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Abstract. Process data measurements are important for process monitoring, control
and optimization. However, process data may be deteriorated by gross errors in measure-
ments. Therefore, it is significant to detect and estimate gross errors with data reconcil-
iation. Meanwhile, in any modern petrochemical plant, the plant-wide mass data derived
from process data rendering the real conditions of manufacturing are the key to the oper-
ation managements such as production planning, production scheduling and performance
analysis. In this paper, an extended support vector regression approach for data reconcil-
iation and gross error detection is proposed and applied to deal with the plant-wide mass
balance problem. The proposed approach could simultaneously detect and estimate gross
errors like measurement bias and process leaks. Then the proposed approach is applied to
address the plant-wide mass balance problem with measurement bias and mass movement
information lost, because of its superior characteristic for the issue. Both simulation and
application results in this paper demonstrate that the proposed approach is accurate and
effective to address plant-wide mass balance.
Keywords: Data reconciliation, Support vector regression, Parameter estimation, Gross
error detection

1. Introduction. The function of plant-wide mass balance in a refinery is to help pro-
duction manager to figure out reason of production loss, to calculate accurate product
amounts inlet and outlet units, and to provide necessary supports to production perfor-
mance analysis, production plan optimization and production scheduling optimization.
However, it is hard to obtain plant-wide mass balance directly from raw process data,
because process data are inevitably corrupted by errors during measurement and process-
ing, as makes the process data deviated from their true values and do not obey the mass
balance and other constraints.

Process data are usually corrupted by two types of errors – random errors and gross
errors. Random errors cannot be completely eliminated and always present in any mea-
surement. They cannot be predicted with certainty. The only possible way to characterize
these random errors is to use probability distributions. On the other hand, gross errors
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are caused by nonrandom events and can be divided into two categories, namely measure-
ment related such as mal-functioning sensors and process related such as process leaks
that can be seen as mass movement information lost in plant-wide mass balance.
Since errors in process data could lead to significant deterioration in plant-wide mass

balance, it is very important to minimize the effects of both random and gross errors.
Data reconciliation and gross error detection is a technique to improve the accuracy

of process data by reducing the effect of random and gross errors in measurements and
process model. Many methods have been developed to form data reconciliation and gross
error detection. The most widely used methods for data reconciliation and gross error
detection are the global test (GT) [1], the measurement test (MT) [2], the nodal test (NT)
[1], the generalized likelihood ratio (GLR) [3], and the principal component test (PCT)
[4]. Several strategies were developed to identify multiple gross errors, such as serial elimi-
nation [5], serial compensation [3], simultaneous or collective compensation [6]. Some new
methods have been applied to real industrial processes, which range from statistical test
methods to robust statistics methods [7,8], from sequential or combinatorial methods to
simultaneous data reconciliation and gross error detection methods. For dynamic systems,
the data reconciliation can be considered as a state estimation technique, and some ap-
proaches have been proposed to address the issue in dynamic systems [9-11]. Meanwhile,
process data may be collected within different sampling times, consequently estimators
for multi-rate sampled systems recently invoked a research interest [12]. However, few
methods can deal with process related gross errors such as leaks [13,14].
As mentioned above, plant-wide mass balance results in a refinery are derived from

the raw process data and production movement network, which should obey the materi-
als balance constraints of the production movement network through abstracting actual
products into some virtual products. As a result, the plant-wide mass balance can be
addressed as a data reconciliation problem. Therefore, several strategies have also been
applied to address plant-wide mass balance problem. Zhang et al. have discussed the
application of data reconciliation and measurement related gross error removal to mass
balance in a refinery [15]. Wang et al. have proposed a two-stepped mass balance strat-
egy based on data reconciliation and gross error detection [16]. Wang et al. introduced
Bayesian network to simplify mass balance model so as to enhance the feasibility of data
reconciliation and gross error detection used for achieving plant-wide mass balance in a
refinery [17]. At the same time, there are some sophisticated commercial pieces of soft-
ware for practical plant-wide mass balance, such as the Aspen Operations Reconciliation
and Accounting and the Honeywell Production Balance. However, in practice, sometimes
production movement information would get lost by non-systematic errors. In this case,
the production movement information can be considered as a model related error like pro-
cess leaks. As mentioned above, few researches and applications have focused on process
leaks, so mass movement information lost for plant-wide mass balance in refineries has
not been addressed yet.
Recently, a support vector (SV) regression approach for data reconciliation and gross

