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Abstract. Compartmental linear systems naturally arise when someone aims to de-
velop dynamic models for populations, economic systems, chemical reactions, hydraulic
systems, among others. General theories for this class of systems have been well de-
veloped in the last decades. This paper aims to present a simple methodology of model
order reduction for asymptotically stable compartmental linear systems, by observing the
fact that even for higher order systems an approximately first order-like between input
and output is observed in any case that involves the driven-point function. Then, a step
response error minimization is carried out with DC gain retention, since by solving a sin-
gle nonlinear equation it is possible to obtain the parameters of first order approximated
model. Numerical examples, both theoretical and real world models support the proposed
methodology.
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1. Introduction. Linear compartmental systems comprehend a class of linear systems,
which naturally occur in the study of dynamic models in which the state variables are
quantities that are physically meaningful only if they are non-negative or strictly positive.
Examples of this class are economic models, mass balance, population dynamics, among
others [1]. Model order reduction for linear systems is an extremely valuable technique
in order to reduce model complexity, culminating, for example, in the use of a simple
controller in order to control a higher order system [2]. For example, in H2/H∞ control and
filtering design, the order of obtained controller/filter may be even higher than plant order
A widely used method for model order reduction is the method of balanced realization
[3, 4], where the controllability and observability grammians of the system are equal and
diagonal, and the Hankel singular values appear in the main diagonal. One possible
disadvantage of balanced truncation model reduction occurs when extra zeros appear in
the final model. Continuous-time compartmental linear system class is the main object of
study in this paper, having its properties well defined and studied, which can be appealing
when the goal is to reduce the system order. In the following, some relevant definitions
and theorems taken from [5] are presented.

Definition 1.1. Let be the time-invariant linear, single-input single-output system in the
form

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)
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Such a system is said compartmental if A = [aij], B and C obey:

aij ≥ 0, i 6= j; aii +
∑
j 6=i

aij ≤ 0; B ∈ Rn×1
+ ; C ∈ R1×n

+

Matrix A in the previous definition is said compartmental, being a particular case of
Metzler matrix. For the matrix A to be Metzler, only the first condition on its entries
needs to be satisfied [6].

The following lemma gives an important property that will be explored in this work:

Lemma 1.1. If A is compartmental, then there is only one real eigenvalue of A, λk ≤ 0
such that Re (λl) ≤ λk,∀l 6= k.

At this point, we consider only asymptotically stable systems, also known as systems
without traps [7]. Together with this lemma, the following property is very useful:

Property 1.1. [4] Whenever there is k such that bk = ck = 1, bj = cj = 0 and j 6= k, the
transfer function

G(s) = C (sI − A)−1 B (2)

is called the driven-point function (DPF). As an example, for an RC cascade, the DPF is
the cascade impedance between k-th compartment and the ground. Moreover, the impulse
response g(t) is such that (i) g(0) ≥ g(t) ≥ 0 and (ii) ġ(0) ≤ 0, which becomes strong if
ord [G(s)] ≥ 2.

Summarily, the concepts presented here demonstrated that the i -th state variable xi

in a compartmental system obeys to the mass balance, i.e., the i -th compartment gets
incoming material from the input at rate bi, from another j -th compartment at rate aijxj,
and loses material to the exterior at rate a0ixi and to another k -th compartment at rate
akixi, such that:

ẋi(t) =
∑
j 6=i

aijxj −

(
a0i +

∑
j 6=i

aji

)
xi(t) + biu(t)

The theorems and property previously presented have a central role in this paper,
because of two main facts: (i) states that the system has one dominant eigenvalue in the
sense of origin proximity, also known by Frobenius eigenvalue, and (ii) g(t) is positive and
decreasing in the vicinity of t = 0; henceforth, we can conjecture that the system has a
first-order-like impulse response.

2. The Methodology. The transfer function of a linear system of any order can be
obtained from the classical relation given by (2). The spectrum of A can be partitioned
with indices 1, 2, . . . , i, with respective multiplicities m1,m2, ..., mi, such that the condition
ord [G(s)] =

∑
mi is satisfied. In this manner, the impulse response and the corresponding

transfer function for the system are given respectively by:

g(t) =
∑i

k=1

∑mk−1
n=0

a
(k)
n

n!
tn exp(λkt)

G(s) =
∑i

k=1

∑mk−1
n=0

a
(k)
j

(s−λk)n+1

(3)

For the approximated model, these functions are represented respectively by:

ĝ(t) = b̂ exp(λ̂t)

Ĝ(s) = b̂

s−λ̂

(4)

where b̂ > 0, λ̂ < 0. The first criterion used for a good approximation between the
responses is the equality of DC gains G(0) = Ĝ(0) that results in:

b̂ = λ̂

i∑
k=1

mk−1∑
n=0

(−1)n+2n!a
(k)
n

λn+1
k

(5)
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Figure 1. Step responses for the systems S1, S2, S3 and their approximations

The second criterion is established by taking the minimization of the integral for square
error between the impulse responses:

