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Abstract. Focusing on universal life insurance, this paper calculates level premium
and constructs the basic model of assets and liabilities considering mortality rate. The
model contains interest rate guarantees, surrender options, and mortality rate to fully
reflect the reality of prevailing insurance policies. Based on the pricing of universal
life insurance, the paper also establishes the insolvency model. Finally, Monte Carlo
simulations are conducted to provide numerical results and sensitivity analysis. In order
to show the advantages of our model against those without consideration of mortality,
we also conducted a mortality scenario test by introducing a mortality modifying factor.
Results show that the two embedded derivatives, interest rate guarantee and cancellable
option, account for a large proportion in universal insurance’s value. This finding may
suggest the necessity to consider the interest rate guarantee and cancellable option while
assessing the value of the universal insurance, in order to correctly evaluate the solvency
of the insurance companies. Results also show that the mortality effect is significant on
both embedded option and insolvency risk, which indicates a great necessity of considering
mortality in valuation of universal insurance.
Keywords: Universal life insurance, Mortality rate, Insolvency risk, Embedded option

1. Introduction. Recently, great attention has been paid to the options embedded in
insurance contracts, especially in those nontraditional contracts which account for a sig-
nificant part of insurance market, i.e., participating insurance contracts, universal life
insurance and unit-linked insurance. Embedded or implicit options often provide pol-
icyholder the right to make a change on the time or amount of claims. Nevertheless,
traditional approaches in actuarial science usually underestimate the value of these op-
tions (see [1]). Consequently, this could cause two kinds of risks to insurance company.
First, underestimation of these options for a long while could leave insurance compa-
nies in a terrible operational condition. Second, embedded options tend to increase the
contingent liability of insurance companies. Without enough liability reserves, insurance
companies could easily get trapped in a solvency crisis or even go bankrupt as economy
becomes dramatically unstable.

In 2006, when the subprime crisis took place, a great many insurance companies suf-
fered from disastrous impact, which mainly laid in the risk of insolvency. Losses caused by
subprime derivatives not only created great liquidity risks but also jeopardized the confi-
dence of policyholders on insurance companies’ solvency, which would lead to large-scale
surrender and eventually destroy the least hope for insurance companies to go through cri-
sis. For that reason, we should all keep alert of insufficient pricing of insurance contracts
with implicit options and its serious consequences. Despite their importance, there have
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not been much literature on the pricing issue of embedded options and their influence on
insolvency. In general, embedded options can be categorized as two different types: one
offers the right to make a change on the time or amount of settlement, and the other
provides a guaranteed minimum interest rate or return. As mentioned above, traditional
approaches using actuarial techniques may not function well and we have to figure out a
new approach to evaluate embedded option. Before introducing our method, we firstly
make a review of recent researches into embedded option. Overall, existing studies on
embedded options either focus on evaluation based on a generalized form or consider the
pricing of a particular kind of contracts with their specific features.
Studies based on a generalized form were mainly about the evaluation method of em-

bedded options. They all overlooked the specific features of different insurance contracts,
for which these researches are less adaptable in practice. For researches that focus on
particular insurance contracts, most of them are about unit-linked contracts and partic-
ipating contracts. As for equity-linked products, large contributions have been made by
financial and actuarial researchers since the pioneering work in [2,3]. They recognized
the option-like features in equity-linked products and applied the option pricing theory
on their evaluation model. Further researches in this direction were focusing on all kinds
of options embedded in unit-linked contracts such as minimum guaranteed interest rate
and payment (see [2,4-7]). The problem of valuing another kind of option embedded in
equity-linked products, surrender option, has also been tackled, under different assump-
tions and by various methodologies (see [8-10]). However, all these researches left aside
the effect of mortality, which obviously deviated from the reality.
As another kind of insurance contracts which also make up a significant part of the life