error or outlier detection has been proposed [18], which has also been applied to achieve
plant-wide mass balance with only measurement biases [19]. The SV regression approach
is firmly grounded in the framework of statistical learning theory, and minimizes regular
risk with VC dimension instead of empirical risk. In the SV regression based data recon-
ciliation, measurement bias is considered to be related to the complex of the model or VC
dimension so that it is very efficient for detecting measurement related gross errors and
outliers. Furthermore, as the SV regression approach takes the linear objective function
with a variable to adjust sparseness of the optimization problem, it is suitable for large-
scale problem such as plant-wide mass balance which is usually derived from a linear
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material balance network. However, the SV regression approach mentioned above still
cannot address process related gross errors like leaks in processes. Therefore, it cannot
deal with mass movement information lost when applied in plant-wide mass balance.

In this paper, the SV regression based data reconciliation approach is extended, where
process model related gross errors like process leaks are also enclosed into the VC dimen-
sion. The main contribution of this paper is that, by minimizing regular risk with the
extended VC dimension, the extended SV regression based data reconciliation approach
proposed is able to achieve not only data reconciliation but also joint measurement bias
and process leak detection and estimation simultaneously, and it has been applied in
plant-wide mass balance in practice, as draw little attention in previous researches but
is a significant aspect of data reconciliation in practice. Due to applying the proposed
approach on plant-wide mass balance in refinery, both measurement bias and production
movement information lost could be detected and estimated, which is the key feature of
the approach for application.

A simulation study is provided to demonstrate the validity and accuracy of the approach
proposed to simultaneously detect and estimate measurement bias and process leaks.
Moreover, an application of the proposed approach to a practice case is introduced to
illustrate that the extended SV based approach is effective and accurate to fulfill plant-
wide mass balance with measurement bias and production movement information missing.

2. Support Vector Regression Approach for Data Reconciliation and Gross
Error Detection.

2.1. Simultaneous data reconciliation and measurement related gross errors
detection based on SV regression. The measurement model without gross errors can
be written as,

xM = x+ ε (1)

Ax+Bc = 0 (2)

where x is the vector of true values of the variables, xM is the vector of measurements, ε
is the vector of random errors which are assumed to follow a normal distribution N(0,σ),
and Ax+Bc = 0 is the process model constraint such as mass balance constraints, A is
the incidence matrix of variables, c is the constant vector of the process model, B is the
incidence matrix of the constants.

If gross errors are present in process measurements, the measurement bias model for
gross errors of unknown magnitude µ is given by

y = x+ ε+ [b1µ1, b2µ2, · · ·, biµi, · · ·, bnµn]
T (3)

where n is the number of measured variables, b is an indicator, which indicates the location
of biases in the model, and it can be defined as

bi =

{
0 if no gross error presents in the ith measurement
1 if gross error presents in the ith measurement

(4)

Then a regression problem with a larger degree of freedom is formulated, and the SV
regression approach for data reconciliation and measurement related gross error detection
aims to estimate the function

f(x) = x+ ε+ [b1µ1, b2µ2, · · ·, biµi, · · ·, bnµn]
T

bi =

{
0 if no gross error presents in the ith measurement
1 if gross error presents in the ith measurement

(5)
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based on the measurements xM and process constraints

Ax+Bc = 0 (6)

As the function of (3) is linear, according to the theory of statistical learning [20], the
VC dimension of (5) is the number of free parameters, which defines the complexity of
the measurement bias model and can be written as

n∑
i=1

bi (7)

The SV regression approach for data reconciliation and measurement related gross error
detection takes the form as

min
n∑

i=1

bi + C
n∑

i=1

(
υε+

(ξi + ξ∗i )

σi

)

s.t.

