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ABSTRACT. Soft actuators driven by pneumatic pressure have been shown to have many
potential applications as actuators for mechanical systems in medical, biological, agricul-
ture, welfare fields and so on, for they can ensure high safety for fragile objects from their
low mechanical impedance. In this paper, a miniature pneumatic bending soft actuator
1s reviewed, and a nonlinear model of which is identified using nonlinear model based
on support vector regression (SVR). That is, first, characteristic of miniature pneumatic
bending soft actuator is analyzed, a new output variable is defined based on characteristic
analysis, and a nonlinear input output model is presented. Second, motion characteris-
tics of miniature pneumatic bending soft actuator are studied by experiment. Finally,
based on experimental data, the present nonlinear model of miniature pneumatic bending
soft actuator is identified using data-based SVR model, where a generalized Gaussian
function is used as the kernel function.

Keywords: Miniature pneumatic bending soft actuator, Support vector regression, Non-
linear model, Characteristic analysis and modeling

1. Introduction. Pneumatic rubber actuator holds typical advantages over the more
common electric actuators because of simple structures, high compliance, high-efficiency,
and high power/weight ratio. Flexible Microactuator is bending-type actuator, it belongs
to the category of pneumatic rubber actuators and has been expected to be one of the most
promising new bending type pneumatic actuator for soft mechanisms and soft handling
robots, and shown to have many potential applications as actuators for mechanical sys-
tems in medical, human-support/human-care robots, micromanipulation, and inspection
in narrow space [1-3]. Despite its high expectation and interests, the field of pneumatic
soft actuators is still in a nascent stage, and it requires radically new approaches for sig-
nificant breakthroughs of morphological computation, nonlinear analysis and modeling,
precise position and force control, etc.

A type of typical miniature pneumatic bending soft actuator made from silicone rubber
has been developed by Wakimoto et al. [4,5]. Tt bends like FMA motion, but the structure
is simpler than FMA. It consists of one chamber and one air-supply tube and can generate
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F1GURE 1. Bidirectional motion in different positive and negative pressures

curling motion in two directions under different positive and negative pressures. Figure
1 shows bidirectional motion of a miniature pneumatic bending soft actuator in different
positive and negative pressures. Consider applications of miniature pneumatic bending
soft actuator like a robotic manipulator, which has to move from one specified position to
another, and has to maintain the position constant. As we all know, it needs an accurate
mathematical model. However, because rubber has a highly nonlinear property in this
type miniature pneumatic curling rubber actuator, it is difficult to analyze its accurate
dynamic model, especially including large deformation [6]. As a result, in this paper, a
nonlinear modeling technique based on statistical learning theory is considered to model
the nonlinear property of the miniature pneumatic bending soft actuator.

For nonlinear modeling based on statistical learning theory, there exist several main
kinds of methods: least square (LS) method, Bayesian method, neural network (NN)
method, support vector regression (SVR) method extended by support vector machine
(SVM) method and extended SVR method [7-16]. Least square modeling method and
Bayesian method are the linear regression methods to model the relationship between a
scalar variable y and one or more variables denoted x, such that the models depend linearly
on the unknown parameters to be estimated from the data. That is, least square method
and Bayesian method are mainly used to fit the generalized linear models. Neural network
method can be used as an arbitrary function approximation mechanism by learning from
observed data. However, it is easy to lead to local minima and over-fitting caused by
empirical risk minimization principle. SVR method, which is based on the principle of
structural risk minimization, has been proposed to model for solving global optimization
problems of model output. SVR is a new sparse kernel modeling technique, by which the
identified nonlinear dynamic model can be seen as an approximation of a real phenomenon,
and can capture the underlying systems dynamics. In order to control precise position or
displacement, the relationship between position or displacement of miniature pneumatic
curling rubber actuator and pressure should be obtained. Therefore, in this paper, SVR
based on input output data is used to identify nonlinear dynamic model of this type
miniature pneumatic bending soft actuator. To consider more generalized movement
condition of the crane, a generalized Gaussian function is adopted as the kernel function.
By using the built model, the relationship between position or displacement of miniature
pneumatic curling rubber actuator and pressure can be estimated real time.
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The outline of the paper is given as follows. SVR and problem statement are described
in Section 2. Nonlinear model of miniature pneumatic bending soft actuator based on
characteristic analysis is presented in Section 3. Motion characteristics and SVR-based
modeling for miniature pneumatic bending soft actuator are proposed in Section 4, and
Section 5 is the conclusion.