insurance market, participating contracts also attracted great attention from researchers.
Here is a brief review of researches into participating insurance. In the first place, scholars
started their researches with single-period models. Briys and de Varenne focused on a
particular participating insurance sold in French market and managed to valuate both
liability and equity of this contract based on classical contingent claim theory (see [11]).
In 1997, they made further effort on valuation of participating insurance with guaran-
teed interest rate and surrender option embedded. Based on this model, Grosen and
Jørgensen adopted a barrier option framework to investigate the impact of regulatory
intervention rules for reducing the insolvency risk of the policies (see [12]). However, all
these researchers are not able to deal with “cliquet-style” contracts with annual bonus.
Therefore, scholars also made attempt to construct multi-period models. Grosen and
Jørgensen provided a multi-period model to valuate liability of participating insurance
contract with “cliquet-style” bonus option and surrender option embedded (see [13]). Af-
ter considering guaranteed interest rate, bonus option and surrender option, Grosen et al.
proposed to use a finite difference approach for pricing contract (see [14,15]). Considering
a specific participating scheme used in a particular country, Ballotta made a further step
in this direction. They considered the valuation problem for one of the smoothing scheme
commonly used by insurance companies in the UK and set up a market model based on
the use of a Levy motion as relevant process for the value of underlying reference port-
folio’s returns (see [16]). Dealing with this same smoothing scheme, Ballota, Haberman
and Wang further extended the techniques they developed earlier to allow for the default
option. Researches mentioned above all focused on evaluation of participating policy with
a given guaranteed interest rate. Aguilar and Xu provided a way to determine optimal
guaranteed interest rates and premiums which maximize insurers’ profit (see [17]). In his
model, he assumed rates of return on assets were lognormally distributed and applied
B-S formula to price surrender option. However, he did not allow for the possibility for
insurers to default.
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Aside from the embedded bonus options, some other embedded options have also drawn
much attention. Herr and Kreer modeled a life insurance contract with surrender and
paid-up options with underlying stochastic interest rates (see [18]). However, they did
not take the effect of mortality into consideration. As for pricing contracts with surrender
options, Albizzati and Geman have made some progress (see [19]). As a generalization and
extension, intervention options which include all types of options that can be described by
control by intervention were discussed in [20]. These options belong to the surrender and
the free policy (paid-up policy) options. To deal with intervention options they assumed
the simplest form of intervention, i.e., optimal stopping, which indicates exercise of all
options was rational. Baione et al. analyzed both the term structure of interest and
mortality rates role for evaluating a fair value of a life insurance business (see [21]). In
their model, not only all the options mentioned above were allowed for, the option to
annuities was also considered.

Meanwhile, some other scholars attempted to establish multi-decrement models. Baci-
nello considered the effect of different kinds of payment option, i.e., net single premium or
regular premium (see [22,23]). Besides, mortality was also included in their model. Kling
et al. provided a model to analyze the effect participating contract with “cliquet-style”
guaranteed interest rate and default risk embedded had on liability, asset allocation and
management decision of insurance company (see [24]). In addition, they pointed out that
all these parameters were correlated.

In all these researches summarized above, they were all aiming at correctly valuing
embedded options, based on which insurance companies could set aside adequate reserve
to prevent insolvency risk. However, there are still some deficiencies of existing researches
remaining to be discussed. First of all, contracts discussed in existing studies were limited
to participating insurance and unit-linked insurance. Few comments have been made on
another type of contracts which are also important, the universal products while in this
article we are about to discuss this insurance products. Secondly, current researches rarely
considered mortality risk in pricing embedded options. In fact, insurance products are
designed to cover mortality risk. The effect of mortality risk on the value of embedded
options could be too significant to neglect, for which we will take into account the effect of
mortality in our model. Thirdly, existing studies have not allowed for different choices to
make payments; for example, level premium or regular premium has rarely been discussed.
In our research, we will take the assumption of level premium to construct our model.
Fourthly, in existing studies, the effect of embedded options on solvency has not been
analyzed quantitatively. Most of current researches just mentioned this effect qualitatively.
For that reason, we will construct an insolvency model to analyze this effect. To sum it
up, in order to deal with the four issues mentioned above, we will construct a valuation
model for universal insurance with level premium, considering features of this insurance
and the effect of mortality. Besides, we will also construct an insolvency model to figure
out the relation between embedded option and insolvency risk.

The following is our modeling scheme. Focusing on universal life insurance, we first
calculate level premium and construct the basic model of assets and liabilities. Here we
made some changes on details to allow for mortality and the specific characters of universal
insurance contracts. Then, we introduce interest rate guarantee and cancellable option
into this model to make it more consistent with the reality of prevailing insurance policy.
Based on the pricing of universal life insurance, the paper establishes the insolvency model.
Finally, the authors use Monte Carlo simulation method to provide numerical results and
sensitivity analysis to look into the relationship between price of contracts and insolvency
risk, which could provide useful guidance in practice. The rest of the paper is structured
as follows. In Section 2 we propose the valuation model and solvency model for universal
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contracts. In Section 3 we perform numerical simulation to verify our models. Finally,
we make our conclusions in Section 4.