Ax+Bc = 0
xi + µi − xM

i ≤ εi + ξi
xM
i − (xi + µi) ≤ εi + ξ∗i

µi − Uibi ≤ 0
−µi − Uibi ≤ 0
0 ≤ xi ≤ Xi

0 ≤ υ ≤ 1

ξ
(∗)
i ≥ 0, ε ≥ 0
bi ∈ binary

(8)

where n is the number of measured variables, xi is the reconciled value of the ith mea-
surement, xM

i is the ith measurement of the ith variable, σi is the standard deviation of
the ith measurement, µi is the magnitude of measurement related gross error in the ith
variable, Ui is the upper bound on gross error in the ith variable, εi is the error tolerant for
the ith measurement variable, ξ(∗) are slack variables which are penalized in the objective
function, C and υ are coefficients which are chosen a priori, and bi is a binary variable
denoting existence of bias in the ith measurement.
From the SV regression form above, it can be seen that the approach does not consider

process related gross errors. Therefore, when there is any process related gross error such
as mass movement information missing in plant-wide mass balance, the approach would
provide deviated balanced result. In order to overcome this demerit, the original SV
regression approach should be extended to simultaneously address measurement related
and process related gross errors.

2.2. Extended SV regression approach to simultaneously estimate measure-
ment related and process related gross errors. According to (1) and (2), if there
are measurement related gross errors and process related gross errors at the same time,
the corresponding model should be

xM= x+ ε+ [b1µ1, b2µ2, · · · , biµi, · · · , bnµn]
T

Ax+Bc = [l1µL1, l2µL2, · · · , ljµLj, · · · , lmµLm]
T (9)

where n is the number of measured variables, m is the number of mass balance constraints,
µi is the magnitude of measurement related gross error in the ith variable, µLj is the
magnitude of process related gross error in the jth mass balance constraint. b and l are
indicators, which indicate the location of biases in the measurements and mass movement
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information missing, respectively. They can be defined as

bi =

{
0 if no gross error presents in the ith measurement
1 if a gross error presents in the ith measurement

lj =


0

if no mass movement information missing
presents in the jth mass balance constraint

1
if mass movement information missing
presents in the jth mass balance constraint

(10)

Then the problem is reformed to estimate the function

f(x) = x+ ε+ [b1µ1, b2µ2, · · ·, biµi, · · ·, bnµn]
T

bi =

{
0 if no gross error presents in the ith measurement
1 if gross error presents in the ith measurement

(11)

based on measurement xM and constraints

Ax+Bc = [l1µL1, l2µL2, · · ·, ljµLj, · · ·, lmµLm]
T (12)

According to (7), the VC dimension of the extended form, which considers both measure-
ment related and process related gross errors, can be written as

n∑
i=1

bi +
m∑
j=1

lj (13)

Furthermore, according to (8), the extended SV regression approach for data reconciliation
to simultaneously address measurement related gross errors and process related gross
errors takes the form as

min

(
n∑

i=1

bi +
m∑
j=1

lj

)
+ C

n∑
i=1

(
υε+

(ξi + ξ∗i )

σi

)

s.t.

Ax+Bc = LµL

DµL = 0
xi + µi − xM

i ≤ εi + ξi
xM
i − (xi + µi) ≤ εi + ξ∗i

−Uibi ≤ µi ≤ Uibi
−U ′

Ljlj ≤ µLj ≤ ULjlj
0 ≤ xi ≤ Xi

0 < υ ≤ 1

ξ
(∗)
i ≥ 0, ε ≥ 0
bi, lj ∈ {0, 1}

(14)

where L is a m×m matrix whose every diagonal element is lj and non-diagonal elements
are zeros, µL is the vector of process related gross errors, DµL = 0 are the mass movement
constraints which provide potential mass movement information, and D is the incidence
matrix of µL. U

′
Lj and ULj are the low and up bound of µLj, respectively.

As we know, for plant-wide mass balance problem, the mass balance constraints Ax+
Bc = 0 are constant with mass movement information. Therefore, if there is any mass
movement information missing to establish the mass balance constraints for the data
reconciliation problem, the constraints do not represent the true production balance and
biased production balance results would be obtained. To overcome this problem, the
missing mass movement information should be modeled, as is done in (9), where µLj

represents product quantity of the missing mass movement and li indicates whether a mass
movement missing happens in the ith constraint. To guarantee the estimates of missing
mass movement be accurate and reasonable, the potential mass balance constraints about
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the missing mass movement, DµL = 0, are incorporated into the data reconciliation
problem.
From (14) it can be seen that the proposed extended form of SV regression explicitly

considers both measurement related gross errors and missing mass movement information,
so that the extended approach can simultaneously estimate measurement biases and mass
movement missing information for plant-wide mass balance.

