, ā]
where ā is the upper bound of the effort level. q(at) ∈ [0, 1] is a continuous, strictly
increasing and concave function of at which is known by the platform. Since q(at) can
be used to describe the degree of attraction of products or services, it is assumed that all
contract members will purchase the seller’s products or services if q(·) = 1.
For simplicity, the price of the seller’s products or services is normalized to one. Hence,

Xt is equal to the seller’s cumulative sales at time t which is observable to the platform.
The seller’s sales Xt will be allocated to the seller and to the platform under the conditions
of the revenue-sharing contract. Let γt ∈ [0,∞) denote the revenue-sharing strategy at
time t made by the platform and the seller. The revenue-sharing strategy γt specifies the
revenue allocated to the seller. Since the seller’s expected sales depend on q(at) and the
contract number N0, there is an upper bound to the revenue-sharing strategy γt, that is,
γt ≤ γ̄t = N0.
Suppose that the seller obtains the utility u(γt) from the revenue-sharing strategy γt,

where u(γt) is a normalized increasing, concave and C2 function satisfying u(0) = 0. On
the other hand, the seller incurs the cost of effort h(at), measured in the same unit as
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that of the utility of revenue-sharing strategy, where h(at) is a continuous, increasing and
convex function of at. It is assumed that the platform knows the seller’s utility function
and the cost function. The risk-averse platform incurs the operational cost βdXt which
depends on the number of the buyers, where β > 0 is a constant.

For simplicity, it is assumed that both the platform and the seller discount the flow of
profit and utility at a common rate r. If the seller chooses an effort level at, 0 ≤ t < ∞,
the seller’s total expected utility is given by

E
[∫ ∞

0

e−rt
(
u(γt)− h(at)

)
dt

]
,

and the platform’s total expected profit is

E
[∫ ∞

0

e−rtdXt −
∫ ∞

0

e−rtγtdt−
∫ ∞

0

e−rtβdXt

]
=E

[∫ ∞

0

e−rt
(
(1− β)q(at)N0 − γt

)
dt

]
.

Since the platform is the risk-averse decision maker, we define the following utility
function as the platform’s objective function:

E
{
− exp

[
−ρ

∫ ∞

0

e−rt
(
(1− β)q(at)N0 − γt

)
dt

]
+ 1

}
,

where ρ is a positive parameter to denote the risk sensitivity of the platform.

2.1. The platform’s problem. Under the condition of the revenue-sharing contract,
the seller will choose an effort at to maximize its expected utility. Knowing the behavior
of the seller, the platform’s problem is to offer a revenue-sharing contract to the seller,
which includes an incentive-compatible advice of effort {at, 0 ≤ t < ∞} to the seller and
a revenue-sharing strategy {γt, 0 ≤ t <∞} such that the platform’s utility function

E
{
− exp

[
−ρ

∫ ∞

0

e−rt
(
(1− β)q(at)N0 − γt

)
dt

]
+ 1

}
(2)

is maximized. The effort {at, 0 ≤ t ≤ ∞} is referred to as incentive-compatible with
respect to the revenue-sharing strategy {γt, 0 ≤ t ≤ ∞} if it satisfies

at ∈ argmaxãtE
[∫ ∞

0

e−rt
(
u(γt)− h(ãt)

)
dt

]
, (3)

and

E
[∫ ∞

0

e−rt
(
u(γt)− h(at)

)
dt

]
≥ 0. (4)

It is obvious that an incentive-compatible effort is relevant to the revenue-sharing strategy
γt from (3).

2.2. The seller’s continuation value. In order to make the seller choose a recom-
mended incentive-compatible effort, the platform is required to design a revenue-sharing
strategy γt which can change the allocation of revenue to the seller according to its ef-
fort. Instead of designing a strategy that depends on the sales of the seller, we consider a
strategy which depends on the seller’s continuation value Wt. The continuation value Wt

is the total expected utility received by the seller from time t ≥ 0 onwards.
Suppose that a revenue-sharing strategy γ = {γt} and an effort a = {at} are given.