2. Valuation Model and Solvency Model of a Life Insurance Company with
Universal Contracts.

2.1. Valuation model based on contingent claim theory and actuarial tech-
niques. The basic framework is as follows. Insurers are assumed to operate in a con-
tinuous trading and frictionless financial market, so that there are no tax effects, no
transaction costs, no short-sales constraints and all securities are divisible. We also ig-
nore the effects of lapses in order to make solution tractable. These assumptions were also
adopted in previous researches. The reasons are as follows. These assumptions are often
used to describe the conditions in complete market, which is an ideal trading market.
Conditions in complete market are much simpler than that in the real market. Therefore,
we made these assumptions to simplify our model. In addition, results based on these
assumptions could also be used to provide guidance in the real market because we believe
that the difference between complete market and the real market do not make significant
difference to our results.
Consider a universal life insurance endowment policy issued at time 0 and maturing

T years after (at time T ). Under this contract, the insurer1 is obliged to pay a specified
amount of money (benefit) to the beneficiary if the insured dies within the term of the
contract or survives to the maturity date without surrender. In accordance with most
insurance policy terms, we assume that, in case of death during the t-th year of contract,
the benefit is paid at the end of the year, that is, at time t (t = 1, . . ., T ); otherwise, it is
paid at maturity T . We assume that the contract is paid by level premiums2, due at the
beginning of each year, if the insured is alive. We denote by P the level premiums. To
allow for the feature of universal life contracts, we denote by i the minimum guaranteed
interest rate3.
Model I: Valuation model for traditional endowment contracts
We first consider the simplest situation without effect of neither surrender nor partici-

pating policy, which we denote by model 1. We also denote by x the age of the insured at
time 0 and by C1 the specified benefit, payable in case of death. According to standard
actuarial practice, the level premium, here we denote, is P1 computed in the following
way:

P1 = C1Px:T\i = C1

Ax:T\i

äx:T\i
= C1

∑T−1
i=1 (1 + i)−t

t−1|qx + (1 + i)−T
T−1px∑T−1

i=1 (1 + i)−t
tpx

(1)

Here, i represents an (annually compounded) interest rate, t−1|qx the probability that
the insured is still alive at time t. As usual, these probabilities depend on the age of the
insured and are extracted from the mortality table.
Under assumption of risk neutral, annual level premium can be obtained using risk free

rate, denoted by r, instead of the actual interest rate. Equation (1) can be rewritten as
follows:

P1 = C1Px:T\r = C1

Ax:T\r

äx:T\r
(2)

Here, C1Ax:T\r, denoted by UP1 for convenience, represents the net single premium that
is equivalent with the annual level premium. We can interpret this net single premium as
the value of bond covering mortality risk.

1For simplicity, we assume the insured is also the applicant.
2For simplicity, we do not allow for varying premium.
3Minimum guaranteed rate guarantees interest of policyholders, embodying the security of insurance.
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Model 2: Valuation model for universal insurance contracts with guaranteed interest
rate

Observe that the premium in model 1 makes the expected value at time 0 of the benefit
C1 of a standard life insurance endowment policy, discounted from the random time of
payment, equal to the expected value at time 0 of the stream of constant annual premiums
P0, discounted as well. Then, on the ground of the first-order bases, P0 makes the contract
“fair” at inception. However, the guaranteed interest rate specified in universal contracts
forces the benefit to vary, year by year, since a bonus is annually granted to the policy
and used to purchase additional insurance. To allow for this, we construct another model,
called model 2 for convenience, based on model 1.

Prior to the introduction of model 2, we have to give definitions of some notions. We
first denote by P2 the constant annual premium payable at the beginning of each year,
provided that the insured is alive. Note that as benefits are no longer constant, this
premium will be different from the premium in model 1, P1. Similarly, we denote by Ct,
t = 2, 3, . . . , T the benefit payable at time t, given by the initial C1 plus the additional
benefits acquired from time 1 to time t− 1. Assuming that insurers are risk neutral and
mortality risks and financial risks are independent, we could employ a two-stage scheme
firstly to calculate the net single premium and then to obtain annual premium. The
expected value at time 0 of the benefit Ct, discounted from random time of payment, can
be expressed as follows:

π(Ct) = EQ[Ct(1 + r)−t] (3)

Based on this, the net single premium is easily obtained.