3. Case Study.

3.1. A simulation case. The recycle system used for simulation study here consists of
four units and seven streams, which is shown in Figure 1 and has also been studied with
other approaches [5,13].

Figure 1. Flowsheet of recycling system

In this example the true flow rate values are [5, 15, 15, 5, 10, 5, 5]. The flow rate standard
deviations (SD) are taken as 2.5% of the true flow rates. Measurement values for each
simulation trial are taken as the average of ten random generated values. Each result is
based on 100 simulation trials where the random errors are changed and the magnitudes
of biases and leaks are fixed. The average number of type I errors (AVTI), the overall
power (OP) and perfect identification (OPF) [13] are used as the criteria for judging the
performance of the proposed strategy. Those are defined as

AVTI =
# of unbiased variables wrongly identified

# of simulation trials
(15)

OP =
# of biased variables correctly identified

# biased variables simulated
(16)

OPF =
# of trials with perfect identification

# of simulation trials
(17)

Table 1 and Table 2 indicate the performance of the extended SV regression based data
reconciliation approach when both bias and leak are present. Fixed bias magnitudes of
7 standard deviations and 4 standard deviations were considered for the corresponding
flow rates and leaks. As we expended, from Table 1, it can be seen that the extended
SV regression approach achieved perfect joint identification of biases and leaks almost
in every case. Table 2 shows that the result of the extended SV regression approach
exhibits a smaller SD, because of accurate biases and leaks detection results. As a result,
the extended SV regression based data reconciliation approach could achieve effective
detection of both measurement bias and process leak, meanwhile, it can produce accurate
estimates of biases and leaks.
Average solution times for the extended SV regression based data reconciliation and

gross error detection approach are shown in Table 3. From the table, we can see that,
as both of the objective function and constraints of the SV regression based approach
are linear, computational load is reduced much more, as makes our approach efficient for
application on linear systems even for online application.
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Table 1. Performance results when two biases are introduced and leaks are presenta

Leak & Gross error AVTI OP OPF
L2, B4 0.00 1.00 1.00
L2, B5 0.00 1.00 0.99
L2, B6 0.00 1.00 1.00
L2, B7 0.00 1.00 1.00
L3, B2 0.00 1.00 0.99
L3, B6 0.00 1.00 1.00

aLn means a leak in node n and Bn means a bias in stream n.

Table 2. Estimation results when two biases are introduced and leaks are presenta

Leak & Gross error Size Estimates SD
L2, B4 1.800 1.801 0.028

0.625 0.629 0.015
L2, B5 1.800 1.784 0.018

1.250 1.252 0.030
L2, B6 1.800 1.801 0.016

0.625 0.626 0.026
L2, B7 1.800 1.800 0.025

0.625 0.623 0.028
L3, B2 1.250 1.252 0.015

1.875 1.869 0.036
L3, B6 1.250 1.251 0.015

0.625 0.626 0.025
aLn means a leak in node n and Bn means a bias in stream n.

Table 3. Average solution times (s)

Leak & Gross error
L2, B4 0.06
L2, B5 0.05
L2, B6 0.07
L2, B7 0.07
L3, B2 0.07
L3, B6 0.07
Average 0.065

3.2. A plant-wide mass balance application case. Petroleum chemistry industry is
a typical process industry, the petrochemical productions flow from one unit to others,
as constructs a complex mass balance network. In this section, a part of a practical
petrochemical process in a refinery is introduced to test plant-wide mass balance using
the extended SV regression approach proposed. The practical petrochemical process is
abstracted into a mass flow measurement network by merging specified pipes, units and
nodes. The simplified mass flow measurement network includes 4 processing units (R1 to
R4), 9 in-out nodes (IN1 to IN3 and S1 to S6), 12 tanks (T0 to T11) and 28 mass flows
(F1 to F28). The plant-wide mass balance network is shown in Figure 2 [11], and the
corresponding model data are listed in Table 4.
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Figure 2. Plant-wide mass balance network

Table 4. Plant-wide mass balance information (ton)