The seller’s continuation value is

Wt(γ, a) = Ea

[∫ ∞

t

e−r(s−t)
(
u(γs)− h(as)

)
ds
∣∣∣Ft

]
, (5)
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where Ea denotes the expectation under the probability measure Pa induced by the seller’s
effort a = {at}. In the platform’s revenue-sharing strategy,Wt is the unique state variable
that determines how much the seller’s allocation of the sales is, what effort the seller is
advised to choose, and howWt itself evolves with the realization of the sales. The platform
is required to use Wt as the state feedback to design a revenue-sharing strategy γt and
a recommended effort at to achieve two objectives. First, the seller must have sufficient
incentive to choose the recommended effort. Second, the platform’s profit is maximized.
It is worth noting that, no matter how much the continuation value Wt is, the platform

has the option to stop the revenue-sharing contract with the seller. Suppose that the
platform is willing to pay the cancellation cost to the seller. The cancellation cost is
determined by the continuation value Wt at the time of cancellation. The platform’s
profit function at the time of cancellation is Ω(Wt) = −δγt, where Ω(0) = 0 and δ is a
constant. Since the seller can choose zero effort after contract cancellation, the seller’s
continuation value at time t is Wt = u(δγt).
If the seller’s continuation value Wt is extremely high, the platform will cancel the

contract with the seller. The reason is that the continuation value Wt will increase as the
allocation of the sales to the seller increases. However, if the allocation to the seller is too
high, the allocation to the platform will be below the operational cost incurred by the
platform. Therefore, there must exist a continuation valueW ] > 0 such that the platform
is willing to pay the cancellation cost Ω(W ]) to stop the contract.

3. Risk-Sensitive Revenue-Sharing Strategy. In this section, we will derive the op-
timal solution to the problem formulated in the above section. First, as a preliminary
result, we give the following proposition, which is proved formally in [6] to describe the
evolution of the seller’s continuation value Wt.

Proposition 3.1. Suppose that a revenue-sharing strategy γ = {γt} and an effort a =
{at} after time t > 0 are given. Then, there exists a Ft-progressively measurable process
Yt such that the seller’s continuation value Wt(γ, a) defined by (5) can be described by the
stochastic differential equation

dWt(γ, a) =
[
rWt(γ, a)− u(γt) + h(at)

]
dt+ σN0YtdZt. (6)

Second, we give the following proposition, which is proved formally in [6] too, to describe
the incentive-compatibility condition on the seller’s effort.

Proposition 3.2. Suppose that Yt is a progressively measurable process defined by Propo-
sition 3.1. Then, the seller’s effort at is optimal if and only if

at ∈ argmax
ãt∈[0,ā]

Ytq(ãt)N0 − h(ãt), 0 ≤ t <∞ (7)

almost everywhere.

From Proposition 3.2, it is shown that Yt is the function of the seller’s incentive com-
patible effort at, that is,

Yt =
h′(at)

q′(at)N0

= y(at) > 0. (8)

y(at) is an increasing function of at. Since Yt of (6) represents the volatility of the seller’s
continuation value Wt(γ, a), the seller’s risk will increase as effort increases.
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3.1. The risk-sensitive stochastic control problem. Making use of the monotonicity
of a logarithmic function, we know that maximizing the utility function (2) is equivalent
to the problem of maximizing the following objective function

J(W ) = −ρ−1 ln

(
−E

{
− exp

[
−ρ

∫ ∞

t

e−r(s−t)
(
(1− β)q(as)N0 − γs

)
ds

]
+ 1

}
+ 1

)
. (9)

Suppose that the evolution of the seller’s continuation value Wt is known. The platform’s
control problem to find the optimal revenue-sharing strategy γt and the recommended
effort at, which satisfies the incentive compatibility condition, can be formulated as a
risk-sensitive stochastic control problem:

Π(W ) = max
a,γ

J(W ) = −ρ−1 ln
(
−ψ(W ) + 1

)
(10)

subject to

dWt =
[
rWt − u(γt) + h(at)