UP2 =
∑T−1

t=1
π(Ct)t−1|qx + π(CT )T−1px (4)

Note that the difference between the net single premiums in model 1 and model 2
actually represents the required compensation for insurance company to cover the cost of
offering a minimum guaranteed interest rate.

The annual premium in model 2 can be obtained in the following way:

P2 = UP2

/
äx:T\r (5)

The next problem to obtain an analytical expression for annual premium P2 is to figure
out how all these changes in benefit are settled and thereby determine the expression for
Ct.

(1) Modeling varying benefit
Here we make the assumption that benefit equals the initial benefit C1 plus the value of

policyholder’s account, or equivalently equals the liability reserve. This is also consistent
with the terms in universal insurance contracts. To see how benefit changes is actually
to see how value of liability reserve changes. According to standard actuarial practice,
liability reserve at time t, denoted by tV , t = 1, 2, . . . , T − 1, can be computed in the
following way:

tV =CtAx+t:T−t\i − P2äx+t:T−t\i

=Ct

[∑T−t

h=1
(1 + i)−h

h−1|qx+t + (1 + i)−T
T−tpx+t

]
− P2

∑T−t−1

h=1
(1 + i)−h

hpx+t

(6)

where h−1|qx+t represents the probability that the insured dies within the (t+ h)-th year
of contract, conditioned on the event that he or she is alive at time t, and hpx+t is the
probability that the insured is still alive at time t+ h, conditioned on the same event.

Note that relation (6) would not provide a proper way to compute the policy reserve,
because it is established as if premiums and benefits remained constant after time t.
However, this relation is actually used in practice as a starting point for defining the
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accumulation mechanism. Here we use P1 in place of P2 to compute tV in order to
split the effect of guaranteed interest rate on insurance coverage. As mentioned above,
benefit equals the initial benefit C1 plus the value of policyholder’s account. Under usual
assumption, the former is constant. As for the value of policyholder’s account, premiums
collected, less regular expenses and risk cost, are credited into the policyholder’s account
and reinvested in financial market. We denote by A(t) the portfolio invested and gt the
rate of return on A(t). We further assume that all return on A(t) should be included in
policyholder’s account. Besides, a minimum guaranteed interest rate, denoted by rg, is
provided in a universal insurance product, which ensures value of policyholder’s account
increase at a rate of max{rg, gt}. It can be demonstrated that the varying benefit is
expressed in the following way:

Ct =C1 +
(
P1 − A1

x :1|
)
max{1 + rg, 1 + g1} · · ·max{1 + rg, 1 + gt}

+
(
P1 − A1

x+1 :1|
)
max{1 + rg, 1 + g2} · · ·max{1 + rg, 1 + gt}

+
(
P1 − A1

x+2 :1|
)
max{1 + rg, 1 + g3} · · ·max{1 + rg, 1 + gt}

+ · · ·+
(
P1 − A1

x+t−1 :1|
)
max{1 + rg, 1 + gt}, t = 1, 2, 3, . . . , T

(7)

The equation above actually converts the effect of guaranteed interest rate to a con-
strained varying insured amount, which could also be used to compute the policy reserve.
(2) The asset side of the balance sheet
Note that either policy reserve or varying benefit depends strongly on the value of the

invested portfolio, i.e., the asset of insurance company. To price contracts with varying
benefit we need to know the behavior of asset price.
Recall the description of the structure of the contract, the annual premium P is collected

at the beginning of each year and will be invested during the following year together
with the policy reserve accumulated till the end of last year. The insurance company is
assumed to invest the money in a well-diversified asset portfolio. We make no assumptions
regarding the composition of this portfolio with respect to equities, bonds, real estate.
Instead, we simply assume the asset portfolio to follow the traditional geometric Brownian
motion, so as to make our model easier to deal with

dA(ts) = rA(ts)dt+ σA(ts)dW (ts)
A(t0) = A(t− 1) + P1 − A1

x+t−1:1 |, t ∈ [t− 1, t), t = 1, 2, . . . , T, A(0) = 0 (8)

under the risk neutral probability Q. The parameter r ∈ R+ is the risk-free rate of
interest and σ ∈ R+ is the portfolio volatility. W (t) is a standard Brownian motion under
Q. According to [25], this stochastic differential equation has a solution given by