2. SVR and Problem Statement.

2.1. SVR. SVM, as a novel type of machine learning method, is gaining popularity due
to many attractive features and promising empirical performance. Initially developed for
pattern classification problems, the SVM algorithm was extended by Vapnik for regression
using a e-insensitive loss function [9], which is often referred to as SVR. The goal of SVR
is to identify a function f(x) that has at most € from the actually obtained targets y; for
all training data, and at the same time, is as flat as possible. Recently, the SVR has been
extended to solve nonlinear system modeling. In the following, we briefly introduce soft
margin SVR algorithm for nonlinear system modeling.

Consider regression in the following set of function,

f(x) =w'o(x) +b (1)
where b € R, w € R", ¢(x) is a nonlinear function that maps the input space into a
higher dimension feature space. Given training data (x;,y;), where i = 1,2,... n denotes

the total number of exemplars, x; € R™ are the inputs and y; € R are the target output
data, and the soft margin SVR approach defines an optimization problem as follows

. 1 L
min J = Sw W+C;(§- +&) (2)

subject to equality constraints,
weop(x)+b—y <e+&, i=1,....n
Yyi—w-o(x;) —b<e+¢&, i=1,...,n (3)
& >0, i=1,...,n
where & and & are the slack variables corresponding to the size of the excess deviation for
positive and negative direction, and C' > 0 controls the penalty associated with deviations

larger than e.
Construct the Lagrangian

Ly=J=Y N(e+& +y—w-o(x)— )
=1

> N et —y W) +b) = Y (& + ) (4)
=1 =1

where A\, A7, uf and p; are the Lagrange multipliers.
Calculating the partial derivatives of L, with respect to w, b, &, &, respectively, the

optimal conditions are given by

( %:0%2’;1(&*—)\;):0

ow

OLp, n —

G =0—=w = (- AN

Ly =0 C =\ — i} =0 (5)

OLp _ N — T =
\%—O%C )\z H; 0
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The dual optimization problem is obtained by substituting (5) into (4):

1 n n
glaff G=— B Z Z()‘i_ - )\D()‘j_ - Aj)qb(xz) - (%)
i 7N nz:l J=1 . (6)
+D = A =D e+ A
i=1 i=1

subject to constraints,

Y (A=A =0
AT A€ [0,C]
The vector w is obtained from (5) and (6),

w=2) (A = A)o(x) (8)
i=1
which leads to the final expression for f(xy),
FOo) =Y (7 = ANb(x) - dlx) + b (9)
i=1
Because a special class of functions, called kernels, allows the computation of the dot
product ¢(x;) - ¢(x) in the original space defined by the training patterns. Then, the
resulting soft margin SVR model for dynamic estimation can be described by the following
equation,
N
Fx) = (7 = MK (x, %) +b (10)
k=1
where K(x,xy) is the kernel function, and it can be any symmetric function satisfying
Mercers condition.

2.2. Problem statement. For precision position control, deformation of the miniature
pneumatic curling rubber actuator can be controlled by regulating pressure. However, be-
cause highly nonlinear property of rubber, it is very difficult to predict deformation of the
rubber in miniature pneumatic curling rubber actuator by pressure with high accuracy.
How to obtain and identify a nonlinear model is a key to solve the problem. Therefore,
in this paper, how to define a new nonlinear model of the miniature pneumatic curling
rubber actuator is presented, and SVR based modeling for the miniature pneumatic curl-
ing rubber actuator is proposed, where a generalized Gaussian function is adopted as the
kernel function.