ε
(
λ̂
)

=

∫ +∞

0

[g(τ) − ĝ(τ)]2 dτ

by making dε

dλ̂
= 0, one obtains a nonlinear algebraic equation, whose stable solution is

the appropriate value for λ̂:∑i
k=1

∑mk−1
n=0

(−1)n+1ak
n(λk−n

∧
λ)

(λk+
∧
λ)n+2

− η
4

= 0

η =
∑i

k=1

∑mk−1
n=0

(−1)n+2ak
n

λn+1
k

(6)

3. Numerical Examples.

3.1. Three compartmental systems. Consider three compartmental systems S1 :
{A1, B1, C1}, S2 : {A2, B2, C2} and S3 : {A3, B3, C3} where:

A1 = A2 =


−2 0 0 1
1 −2 0 0
0 1 −2 0
0 0 1 −2

 , B1 = CT
1 =


1
1
1
1

 , B2 = CT
2 =


1
0
0
0

 (7)

A3 =


−2 1 0 0 0
0 −2 0 0 0
0 0 −3 1 0
0 0 0 −3 1
0 0 0 0 −3

 , B3 =


0
1
0
0
1

 , C3 =


1
1
1
1
1


T

(8)

Note that in the system S2 the transfer function is DPF, meanwhile the systems S1 and
S3 are slightly different: S2 is excited by all compartments as well as the output is for
all compartments, and in S3, the excitation is made by two compartments with the same
type of output of S1.

For these systems, the spectrum of A is:

S1, S2 : λ1 = −1, m1 = 1; λ2 = −3, m2 = 1, λ3 = −2 + j, m3 = 1,

λ4 = −2 − j, m4 = 1,

S3 : λ1 = −2, m1 = 2; λ2 = −3, m2 = 3

By applying the proposed methodology, one obtains results that are a very good ap-
proximation of the original systems. The obtained parameters are respectively:

S1 : b̂ = 4, λ̂ = −1, S2 : b̂ = 0.986, λ̂ = −1.849, S3 : b̂ = 2.038, λ̂ = −1.655

Figure 1 depicts the step response for the original and reduced systems. For the case
of S1, the obtained result certifies the merit of the methodology, because in this case the
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Figure 2. A tank system for study

system is an exact minimal order model. For the case of S2, where even the complex
eigenvalues have an appreciable modal index, a very good approximation is obtained.
Also in the case of the system S3 a good approximation is obtained.

Table 1 shows the integral of square error for the systems S2 and S3, providing a
graphical comparison between the reduction by balanced truncation and by the proposed
methodology.

Table 1. Comparison between the integral of square error for the proposed
methodology and the balanced realization

Balanced truncation Proposed methodology
S2 0.0412 0.0388
S3 0.0468 0.0302

3.2. Modeling the control of a tank system. Consider the five tanks system with
laminar flow shown in Figure 2. The state-space model for this system is:

dx

dt
=


−k1 − k5 − k6 k2 0 0 k5

k1 −k1 − k2 k2 0 0
0 k2 −k2 − k3 k3 0
0 0 k3 −k3 − k4 0
k5 0 0 k4 −k5

 x(t) +


1
0
0
0
0

u(t) (9)

The state variables in this model are: the volume of material in each tank, and the
parameters ki, for i = 1, ..., 6, are all unitary. This is a compartmental model, and the
spectrum of A is given by: λ1 = −4; λ2 = −3.247; λ3 = −0.198; λ4 = −1.555; λ5 = −1.
The output be the volume of material in the first tank, so the transfer function will be
the DPF. Henceforth, one has C = BT =

[
1 0 0 0 0

]
. Parameters for reduced

first-order model are: b̂ = 0.5239; λ̂ = −0.5239. Figure 3 shows the closed-loop system
response to the reference:

r∗(t) = (1 − e−2t)

[
3 +

(
0, 5sen

t

2
− 0, 2 cos

3t

2

)2
]

by using a simple PI controller tuned for the following requirements: damping ξ = 1√
2

and a zero z = −4, designed based on reduced model. The responses of nominal and
approximated systems are quite similar. Figure 4 depicts the frequency response of the
original and reduced model with feedback, in which one can see a good approximation up
to the vicinity of system cutoff frequency. In the same scenario, a comparison between
the proposed methodology for order reduction and the balanced truncation can be seen
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Figure 3. Output and control effort for the tank system example

Figure 4. Closed-loop frequency response for the tank system example
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Figure 5. Tracking error comparison between balanced truncation and
proposed approach, using PI controller

on Figure 5. The tracking error is smaller when the PI controller is designed based on
the reduced order model obtained with the proposed approach.
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4. Conclusion. Compartmental linear systems have a prominent characteristic: the
Frobenius dominant eigenvalue. Based on this feature and another important proper-
ties, a methodology for order reduction from the original order to first order for this class
of systems was proposed, by minimizing the integral of square error of impulse response
and by enforcing the same DC gain for approximated and original systems. The obtained
results show the effectiveness of methodology for theoretical and real word cases.
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