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Abstract. Traditional control charts are designed for processes where data are indepen-
dent and identically distributed and where large historical data sets are available before
a production run for estimating process parameters and computing control limits. Many
processes, particularly in semiconductor manufacturing, often involve limited data sets,
which result from high-mix low-volume production; in many cases, data are correlated.
Therefore, charting techniques for treating short-run autocorrelated data are required. In
this paper, we assess the effectiveness of control charts based on Q statistics by applying
them to actual data obtained from a horizontal low-pressure chemical vapor deposition
process used in semiconductor manufacturing. Our results show that Q charts enable the
plotting of different types of data on the same chart, and that Q charts can detect real
anomalies in data. Furthermore, we show that both Q statistics and Q statistics applied
to the residuals of a time series model are practical, useful methods for the processes
employed in semiconductor manufacturing.
Keywords: Control chart, Time series analysis, Autocorrelation, Semiconductor man-
ufacturing process, High-mix low-volume production, Statistical process control, Q sta-
tistics

1. Introduction. Traditional control charts are designed for processes where data are
independent and identically distributed (i.i.d.) and where large amounts of historical data
are available before a production run for estimating process parameters and computing
control limits. However, two drawbacks in traditional statistical process control (SPC)
techniques have been noted recently.

First, because traditional SPC approaches are intended for use in high-volume man-
ufacturing, they may not be effective for a short time series [1]. Montgomery [2] and
Quesenberry [3] recommended collecting at least 25 or 30 samples, each consisting of
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four or five data, for establishing meaningful control limits before starting a production
run. However, in many situations, a process does not yield sufficient observations for
traditional SPC tools to be used effectively. For example, process start-ups, major tool
changes, different raw materials, new equipment, and production processes do not allow
frequent measurement [4].
Several control chart methods designed for short runs have been introduced in the SPC

literature. The method suggested by Yang and Hillier [5] involves adjusting standard
control limits in a control chart to achieve the desired type I error probability, irrespective
of the number of initial subgroups. Farnun [6] proposed using X-bar and R charts to plot
the quality characteristic scaled by a predetermined value. Quesenberry [7] developed Q
charts, which allow a user to plot different statistics on the same chart. Del Castillo et
al. [8] reviewed short-run SPC techniques.
Second, traditional SPC tools (e.g., control charts and process capability indices) as-

sume that the process data are uncorrelated. However, the violation of this assumption
is prevalent in chemical and continuous industries [9]. Autocorrelations decrease the ef-
fectiveness of control charts that assume independent process measurements [10].
Different methods for dealing with autocorrelated data have been discussed. One ap-

proach involves modifying existing SPC charts by adjusting the control limits [11,12]. A
second approach assumes that the residuals of a time series model are statistically un-
correlated. This method fits an appropriate time series model to process observations
and then applies traditional control charts to the residuals [10,13,14]. Mastrangelo and
Montgomery [15] used the residuals from an EWMA. SPC procedures for dealing with
autocorrelated processes were reviewed by Psarakis and Papaleonida [16].
The problem of short-run autocorrelated data has received marginal attention [17].

Prasad [18] recommended using the joint estimation (JE) procedure developed by Chen
and Liu [19] for controlling chemical production processes. Wright et al. [20] investigated
the JE procedure as an SPC tool for short-run autocorrelated data. Crowder and Halblieb
[21] proposed an adaptive filtering approach for process monitoring with short-term auto-
correlated data. Snoussi et al. [22] suggested using the residuals of a time series model in
conjunction with Q statistics when the process parameters are unknown. Snoussi and Li-
mam [17] also proposed the unknown parameters change-point formulation in conjunction
with the residuals of various time series models.
High-mix low-volume production in semiconductor manufacturing allows only a few

observations, and the data are often correlated. Kawamura et al. [23] showed that
polysilicon film thicknesses in vertical low-pressure chemical vapor deposition (LPCVD)
process are correlated. Therefore, charting techniques for short-run autocorrelated data
are required in such processes. Del Castillo [24] considered a multivariate short-run case
for autocorrelated data in the wet etching process used in semiconductor manufacturing,
but did not focus on the methods for the univariate case, such as Q charts and the JE
procedure.
However, the short-run and short-run autocorrelated methods have not been sufficiently

investigated from a practical perspective. In this paper, we show that both Q statistics
and Q statistics applied to the residuals of a time series model are practically useful
methods for the horizontal LPCVD process used in semiconductor manufacturing. We
have three reasons for focusing on a Q chart. First, among the other methods, only the
use of a Q chart enables the plotting of data sets for each different type on the same
chart, although most researchers have not strengthened the advantage. If a Q chart is not
used, it will be necessary to plot a separate control chart for each type. As the number
of types increases, many control charts are needed and must be interpreted, resulting
in highly inefficient use of time. Second, users can easily understand Q charts, because
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the transformation that yields the Q statistics resembles the well-known standardization
formula. Finally, it is not clear whether Q charts are practically useful because no known
study considers Q charts with an actual production data set.