3. Nonlinear Model of Miniature Penumatic Curling Rubber Actuator.

3.1. Characteristic analysis. The structure of the miniature pneumatic curling rubber
actuator is shown in Figure 2. To obtain precise position or force using the miniature
pneumatic bending soft actuator, deformation of the rubber in miniature pneumatic curl-
ing rubber actuator by pressure should be clear. However, it is very difficult to predict
deformation of the rubber in miniature pneumatic curling rubber actuator by pressure
with high accuracy. That is to say, all areas of rubber of miniature pneumatic actuator
cannot maintain the same shape and state perfectly during actual operations like fabri-
cation and driving. Addressing this phenomenon, in this paper, all areas of rubber are
firstly assumed to maintain the same shape and state perfectly during motions.
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(a) (b)

FI1GURE 2. The structure of a miniature pneumatic curling rubber actuator

Ficure 3. Calculation of the position based on bending grade and arc length

According to above assumption (see Figure 3), we define two new variables p € [0, 1]
called bending grade and L called time-varying arc length corresponding to the bended
miniature pneumatic curling rubber actuator, which can be described by

0 L
P =58 T %R (11)
where, 6 € [0, 27| is central angle corresponding to bending arc, R is radius of arc, and
Ly represents the original length of miniature pneumatic curling rubber actuator.
Based on bending grade p and time-varying arc length L, any position (z,y) can be

obtained,

L L
r = —(1—cosf) = —(1 — cos(2mp))
0 2mp (12)

L L
y = Lo— EsinQ =Ly — %sin(%rp)

and the displacement d can also be calculated,

=22 +y? = \/ =5 (L — Lcos(2mp) — 2mpLgsin(27p)) (13)

3.2. Nonlinear model. For precise position or displacement control, the relationship
between position or displacement of miniature pneumatic curling rubber actuator and
pressure should be obtained. According to above analysis, we can find that the precise
position or displacement can be calculated using bending grade p. Therefore, in this
paper, a nonlinear model is proposed.
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where, u is input pressure, f(u) and g(u) are nonlinear functions. If we can identify f(u)
and g(u), the position (z,y) or displacement d can be obtained using the nonlinear model.
In the following section, how to identify the proposed nonlinear model using SVR method
will be discussed.

4. SVR-Based Modeling for Miniature Penumatic Curling Rubber Actuator.

4.1. Experimental system. The experimental system of position or displacement mea-
surement has four major parts (see Figure 4): 1) computer and DSP (TMS320C6713); 2)
high speed camera (CV-M40); 3) regulator of pressure; 4) a miniature pneumatic curling
rubber actuator (Lo = 15.25mm). High speed camera and image input board record im-
age information, which is processed by commercial image processing software. Regulator
of pressure consists of air compressor and vacuum pump, by which positive and negative
pneumatic pressure can be obtained.

4.2. Motion characteristics. For the miniature pneumatic curling rubber actuator
(Lo = 15.25mm), the position (z,y) is measured by experimental system. The exper-
imental position in different positive pressures and different negative pressures are shown
in Figure 5(a) and Figure 5(b), respectively. From Figures 5(a) and 5(b), we can find
that the miniature pneumatic curling rubber actuator not only can bend in different pres-
sures, but also the length of which can elongate in positive pressures or shrink in negative
pressures.
According to Equations (11) and (12), the following relationship can be obtained,

Lo —
arccos
\/.I'2 LQ -

p= - (16)

2 2 Lo —
(2 + (Lo — y)*) arccos (\/12 LO = >

I —

- (1)

Based on the measured position (z,y), the bending grade p and arc length L can be
calculated in different positive pressures and negative pressures, and are shown in Figures
6(a)-7(b), respectively. From Figures 6(a)-7(b), we can find the bending grade p and

<):| e (O Compuulr&DSP

Actuator

Camera
Regulator of pressure

F1GURE 4. Experimental system schematic illustration
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['| —@— Experimentlal position

Assumed trajectory (L:LO)
Assumed trajectory (L:LO)

¢ || —@— Experimental position

FIGURE 5. (a) The measured position (z,y) in different positive pressures;
(b) the measured position (z,y) in different negative pressures
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FIGURE 6. (a) The calculated bending grade p in different positive pres-
sures; (b) the calculated bending grade p in different negative pressures

arc length L can be assumed to nonlinear functions of input pressures u. We also can
calculate maximum elongation ratio,

AL 18.25 — 15.25
T x 100% 1595 x 100% 9.67% (18)
and maximum shrink ratio
AL 15.25 — 9.25
I, x 100% 1595 x 100% = 39.34% (19)

It is very obvious that the capability of shrink in different negative pressures is more
strong than the capability of elongation in different positive pressures.