A(t) =
[
A(t− 1) + P − A1

x+t−1: 1|
]
exp

{(
r − 1

2
σ2

)
+ σWQ(ts)

}
(9)

And the annual rate of return, gt, could be expressed as follows:

gt =

(
r − 1

2
σ2

)
+ σWQ(ts)− 1 (10)

Using a simulation technique, we could obtain the value at time T of asset, A(T ).
Model 3: Valuation model for universal contracts with guarantees and surrender option
All discussions above left aside the effect of surrender. Here we introduce this important

factor into our valuation model. For convenience, the model considering surrender is called
model 3 in this paper. Surrender option provides policyholder the right to terminate the
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contract ahead of time and acquire an amount of money called surrender value, usually
less than the overall premium that he or she has paid. By its definition, we could reason
that surrender option is American-style option since policyholder could exercise the option
anytime when he or she thinks the expected value of a contract is less than the surrender
value.

We firstly introduce our assumptions on surrender. In order to comply with the surren-
der practice, we assume that surrender could only be processed at the end of each year,
i.e., at time t = 1, 2, . . ., T . As required by most insurance regulations, surrender value
a policyholder can get equals to his or her account value minus some amount of money
called the surrender charge. In this paper, surrender value is assumed to equal the value
of policyholder’s account, i.e., tV −C1, which could be computed using Equation (7). The
expression for tV is as follows:

Vt =
(
P1 − A1

x :1|
)
max{1 + rg, 1 + g1} · · ·max{1 + rg, 1 + gt}

+
(
P1 − A1

x+1 :1|
)
max{1 + rg, 1 + g2} · · ·max{1 + rg, 1 + gt}

+
(
P1 − A1

x+2 :1|
)
max{1 + rg, 1 + g3} · · ·max{1 + rg, 1 + gt}

+ · · ·+
(
P1 − A1

x+t−1 :1|
)
max{1 + rg, 1 + gt}, t = 1, 2, 3, . . . , T

(11)

Note that the choice to surrender or not at time τ is based on all information available
until time τ and the optimal choice must yields the highest expected value at time 0.
Based on that, expected benefit or surrender value at time 0 discounted from a random
time τ could be computed as follows:

τUP3 =
∑τ

t=1
π(Ct)t−1|qx + π(τV )τpx (12)

We could further obtain the net single premium,

UP3 = EQ
[
supτ∈Γ[0,T−1](τU

P3)
]

(13)

Here τ is an optimal stopping time with domain on [0, T − 1]. Solving this problem
involves pricing compound option, yielding no analytical solution. We will employ a Least
Square Monte Carlo Simulation technique (see [26]) to find the answer. It can be easily
seen that the value of surrender option equals the difference between net single premiums
in model 2 and model 3.

2.2. Solvency model construction. We have already constructed the valuation model
for universal insurance contracts, based on which we could further consider forming a
solvency analysis model. According to “Administrative Provisions on the Solvency of
Insurance Companies”, actual capital, denoted AC(t), is the difference between recognized
asset and recognized liability. Here we make the simple assumption that all assets and
liability of insurance companies are admissible. Then the actual capital could be computed
as follows:

AC(t) = A(t)− tV (14)

According to “Administrative Provisions on the Solvency of Insurance Companies”, the
minimum capital insurers must possess equaling 4% of the value of policyholder’s account
P (t). Thus, the solvency margin ratio, which is defined to be the ratio of actual capital
to the minimum capital, could be computed in the following way:

SMR(t) = AC(t)/MC(t) (15)
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3. Numerical Results.