2. Case Study of Horizontal LPCVD. The horizontal LPCVD process is outlined
in Figure 1. A wafer is introduced into a silicon carbide reaction chamber and heated
to several hundred degrees Celsius under reduced pressure, after which polysilicon raw
material gas is introduced. A polysilicon film is then formed by an endothermic chemical
reaction. This process allows the production of a batch of multiple sets comprising up to
25 silicon wafers. The thickness of the resulting polysilicon film is a quality characteristic.

Figure 1. Horizontal LPCVD process

In this process, the film thickness data are obtained by measuring reference wafers,
and the thickness of the films in the batches varies. Therefore, we use the average film
thickness of the two reference wafers as data for assessing the Q statistics. We define ten
types of wafer based on different target thickness values and obtain a data set for each
type. Generally, a control chart should be designed for each type, because the mean and
variance values of each type are different. As a result, many control charts are generated,
and significant time is wasted in interpreting them. These are serious problems. Therefore,
it is necessary to introduce Q charts that enable engineers to plot results for all different
types on the same chart in this process.

3. Control Charts Using Q Statistics.

3.1. Q charts for short-run processes. Quesenberry [7] developed Q charts for the
mean and variance values of measurements sampled from a normal distribution for cases
in which both, either, or neither of the mean and variance are known. Advantages of the
Q charts are as follows.

(1) They can be obtained in real time, starting at the onset of production, i.e., when the
process parameters cannot be assumed before the beginning of a run and must be
estimated from the available data sequence.

(2) They can be easily managed, e.g., by plotting different process variables on the same
chart. This may help to identify assignable causes.

(3) Rules for point patterns to increase the power of the chart to detect assignable causes,
such as the Western Electric rules [25], can be applied to all these charts.

This paper will focus on applying Q statistics to the process mean of individual mea-
surements and concentrate on the case in which both the process mean and variance are
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unknown (Case UU). In many cases, both the process mean and variance are unknown
because it is difficult to collect many data due to the shortening of a product life cycle.
Let X1, X2, · · · represent successive measurements of a sequence of types as they are

produced over time. Assume that these values are i.i.d., because they are collected from
a normal distribution N(µ, σ2) with a mean µ and variance σ2. Q charts are generated
for the cases in which both, either, or neither of these parameters is assumed prior to the
production run. In this section, we focus on obtaining a Q chart for Case UU, because
our objective is to apply it practically. We obtain a Q chart by calculating the following
statistics:

Qr (Xr) = Φ−1

{
Gr−2

[(
r − 1

r

) 1
2
(
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Sr−1

)]}
, r = 3, 4, · · · , (1)

where Φ−1 denotes the inverse of the standard normal distribution function, Gv(•) is the
Student’s t distribution function with v degrees of freedom, and X̄r and Sr are respectively
defined as follows:
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These values can be computed after each new measurement Xr according to [26]:

X̄r =
1
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The corresponding Q statistics can then be plotted on Q charts centered on zero and
bound by control limits at ±3. This procedure is applicable to short-run situations where
the parameters are not known in advance.
We illustrate the use of a Q chart for Case UU using simulated data with known

properties. We sampled 50 values generated from N(500, 102). Using the set parameters
(µ = 500 and σ = 10), we computed the 50 standardized values by the following equation:

Qr(Xr) =
Xr − µ

σ
, r = 1, 2, · · · (6)

This is the formula for calculating Q statistics when both µ and σ2 are known (Case KK).
The results are plotted in Figure 2.

Figure 2. Q chart for Case KK: both µ and σ are known
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Figure 3. Q chart for Case UU: both µ and σ are unknown

Similarly, for Case UU, which is important for our purposes, we computed 48 Q statistics
using Equation (1). These values are plotted in Figure 3. After the first few observations,
the charts for Cases KK and UU become almost identical, with a correlation coefficient
of 0.969.

3.2. SCC Q charts for short-run autocorrelated data. Q charts assume that the
process data are independent; therefore, they cannot be applied to autocorrelated data.
However, Snoussi et al. [22] suggested using the residuals of a time series model in
conjunction with Q statistics when the process parameters are unknown.

Assume that the successive measurements X1, X2, · · · taken at different times are
described by an ARIMA (p, d, q) time series model

φ (B)∇dXt = θ (B) at, (7)

where φ (B) and θ (B) are polynomial functions (of orders p and q, respectively) of the
backward difference operator (of order d) and at are the sequences of i.i.d. normal random
variables with a zero mean and a constant variance.

Let X̂t be the predicted value for the observation at an instant t (i.e., calculated at the
end of period t− 1), obtained from an appropriately identified and fitted ARIMA model.
Then, the residuals

êt = Xt − X̂t, t = 2, 3, · · · , (8)

are i.i.d. random variables. Applying the Q statistic with unknown process parameters to
these residuals gives independent standard normal variables. The end result is a Shewhart
control chart (SCC Q chart) with constant control limits [22]. The control limits are set
to ±3, i.e., UCL = 3 and LCL = −3.