4.3. SVM-based modeling. An appropriate kernel function is a key issue in using SVR,
there are many kernel functions used in SVR, such as polynomial function, Gaussian
function and hyperbolic tangent [17-19]. The Gaussian function is used extensively in
numerous applications in engineering, physics, and many other fields, where real-valued
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FIGURE 7. (a) The calculated arc length L in different positive pressures;
(b) the calculated arc length L in different negative pressures

random variables often tend to cluster around a single mean value. However, during the
movement of the miniature pneumatic curling rubber actuator, the Gaussian distribution
may be either inadequate or inappropriate such that a generalized Gaussian distribution
is adopted as the kernel function, which includes all normal and Laplace distributions, and
all continuous uniform distributions on bounded intervals of the real line. The probability
density function (pdf) of a generalized Gaussian distribution with zero mean, variance o>
and shape parameter ~ is given by

K(dio) = 200 o |- (200 (20)

_ TE/M)

(21)

where I'(+) is Gamma function [20,21]. As we notice above, when v = 1, the K distribution
corresponds to a Laplacian or double exponential distribution, when v = 2 corresponds
to a Gaussian distribution, whereas in the limiting cases when v — 400 the pdf in
Equation (20) converges to a uniform distribution in (—v/30,v/30), and when v — 0+
the distribution becomes a degenerate one in z; = 0, shown in Figure 8.

The K distribution is symmetric, hence the odd central moments are zero, i.e., E(Z;
=0,m =1,2,3,.... The even central moments can be obtained from the absolute central
moments, which are given by

vom _ [T/ " E(2m+1)/7)
s = {5ty )
In particular, the variance of #;(m = 1) is

BE(&;)? = o? (23)

)Qm—l

In order to use the generalized Gaussian function, parameters v and o need to be known.
Variance o can be calculated by (23), but the calculation of the shape parameter ~ is
difficult. As a result, we will be focused on estimating the shape parameter using the
method of moments in the following part. In order to estimate the shape parameter, the
fourth-order or higher even moment needs to be used. The method of the fourth-order
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F1GURE 8. The pdf of generalized Gaussian distribution

even moments estimation of v is given by the value satisfying the following equation,

LG/EA/)

60) = =S (24)
where ¢(7) is defined as generalized Gaussian function ratio, which can be calculated as
follows,

= \4
°0) = Em)e g((xfl))%?
where E(7;)* = 02. Then, by solving the following equations, we can obtain the estima-
tions ¢() and o,

(25)

B = 3 Y@ B = 5> @) (26)

where N, is the current sample number. Then, a cyclic numerical method can be used to
calculate the shape parameter in (24).

In summary, the variance and shape parameter estimation algorithm is implemented

by following steps:

1) Sampling data X = 7;,i =1,2,3,....

2) Calculate EX* and EX? (X =2;,i=1,2,3,...).
3) Calculate o and ¢(7) by (23) and (25).

4) Calculate the shape parameter v by (24).

In the present nonlinear black-box dynamical system, the input wu(t) represents air
pressure, and the output y(t) is bending grade p or arc length L of miniature pneumatic
curling rubber actuator, which can determine the actuator position or displacement. To
set up this nonlinear model using SVR technique, we use the following repressor,

¢(x) = [y(t — 1), y(t — 2),u(t), u(t — 1) (27)
That is, the dimension of input vector is 4. In training, we use 6 x 512 data pairs, where
penalizing constant v = 100, error-accuracy parameter ¢ = 0.1. The estimated results
of the bending grade p and arc length L in positive pressures and negative pressures are
shown in Figures 9(a)-10(b), respectively. In the real application, the difference between
the SVM-based estimation value and real value of the relationship between position or
displacement of miniature pneumatic curling rubber actuator and pressure will lead some
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FIGURE 10. (a) The identified arc length L in different positive pressures;
(b) the identified arc length L in different negative pressures

uncertainties. Also, there exist some unmodelled uncertainties in the position or displace-
ment control system. In the future, operator-based robust right coprime factorization
approach will be further used to deal with this issue.

5. Conclusion. In this paper, for a new miniature pneumatic bending soft actuator,
based on characteristic analysis of which a new nonlinear model is presented. Motion
characteristics are studied using experimental results, and the nonlinear model is identi-
fied based on SVR method, where a generalized Gaussian function is used as the kernel
function.
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