]
dt+ σN0y(at)dZt, (11)

where

ψ(W ) = max
γ,a

E
{
− exp

[
−ρ

∫ ∞

t

e−r(s−t)
(
(1− β)q(as)N0 − γs

)
ds

]
+ 1

}
. (12)

Furthermore, defining Ψ(W ) = ψ(W )− 1, we have

Ψ(W ) = max
γ,a

E
{
− exp

[
−ρ

∫ ∞

t

e−r(s−t)
(
(1− β)q(as)N0 − γs

)
ds

]}
. (13)

Therefore, the problem formulated by (10), (11) is equivalent to the problem of maximizing
(13) subject to (11). This problem is solved by using dynamic programming, and the
Hamilton-Jacobi-Bellman (HJB) equation is obtained below,

max
a,γ

(
rW − u(γ) + h(a)

)
Ψ′(W )− ρ

(
(1− β)q(a)N0 − γ

)
Ψ(W )

+
1

2
σ2N2

0 y(a)
2Ψ′′(W ) = 0. (14)

Using the transformations Ψ′(W ) = −ρΠ′(W )Ψ(W ) and Ψ′′(W ) = −ρΠ′′(W )Ψ(W ) −
ρ2(Π′(W ))2Ψ(W ), we arrive at the HJB equation

max
a,γ

(
rW − u(γ) + h(a)

)
Π′(W ) +

(
(1− β)q(a)N0 − γ

)
+

1

2
ρσ2N2

0 y(a)
2(Π′(W ))2

+
1

2
σ2N2

0 y(a)
2Π′′(W ) = 0 (15)

from (14). The HJB Equation (15) is solved under the initial condition

Π(0) = 0, (16)

and the final conditions 1

Π(W ]) = −Ω(W ]), Π′(W ]) = −Ω′(W ]), (17)

at a time τ , where t = τ is the time point when the platform cancels the contract with
the seller and Ω(·) is the platform’s value function when the seller chooses zero effort.

1Π(W ]) = −Ψ(W ]) is called the value-matching condition and Π′(W ]) = −Ψ′(W ]) is called the
smooth-pasting condition.
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3.2. Solutions of risk-sensitive stochastic control problem. Suppose that the so-
lution Π(W ) to (15) exists. We have the following proposition, which is proved formally
in Appendix A.

Proposition 3.3. Suppose that Π(W ) satisfies the HJB Equation (15) with respect to
Wt ∈ [0,W ]] in t ∈ [0, τ ], the initial condition (16) and the final conditions (17) at
t = τ . If at and γt are the seller’s recommended effort and the platform’s revenue-sharing
strategy which maximize the left-hand side of (15), then at and γt are the solutions of the
risk-sensitive stochastic control problem formulated in Section 3.1.

From Proposition 3.3, the optimal recommended effort a(Wt) is obtained as the function
of Wt by maximizing

max
a

(
h(a)Π′(W ) +

1

2
ρσ2N2

0 y(a)
2(Π′(W ))2 +

1

2
σ2N2

0 y(a)
2Π′′(W ) + (1− β)q(a)N0

)
(18)

where (1 − β)q(a)N0 is the revenue flow, −h(a)Π′(W ) is the effort compensation to the
seller, and −1

2
ρσ2N2

0 y(a)
2(Π′(W ))2 − 1

2
σ2N2

0 y(a)
2Π′′(W ) is the risk premium paid to the

seller in an uncertain business environment.
Similarly, the optimal revenue-sharing strategy is obtained by maximizing

max
γ

(−γ − u(γ)Π′(W )). (19)

From the first-order condition Π′(W ) = −1/u′(γ), γ(Wt) is obtained as the function of
the continuation value Wt. −Π′(W ) represents the platform’s marginal decrease in the
value function with respect to the continuation value. 1/u′(γ) (= dγ/du(γ)) represents
the platform’s marginal revenue share with respect to the seller’s utility. Moreover, when
W ≤ W ∗ where W ∗ is a point such that Π′(W ∗) = 0, since u(γ) ≥ 0 and Π′(W > 0) ≥ 0,
γ = 0 from (19).
The solution Π(W ) of the HJB Equation (15) can be obtained through numerical com-

putation. In order to show the existence of the solution of (15) and the existence of a
corresponding risk-sensitive revenue-sharing strategy and a recommended effort, an illus-
trative example is solved. The functions and the parameters appeared in the problem
formulation are defined as follows:

q(a) = a, u(γ) =
√
γ, h(a) = 0.5a2 + 0.5a

and

N0 = 1, r = 0.1, ρ = 0.1, σ = 1, β = 0.1, δ = 235.