3.1. Simulation based on valuation model. It is now time to find a solution to the
valuation of the specific liability according to the model we have constructed. Form a
computational point of view, numerical valuation via Monte Carlo simulation is a possi-
bility referring to path-dependent feature of tV . To price universal insurance products,
we firstly repeatedly simulate the asset value at time t, i.e., A(t), and its corresponding
rate of return, gt. Then we could obtain the varying benefit and policy reserve at time
t, Ct and tV respectively. Applying the contingent claim theory, π(Ct) and π(tV ) could
also be determined. With sufficiently enough number of simulations, the average offers
an asymptotic unbiased estimator of the real value.
The premium determined in model 1 is used in simulation of asset price. To further

determine the premiums in other models, we adopt the following procedure. Firstly,
we calculate the premium in model 1, P1, and then solve model 2 for UP2 as if P2 was
determined and equals to P1, and use the relationship between UP2 and to determined
the real P2. The premium in other models could be obtained in the same way. Based on
these results, we could compute the value of guarantee interest rate and surrender option.
Before exhibiting our results, we need to make specification of the data and parameters

used in our simulation. Firstly, data of mortality risk are extracted from “CHINA LIFE
INSURANCE MORTALITY TABLE(2000-2003)”-CL1. We also assume a series of pos-
sible numbers from 0.8 to 1.2 as the mortality modifying factors to analyze the effect of
mortality. Moreover, to compare our model with the one which does not allow for mortal-
ity, we include 0 as an extreme scenario in our simulation. As for the contract parameters,
they are not interested parameters in our research so we just adopt the assumptions used
in previous researches. More specifically, the initial insured amount is assumed to be
10000 and the term of contract is 10 years. Two other contract parameters (x, rg) are
interested variable in this paper and are assumed to take on a series of reasonable num-
bers in a later part of this section. Since most purchasers of this universal insurance are
mid age people who earn regular income and fear for unexpected losses affecting their
families, we assume that the age, x, are in the range between 40 and 60. The baseline age
in our simulation is 40. Due to the guaranteed interest rate is no greater than the limited
2.5% according to legislation rules, we specify rg to be 2.5% in our simulations. Aside
from contract parameters, there are two other important market parameters (σ, r) which
we have to consider carefully in accordance with the market situation in China. The
investment of insurance company is required to be safe enough to prevent the loss from
insolvency, which means that asset investment risk should be low, regulated by China
Insurance Regulatory Commission. Thus, we define the volatility parameter σ to be 15%
in this study.
Here we repeat the baseline parameters for convenience. Based on these parameters

and 100000 simulations, we could estimate premiums in all three models.

UP1 = 6776, UP2 = 10148, τU
P3 = 16420, P1 = 808.5, P2 = 1209.1, P3 = 1679.5

Furthermore, we can obtain the value of guaranteed interest rate and surrender options,
UP2 − UP1 = 3372 and UP3 − UP2 = 6272, respectively. It can be seen that the value of
guarantees are quite high, taking a 49.8% proportion of UP1 . In addition, the value of
surrender option takes the most part of the whole net single premium. For that reason,
measures should be taken to reduce the rate of surrender.
Now we focus on parameters we are interest in, age, guaranteed interest rate, risk free

rate and volatility. In a second part of our simulation, these parameters are assumed
to take on a series of reasonable numbers. Numerical results based on these varying
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parameters are contained in Table 1, which could be divided into four parts, used in
sensitivity analysis of these four variables respectively.

In the interpretation of Table 1, we first discuss the effect of guaranteed interest rate
and surrender option. Consist with the results we obtained in the situation with baseline
parameters, the effect of surrender option and interest guarantees are too significant to
neglect. Seen from the first part of Table 1, with increase in the age of insured, premium
to purchase classical endowment contract, P1, increases. So does the premium for model
2, P2. However, increase in age leads to a decrease in value of surrender option while a
overall increase in P3. Based on this information, it is suggested that as ages increase
insured tends more to consider insurance contract as an investment and less to surrender.

The second part of Table 1 suggests that increase in risk free rate results in decreases
of premiums in model 1 and model 3. This can be explained by the fact that as risk free
rate decreases value of guarantees decreases and value of surrender option increases.

From the third part of Table 1, we can reason that increase in guaranteed interest rate
leads to a slightly increase in value of guarantee. It is implied that with a high risk free
rate the effect of guaranteed rate on the value of guarantee is insignificant. However,