Variable Measurement SD Value Constant Measurement
F1 10307.00 σ1 20.64 In1 12080
F2 86.84 σ2 1.29 In2 9600
F3 398.80 σ3 0.79 In3 500
F4 1584.20a σ4 1.55 Out1 100
F5 4034.50 σ5 20.23 Out2 200
F6 4970.20 σ6 22.70 Out3 1150
F7 59.56 σ7 0.60 Out4 1400
F8 9919.10 σ8 19.86 Out5 450
F9 94.90 σ9 1.42 Out6 300
F10 2045.90 σ10 20.58 T1 −1430
F11 2641.70 σ11 13.15 T2 −1650
F12 5075.00 σ12 25.43 T3 −703
F13 59.54 σ13 0.60 T4 −573
F14 6254.90 σ14 12.54 T5 −1131
F15 292.09 σ15 4.43 T6 −5736
F16 5022.40a σ16 11.83 T7 −230
F17 60.17 σ17 0.60 T8 −1915
F18 4295.40 σ18 8.62 T9 −1720
F19 209.00 σ19 2.10 T10 −406
F20 2082.60 σ20 20.80 T11 −1780
F21 1130.30 σ21 2.26 T12 −410
F22 858.14 σ22 4.30
F23 29.90 σ23 0.30
F24 799.53 σ24 4.01
F25 3632.40b σ25 18.20
F26 270.34 σ26 1.35
F27 4006.50 σ27 20.00
F28 717.70 σ28 3.62

aMeasurement related gross error; bMass movement information lost.
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According to the practical situation in a refinery, the productions in tanks and in-let,
out-let refineries are very important for operation management. Therefore, the measure-
ments of tank volumes and in-let or out-let flows are quite accurate and usually without
gross errors. Consequently, in this case study, the tank volume changes and in-let and
out-let flows are considered as constants in the plant-wide mass balance model, and the
variables to be reconciled are 28 mass flows.

The corresponding matrixes of plant-wide mass balance model shown in Figure 2 are
as the followings,

xM =
[
FM
1 , FM

2 , · · ·, FM
28

]T
(18)

c = [In1, · · ·, In3, Out1, · · ·, Out6, T1, · · ·, T12]
T (19)

σ = [σ1, σ2, · · ·, σ28]
T (20)

In order to investigate the effects of the SV regression approach and its extended ap-
proach to fulfill plant-wide mass balance, especially when measurement related gross errors
and process related gross errors are present, two measurement related gross errors and
one missing mass movement are introduced in the following two study cases.

Table 5. Plant-wide mass balance with only measurement biases

Variable Measurement True Value SV Extended SV
F1 10307.00 10320.00 10324.66 10324.66
F2 86.84 86.00 86.84 86.84
F3 398.80 395.00 398.80 398.80
F4 1584.20a 773.00 773.00 773.00
F5 4034.50 4046.00 4036.26 4036.26
F6 4970.20 4960.00 4970.20 4970.20
F7 59.56 60.00 59.56 59.56
F8 9919.10 9930.00 9925.34 9925.34
F9 94.90 95.00 94.90 94.90
F10 2045.90 2058.00 2054.20 2054.20
F11 2641.70 2631.00 2641.70 2641.70
F12 5075 5086.00 5075.00 5075.00
F13 59.54 60.00 59.54 59.54
F14 6254.90 6270.00 6271.26 6271.26
F15 292.09 295.00 296.09 296.09
F16 5022.40a 5915.00 5915.00 5915.00
F17 60.17 60.00 60.17 60.17
F18 4295.40 4310.00 4309.20 4309.20
F19 209.00 210.00 209.00 209.00
F20 2082.6 2080.00 2080.00 2080.00
F21 1130.3 1130.00 1130.30 1130.30
F22 858.14 860.00 860.00 860.00
F23 29.9 30.00 29.90 29.90
F24 799.53 803.00 803.00 803.00
F25 3632.40 3639.00 3629.56 3629.56
F26 270.34 270.00 270.00 270.00
F27 4006.50 4000.00 4000.00 4000.00
F28 717.70 724.00 724.30 724.30

aMeasurement related gross error.
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In the first study case, only two measurement related gross errors are used to investigate
the ability of the proposed approach to detect and estimate measurement related gross
errors. The measurements F4 and F16 are contaminated by gross errors, respectively. The
simulation result is shown in Table 5 taking the original SV regression approach as the
comparison.
It can be seen from Table 5 that, when there are only measurement related gross errors in