The platform’s optimal revenue-sharing strategy can be obtained from γ = Π′(W )2/4,
and the seller’s optimal recommended effort is

a = −0.9/(Π′(W ) + ρ(Π′(W ))2 +Π′′(W ))− 0.5.

The numerical results of the platform’s value function, the optimal revenue-sharing strat-
egy and the optimal recommended effort are shown in Figure 1. Moreover, W ∗ = 1.256,
Π(W ∗) = 1.1170811.

4. Discussion.

4.1. Sensitivity analysis of platform’s strategies. Since ρ denotes the risk sensitivity
of the platform, the higher the value of ρ is, the more averse the platform is to the risk.
In this section, we will analyze how the value of ρ affects the various strategies obtained
above by numerical simulation.
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Figure 1. (a) Platform’s value function, (b) effort, (c) risk-sensitive
revenue-sharing strategy

From (18), it is shown that, when W =W ∗,

max
a

(1
2
σ2N2

0 y(a)
2Π′′(W ∗) + (1− β)q(a)N0

)
is independent of ρ, where W ∗ is the seller’s continuation value when Π′(W ∗) = 0. There-
fore, the platform’s attitude to the risk will not influence the seller’s effort level at the
point of W =W ∗. Obviously, W ∗ will be different as the change of ρ.

It is still not clear how the different ρ will affect the value function Π(W ). In general,
if a decision maker is more risk-averse, he/she might not pursue a bigger profit because
the utility will change only a little even if the profit increases a lot. In other words, a
relatively smaller profit will lead to the same satisfaction as that of a bigger profit if a
decision maker is more risk-averse. Hence, it is estimated that a more risk-averse platform
with less profit may have the same satisfaction as that of a less risk-averse platform with
bigger profit. However, if the risk is transferable, the estimation above may not be correct.
In the following, we will discuss the issues using the numerical example above.

Figure 2 shows curves of Π(W ), a(W ) and γ(W ) when ρ = 0.05, 0.1 and 0.2, respec-
tively. It is found from Figure 2 that the results are different from the estimation above.
The higher the value of ρ is, the bigger the value of Π(W ∗), 0 ≤ W ∗ ≤ W ] is. Moreover,
the higher the value of ρ is, the higher the value of Π′(0) and the value of W ∗ are. These
results can be explained as follows.

First, the higher Π′(0) means a higher initial effort a(W (0)) = a(0). In fact, since
γ(0) = 0 at t = 0, Π′(0) depends on a(0) from the definition of Π. The simulation Figure
2 shows the same results. The higher the value of ρ is, the values of a(0) and W ∗ become
higher.

Now, the risk-averse platform may expect a higher W ∗ to the seller, which are of great
advantages in excluding weak sellers and postponing the allocation of revenue to the seller.
It is required that the seller makes much more effort at the beginning if a higher W ∗ is
expected. That also means the increase of the volatility of the seller’s continuation value,
that is, the seller’s risk (see (6)).
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Figure 2. Results of sensitivity analysis

As the result, the risk-averse platform will expect a higher W ∗ to the seller, which will
transfer the risk from the platform to the seller. If W ∗ is high, the seller is required to
make much more effort at the beginning which leads to a high Π′(0) and a high Π(W ).