Table 1. Option values varying with parameters

value UP1 UP2 UP3 Guaranteed interest rate Surrender option

x

40 808.5 1210.7 1969.8 402.2 759.2
45 811.8 1222.0 1973.6 410.2 751.5
50 817.1 1240.1 1976.4 423.0 736.3
55 827.3 1276.5 1980.0 449.2 703.4
60 848.4 1346.4 1994.2 497.9 647.8

r

2% 902.7 1115.6 2267.5 212.9 1151.9
4% 808.5 1210.7 1971.4 402.2 760.7
6% 723.6 1311.2 1718.1 587.5 406.9
8% 647.3 1416.9 1504.5 769.6 87.6
10% 578.8 1329.6 1329.6 750.8 0.0
15% 437.1 979.8 979.8 542.7 0.0
20% 330.2 738.9 738.9 408.7 0.0

rg

1% 808.5 1209.7 1926.3 401.2 716.6
2% 808.5 1210.1 1954.7 401.6 744.7
3% 808.5 1210.8 1986.0 402.3 775.2
4% 808.5 1211.4 2019.4 402.9 808.0
5% 808.5 1211.4 2055.2 402.9 843.8

σ

10% 808.5 1210.1 1850.3 401.6 640.2
20% 808.5 1210.2 2106.9 401.8 896.7
30% 808.5 1213.6 2433.8 405.1 1220.2
40% 808.5 1216.0 2843.6 407.5 1627.7
50% 808.5 1215.6 3350.5 407.1 2134.9

Mortality

0 800.9 1184.8 1963.4 384.0 778.6

Modifying

0.8 807.0 1205.2 1968.9 398.2 763.7

Factor

0.9 807.7 1207.7 1969.6 400.0 761.9
1 808.5 1210.3 1970.3 401.8 760.0
1.1 809.3 1212.8 1971.0 403.6 758.1
1.2 810.0 1215.4 1971.7 405.4 756.3
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as guaranteed interest rate increases, the value of surrender option tends to increase
significantly due to the increasing surrender rate.
From the forth part of Table 1, it can be seen that higher volatility does not necessarily

bring a significantly higher value of guarantees. Nevertheless, the value of surrender option
increases dramatically, which, again, lays emphasize on the effect of surrender on universal
products. Without sufficient consideration of this effect, the determined premium could
be way too deficient to guarantee the insurer’s solvency.
From the last part of Table 1, we also learn that the effect of death rate is significant.

The higher the mortality rate, the higher the premium and the higher the guaranteed
interest rate option worth. The reason lies in the fact that higher death rate always
indicates higher chance to obtain the benefit earlier, which results in a higher present
value of this contract. While in the contrary, higher mortality rate may go with lower
value in surrender option. This may be explained by the higher present value of this
contract caused by higher death rate, which reduces the incentive for policyholders to
surrender.

3.2. Simulation based on solvency analysis model. We are about to analyze the
effect of some extraneous variables on solvency. Interested variables include guaranteed
interest rate, age, market parameters. Based on 100000 simulations each, we estimate the
actual capital, minimum capital and SMR in each scenario and analyze the effect of these
interested parameters on solvency.
(1) Effect of age on solvency
From Figure 1, it can be seen that as the insured grows old there is a slight increase in

both actual capital and solvency marginal ratio, which implies an insignificant effect of age
on solvency. Besides, when the expiring date draws near, actual capital increases and SMR
decreases drastically. This can be explained by the fact that when contracts are about
to expire insurer must prepare less reserves. Consequently, the actual capital increases
significantly compared with the slight decrease in minimum capital, thus leading to a
rapidly decrease in SMR. To deal with this increasing solvency risk, more policy reserve
is required close to expiring date.
(2) Effect of guaranteed interest rate on solvency
To better convey the effect of guaranteed interest rate on solvency, we plot the results in

Figure 2. Seen from Figure 2, the effect of minimum guaranteed interest rate is significant
and increases as time goes by. It is also suggested that minimum guaranteed interest rate
affect solvency marginal ratio in a different way. Firstly, SMR in each situation decreases

Figure 1. Effect of age on solvency
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Figure 2. Effect of guaranteed interest rate on solvency

Figure 3. Effect of risk free rate on solvency

over time. Secondly, in each situation the speed at which SMR decreases differs a little
bit. The lower the guaranteed interest rate, the slower SMR decreases. Hence, it can
be reasoned out that guaranteed interest rate does affect solvency and the degree of
this influence varies from one policy anniversary to another. Also note that the results
presented here differ from those obtained assuming no effect of mortality, which means
the latter are actually inaccurate.

(3) Effect of risk free rate on solvency
The results for analyzing effect of risk free rate on solvency are plotted in Figure 3.