4. Application of Q Chart to Case UU. In this section, we illustrate the use of the
Q and SCC Q charts with real data sets obtained from a horizontal LPCVD process.

To illustrate and assess the behavior of the Q charts, each one is plotted after stratifying
by type. Figure 4 shows the average film thickness for type 2, and Figure 5 shows the
corresponding Q chart.

The high values of the correlation coefficients in Table 1 confirm that this high correla-
tion also exists for other types. Even the lowest correlation coefficient value is as high as
0.774. Moreover, as shown in Table 1, it is also found that the horizontal LPCVD process
is a short-run process, because each type has a small sample size, especially, a sample size
for type 4 is very small. Therefore, if a Q chart is not used, we cannot control the process
because many data are needed before designing traditional control charts.

Both charts look similar, and the correlation coefficient for an average film thickness
(Figure 4) and the corresponding Q statistics (Figure 5) is 0.992. One of the advantages
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Table 1. Correlation coefficients of Q statistics for each type

Types Sample size Correlation coefficient
Type 1 202 0.982
Type 2 322 0.992
Type 3 55 0.956
Type 4 9 0.993
Type 5 203 0.966
Type 6 38 0.961
Type 7 61 0.774
Type 8 47 0.882
Type 9 451 0.975

Figure 4. Average film thickness for type 2

Figure 5. Q chart for type 2

of a Q chart is that results for all types can be plotted on the same chart, as shown in
Figure 6.
The low values of the correlation coefficients for types 7 and 8 may be due to autocor-

relation. Only the film thickness data for types 7 and 8 are correlated. Figure 7 shows the
sample autocorrelation function for type 7. An SCC Q chart is better suited to correlated
data.
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Figure 6. Q chart of all types

Figure 7. Sample autocorrelation function for type 7

Table 2. Assessment results of AIC and BIC

Model AIC BIC
ARIMA (1, 0, 0) 585.47 589.69
ARIMA (2, 0, 0) 582.11 588.44
ARIMA (1, 1, 0) 576.24 580.43
ARIMA (2, 1, 0) 574.61 580.89
ARIMA (1, 0, 1) 581.62 587.95
ARIMA (2, 0, 1) 583.25 591.69
ARIMA (0, 1, 1) 572.49 576.68

We select an appropriate ARIMA model based on the Akaike information criterion
(AIC) and Bayesian information criterion (BIC) values, respectively defined as

AIC = −2 ln(L) + 2k (9)

BIC = −2 ln(L) + ln(T )k, (10)

where k is the number of parameters in the time series model, L is the maximum likelihood
function of the estimated model, and T is the sample size. We assessed several low-order
ARIMA models in terms of AIC and BIC and found ARIMA (0, 1, 1) to be the most
efficient for types 7 and 8. Table 2 shows the assessment results of AIC and BIC.
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Figure 8. SCC Q chart for type 7

Figure 9. Q chart for type 7

Figure 10. Data set with an anomalous data point

The SCC Q chart derived from ARIMA (0, 1, 1) in Figure 8 shows no points outside
the control limits at ±3, whereas one point is outside the control limits in the Q chart for
type 7 in Figure 9.
The number of points outside the control limits indicates a type I error, because the

original data set was obtained from a stable process that did not include anomalous
data. Therefore, the SCC Q chart is adequate for treating short-run autocorrelated data,
because it decreases the type I error.
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Figure 11. Q chart with an anomalous data point

5. Q Chart Performance. Many authors have argued that Q charts are inefficient at
detecting shifts, e.g., [27]. In this section, we evaluate outlier detection capabilities of Q
charts by using the data set of type 9, which includes real anomalous data. Figure 10
shows a detectable anomalous point corresponding to batch 8.

The corresponding Q chart, shown in Figure 11, identifies the anomaly, because the
eighth point lies beyond UCL. Therefore, although Q charts are theoretically inefficient
at detecting shifts, they may not be so poor for practical use. Moreover, an SCC Q chart
was not drawn in this case, because the data for type 9 are uncorrelated.

6. Conclusions. Although Q charts for short-run data and SCC Q charts for short-
run autocorrelated data are well known, the effectiveness of these charts has not yet
been sufficiently investigated from a practical perspective using real data, because all
previous studies theoretically consider the univariate methods for short-run and short-
run autocorrelated data.

Our study focused on both Q charts and SCC Q charts and practically assessed their
effectiveness by using film thickness data obtained from a horizontal LPCVD process.
The results are as follows: (1) Q charts enable data of different types to be plotted on
the same chart; (2) SCC Q charts are more suitable for correlated data, because Q charts
can contain type I errors; and (3) Q charts can detect real anomalies in data, although it
is known that their outlier detection capability is poor in theory. On the basis of these
results, we conclude that both methods are useful tools for controlling semiconductor
manufacturing processes.

We have not compared Q charts and SCC Q charts with other methods of treating short-
run or short-run autocorrelated data. The relative complexity of these other methods can
make them inconvenient for practical use.
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