4.2. Myopic revenue-sharing strategy. What is the effect on revenue of the plat-
form and effort of the seller when revenue-sharing strategy is determined myopically, i.e.,
allocation γt is determined with respect to sales Xt only at time t?
There are at least two methods of allocation that the platform can select. One method

is to determine revenue-sharing strategy γt with respect to the continuation value, taking
into account the future expected revenue and seller’s risk, as we have demonstrated before.
Another method is to myopically determine revenue-sharing strategy γt only through
the revenue at time t, X(t). There are pros and cons to both methods. The former
allows endowment of incentive for the seller to put in greater effort such as long-term
expansion (as well as payment of risk premium for stochastic demand on future revenue),
but computation of expected revenue is rather complicated. On the other hand, the latter
is simple to calculate but promotes the seller to focus on short-term sales increase and
also does not take into account the randomness exogenous to the seller’s effort. In this
section, we will analyze the implication of choosing such myopic revenue-sharing scheme
over the expected revenue scheme as described by this paper.
Similar to the problem formulation, we assume that one platform in an E-commerce

market will sign the revenue-sharing contract with one seller myopically under the condi-
tion that γ.
Firstly, consider the case where uncertainty does not exist in the sales Xt, that is,

dXt = q(at)N0dt. (20)

Since the allocation to the seller is γq(at)N0, the utility of the seller is u(γq(at)N0).
Moreover, the seller incurs the cost h(at). Thus, the seller’s myopic optimal effort level
with respect to the given γ is

amt = argmax
ãt

[
u(γq(ãt)N0)− h(ãt)

]
. (21)

The optimal effort level amt (γ) is obtained as the function of γ from the first-order condition
du(γq(at)N0)/dat − h′(at) = 0, where, amt (γ) = am(γ) is constant. Applying this to the
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numerical example in Section 3.2, we find that am(γ) satisfies γ = 4am(γ) (am(γ) + 0.5)2,
0 ≤ am(γ) ≤ a. Thus, the allocation to the seller at any time is 4 (am(γ))2 (am(γ) + 0.5)2.

Since the platform’s myopic expected profit for an arbitrary γ̃ is

Πm = E
[∫ ∞

0

e−rt
(
(1− β)q (am(γ̃))N0 − γ̃q (am(γ̃))N0

)
dt

]
=

1

r

[
(1− β)q (am(γ̃))N(0)− γ̃q (am(γ̃))N0

]
, (22)

Πm =
1

0.1

[
0.9am(γ̃)− 4 (am(γ̃))2 (am(γ̃) + 0.5)2

]
(23)

when it is applied to the numerical example. Therefore,

am∗(γ∗) = 0.1872, γ∗ = 0.3536, Πm∗ = 1.0228.

Compared with the results using the dynamic revenue-sharing strategy in Section 3.2, we
find that both the effort level and the platform’s expected profit are decreasing.

Furthermore, since the seller’s sales is uncertain, the risk-premium should also be added
when considering the revenue-sharing strategy. Suppose that the seller’s risk-averse level

is λ =
∣∣∣u′′(·)
u′(·)

∣∣∣. The risk premium is

γλq(a)N0 =
1

2
λσ2q(a)N0. (24)

Including the risk-premium to the seller, the platform’s myopic expected profit becomes

Πmλ =
1

r

[
(1− β)q (am(γ))N(0)− γq

(
aM(γ)

)
N0 −

1

2
λσ2q(a)N0

]
. (25)

Applying this into the numerical example in Section 3.2, we find that

Πmλ =
1

0.1

[
0.9am(γ̃)− 4 (am(γ̃))2 (am(γ̃) + 0.5)2 − 0.25

]
, (26)

and
Πmλ∗ = −1.477,

which means that the platform’s profit is decreasing if the risk-premium is paid. However,
if the platform does not pay the risk-premium to the seller, the seller will not have the
incentive to improve its effort, which will also affect sales in a long-term perspective.

5. Conclusion. In this paper, we have considered the risk-sensitive revenue-sharing
problem between a risk-averse platform and a seller in E-commerce. We have formu-
lated the problem as a dynamic principal-agent problem, and then transformed it to a
risk-sensitive stochastic control problem where the objective of the platform is to find a
risk-sensitive revenue-sharing strategy and to advise an incentive-compatible effort to the
seller. Sufficient conditions for the existence of a risk-sensitive revenue-sharing strategy
and an incentive-compatible effort are obtained. A numerical example is solved to show
the existence of the strategy and the effort, and their sensitivities to the risk.