Note that there exist a great effect of risk free rate on both actual capital and SMR,
especially in case when contracts are about to expire. This is a similar situation with the
one we were confronted with when dealing with guaranteed interest rate, only the effect
is greater. With a low risk free rate actual capital decreases to a negative level while
with a high one actual capital tends to increase rapidly. To reason this, just consider the
consequences of increasing risk free rate. Increase in risk free rate leads to increase in value
of options embedded and thus the value of asset. Eventually, this increase will result in an
increase in solvency of insurance company and necessarily an increase in SMR. However,
if risk free rate is not sufficiently high to keep the asset value higher than liability, this
gap would get widening, indicating that a capital injection is necessary.

(4) Effect of volatility on solvency
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Figure 4. Effect of volatility on solvency

Figure 5. Effect of mortality risk on solvency

The forth part of this section is a discussion on the effect of volatility on solvency. From
Figure 4, we can learn that volatility affects solvency in a similar but more notable way.
With a high volatility, the actual capital and SMR get very negative, indicating a high
risk and an urgent requirement of capital injection.
(5) Effect of mortality rate
As mentioned above, we looked the mortality risk as a key variable in constructing our

models. Now let us take a look at the effect of mortality on solvency, which is presented
in Figure 4. As it can be seen from Figure 3, the higher the mortality rate, the higher the
insolvency risk. This is consistent with our knowledge since higher death rate indicates
higher insurance liabilities, which necessarily implies higher insolvency risk.

4. Conclusions. In the case of a dramatically changing environment, the value of em-
bedded options gets into the state of “in the money” from the state of “out of the money”,
thus increasing the insurer’s liability. Among all embedded options, guaranteed interest
rate and surrender are two most important factors when determining the value of uni-
versal contracts. Ever since the international Accounting Standard Board (IASB) led a
project aiming at implementing new accounting standards for insurance, fair valuation
of insurance contract has drawn great attention. With the limitation of existing studies,
it requires further push in this direction, especially on the problem of pricing insurance
contracts on a fair value basis.
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Considering effects of mortality, surrender, guarantees, in this paper we introduced con-
tingent claim theory into the classical actuarial framework and construct a fair valuation
model for universal insurance contract. Starting from a classical endowment, we adopt
a three step approach to model the payoff and compute the premium of universal con-
tract. Based on the pricing of universal life insurance, the paper establishes the insolvency
model. Finally, Monte Carlo simulations are conducted to provide numerical results and
sensitivity analysis. In order to figure out the effect of mortality rate on embedded option
and insolvency risk, we also performed a mortality scenario test by introducing a param-
eter called “mortality modifying factor”, from which we could see the difference between
our research and other researches where mortality effect is not considered.

The main numerical results are summarized as follows. In the first place, as a part of
the whole value of universal contract, the value of embedded options accounts for a high
proportion. Therefore, the effect of guarantees and surrender should be fully considered
to avoid under-pricing and insolvency. Otherwise in the case of a dramatically changing
environment, the insurer could suffer from enormous losses and even go bankrupt. In
addition, value of embedded options is affected by extraneous variables like age, risk free
rate, guaranteed return and volatility. As any of these variables increase, the option of
guaranteed interest rate tends to appreciate. Not only increase in guaranteed return or
volatility but also decrease in age or risk free rate will lead to an increase in the value
of surrender option. Results also indicate that mortality rate has great influence on
embedded options. As mortality rate increases, the value of option of guaranteed interest
rate increases while the value of surrender option decreases. This could be explained
by the fact that higher death rate always means earlier compensation from holding this
insurance contract, which might increases the expected value of the guaranteed interest
rate and also the value of universal insurance contract. The increase in universal insurance
contracts further reduces the incentive to surrender, thus decreasing the value of surrender
option.

Secondly, numerical research also shows that both actual capital and solvency mar-
gin ration are deeply affected by extraneous variables like age, risk free rate, guaranteed
return and volatility. Analysis of these effects could offer a useful guidance in risk manage-
ment. Increase in age may lead to an increase in solvency ratio. It is because insurance
companies facing older group of insurant will set aside more reserve than those facing
younger one. Besides, increase in risk free rate always indicates an improvement of in-
vestment environment, which consequently contributes to a better solvency status. On
the contrary, as guaranteed return and volatility respectively represent the liability and
risk that insurance companies are facing, the increase in any of them will cause a decrease
in solvency ratio.
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