the plant-wide mass balance, both the original SV regression approach and the extended
SV regression approach proposed can detect and estimate the gross errors accurately.
Although the extended SV regression approach simultaneously considers process related
gross errors and measurement related gross errors, it has the same effect to detect and
estimate measurement related gross errors as the original SV regression approach, when
there are only measurement related gross errors in the mass balance model.
In the second case, one more missing mass movement is introduced besides the two

measurement related gross errors. The missing mass movement is the mass flow F25

from Tank4 to the junction, which is shown in Figure 2 by a dashed line. The original

Table 6. Plant-wide mass balance with measurement biases and produc-
tion movement information missing

Variable Measurement True Value SV Extended SV
F1 10307.00 10320.00 6695.10 10324.66
F2 86.84 86.00 86.84 86.84
F3 398.8 395.00 398.80 398.80
F4 1584.20a 773.00 773.00 773.00
F5 4034.50 4046.00 406.70 4036.26
F6 4970.20 4960.00 4970.20 4970.20
F7 59.56 60.00 59.56 59.56
F8 9919.10 9930.00 13554.90 9925.34
F9 94.90 95.00 94.90 94.90
F10 2045.90 2058.00 2054.20 2054.20
F11 2641.70 2631.00 6271.26 2641.70
F12 5075.00 5086.00 5075.00 5075.00
F13 59.54 60.00 59.54 59.54
F14 6254.90 6270.00 6271.26 6271.26
F15 292.09 295.00 296.09 296.09
F16 5022.40a 5915.00 5915.00 5915.00
F17 60.17 60.00 60.17 60.17
F18 4295.40 4310.00 4309.20 4309.20
F19 209.00 210.00 209.00 209.00
F20 2082.60 2080.00 2080.00 2080.00
F21 1130.30 1130.00 1130.30 1130.30
F22 858.14 860.00 860.00 860.00
F23 29.90 30.00 29.90 29.90
F24 799.53 803.00 803.00 803.00
F25 3632.40b 3639.00 – 3629.56
F26 270.34 270.00 270.00 270.00
F27 4006.50 4000.00 4000.00 4000.00
F28 717.70 724.00 724.30 724.30

aMeasurement related gross error; bMass movement information lost.
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SV regression approach is again taken as the comparison, and the simulation results are
demonstrated in Table 6.

From the results shown in Table 6, it can be seen that when there are both measurement
related gross errors and mass movement information missing in plant-wide mass balance,
though the original SV regression approach can detect and estimate the measurement bi-
ases, it cannot address the missing mass movement. Therefore, the original SV regression
approach provides biased estimations on mass flows F1, F5, F8 and F11. On the other
hand, the extended SV regression approach can detect and estimate both the measure-
ment biases and the missing mass movement. As a result, more accurate plant-wide mass
balance is obtained. This is because the extended SV regression approach considers pro-
cess related gross errors in the data reconciliation and gross error detection model, and
it can simultaneously address measurement related gross errors and process related gross
errors. For plant-wide mass balance, the extended SV regression can detect and estimate
measurement biases and missing mass movement information accurately.

4. Conclusions. Plant-wide mass balance is very important for production planning,
production scheduling and production performance analysis. Because the raw measure-
ments used by plant-wide mass balance are usually deteriorated by random and gross
errors, data reconciliation and gross error detection techniques have been widely applied
on plant-wide mass balance. However, few data reconciliation and gross error detection
approach can address process related gross errors, so that few focuses are drawn onto
addressing the mass movement information missing in plant-wide mass balance.

In the paper, an extended support vector regression approach is proposed, which consid-
ers both measurement related gross errors and process related gross errors simultaneously.
Therefore, the proposed approach is suitable for plant-wide mass balance especially when
mass movement information missing presents. In the case study, a recycle system is first
used to demonstrate the validity and accuracy of the approach proposed to simultaneously
detect and estimate measurement bias and process leaks. Then, a plant-wide mass bal-
ance study case is introduced to demonstrate that the proposed approach is accurate and
effective for detecting and estimating gross errors and production movement information
missing.
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