It is believed that the results obtained in this paper can be used as a kind of benchmark
for the platform and the seller to determine their contracting condition in practice. In
particular, in markets such as electronic music market or electronic book market where
buyers purchase products repeatedly, platforms’s dynamic incentive strategy seems nec-
essary which can enforce seller’s efforts to improve the product quality. Results in Section
4.2 show that the myopic revenue-sharing strategy will deteriorate the expected profit
of the platform compared with the dynamic revenue-sharing strategy. The platform’s
dynamic revenue-sharing strategy is more effective in giving incentive to the seller for its
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effort and in expanding the expected profit. In this paper, we have assumed that there
exists a monopolistic platform and homogeneous sellers in the market. Further researches
are under way to expand the model to the cases of competitive platforms and sellers with
different cost structures.
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Appendix A. Proof of Proposition 3.3. Suppose that γ∗t , a
∗
t are the solution of (12).

We have

ψ(W (t)) = max
γ,a

E

{
− exp

[
−ρ

∫ t+∆t

t

e−r(s−t)
(
(1− β)q(as)N0 − γs

)
ds

]

· exp
[
−ρ

∫ ∞

t+∆t

e−r(s−t−∆t)
(
(1− β)q(as)N0 − γs

)
ds

]
+ 1

}

= max
γ,a

E

{
− exp

[
−ρ

∫ t+∆t

t

e−r(s−t)
(
(1− β)q(as)N0 − γs

)
ds

]
·
(
−ψ(W (t+∆t)) + 1)

)
+ 1

}
= max

γ,a
E

{[
−1 + ρe−r∆t

(
(1− β)q(at)N0 − γt

)
∆t

]
·
(
−ψ(W (t))−∆ψ(W (t)) + 1

)
+ 1

}

= max
γ,a

E

{
ψ(W (t)) + ∆ψ(W (t))− ρ

(
(1− β)q(at)N0 − γt

)
ψ(W (t))∆t

+ ρr
(
(1− β)q(at)N0 − γt

)
ψ(W (t))(∆t)2

− ρ
(
(1− β)q(at)N0 − γt)

)
∆ψ(W (t))∆t

+ ρr
(
(1− β)q(at)N0 − γt)

)
∆ψ(W (t))(∆t)2
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− ρ
(
(1− β)q(at)N0 − γt)

)
∆t

+ ρr
(
(1− β)q(at)N0 − γt)

)
(∆t)2

}
.

Let ∆t→ 0, then (∆t)2 and ∆ψ(W (t))∆t converge to 0 as ∆t goes to 0. Thus,

max
γ,a

E
{
dψ(W (t))− ρ

(
(1− β)q(at)N0 − γt

)
(ψ(W (t))− 1)dt

}
= 0.

Furthermore, using Ito lemma, we have

dψ(W (t)) =

{[
rW (t)− u(γt) + h(at)

]
· ψ′(W (t)) +

1

2
σ2N2

0 y(at)
2ψ′′(W (t))

}
dt

+ σN0y(at)ψ
′(W (t))dZ(t).

Therefore, we arrive at the HJB equation

max
γ,a

[
rW (t)− u(γt) + h(at)

]
ψ′(W (t)) +

1

2
σ2N2

0 y(at)
2ψ′′(W (t))

− ρ
(
(1− β)q(at)N0 − γt

)
· (ψ(W (t))− 1) = 0.

Letting Ψ(W (t)) = ψ(W (t))− 1, Ψ′(W (t)) = ψ′(W (t)) and Ψ′′(W (t)) = ψ′′(W (t)) gives

max
γ,a

[
rW (t)− u(γt) + h(at)

]
Ψ′(W (t)) +

1

2
σ2N2

0 y(at)
2Ψ′′(W (t))

− ρ
(
(1− β)q(at)N0 − γt

)
Ψ(W (t)) = 0.

Therefore, γ∗t , a
∗
t can be obtained through the solutions of (14), which constitute the

risk-sensitive revenue-sharing strategy and the incentive-compatible effort. (Q.E.D)


