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Abstract. In this paper, the design of distributed broadband beamforming system is
studied. In the configuration, we assume that each microphone is equipped with wire-
less communications capability. Once their mutual distance information is collected,
localization techniques can be used to estimate the microphone locations. A broadband
beamformer can then be designed such that the error between the actual response and the
desired response is minimized. However, due to variations in the estimated microphone
locations, robust design with uncertainties must be considered. This problem is formu-
lated as a minimax optimization problem, which is then transformed into a semi-definite
programming problem so that interior point algorithms can be applied. We illustrate the
proposed method by several designs and show that the algorithm is robust and efficient.
Keywords: Distributed beamforming, Sensor network, Semi-definite programming

1. Introduction. Current advancement of wireless communications has made its de-
ployment in wider perspective. This facilitates the development of distributed systems,
such as a microphone network, which overcomes some of the technical problems from a
wired system by providing greater freedom of movements for the speaker and avoidance
of cabling problems common with wired microphones caused by constant moving and
stressing the cables. There are numerous applications that can be built on a microphone
network. Speech is the preferred natural interface for controlling equipment in households
or factories. However, signal degradation poses a serious problem in many environments,
which affects the accuracy of the speech recognition and voice control system. As a result,
beamforming techniques are required to enhance the received signals.

Broadband beamformers [1, 2, 3, 4] have been studied extensively due to their wide
applications in many areas such as radar, sonar, wireless communications, biomedicine,
speech and acoustics. When microphone arrays are deployed, many beamforming algo-
rithms exist (for example, [5, 6, 7]) to reduce the level of localized and ambient noise
signals from the desired direction via spatial filtering, which plays an important role in
noise reduction and speech enhancement. For many applications, such as video confer-
ence and mobile telephony, the speaker does not stand very far from the array. There are
various algorithms dedicated for the design of this kind of beamformer in the literature.
In [8], the near-field-far-field reciprocity relationship is derived and applied to designing
near-field beamformers via far-field design techniques. An interesting approach is pre-
sented in [9]. It makes use of a signal propagation vector representing an ideal point
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source of acoustic radiation. When the desired frequency response is known, multidimen-
sional filter design techniques can be applied. In [10], the minimax problem is formulated
as a quadratic programming problem and the SQP method is applied. A penalty func-
tion method is developed in [11] to formulate the problem as an unconstrained nonlinear
optimization problem. This method is modified in [12] by replacing the penalty function
with a root-catching method. In [13], the l1 norm measure and the real rotation theorem
are applied to formulating the problem as a semi-infinite linear programming problem.
For many applications, the design problem can be formulated as a minimax optimization

problem. Similar to many filter design problems [14, 15, 16], large-scale linear program-
ming techniques (for example, [17, 18]) are often used. When the problem size increases
as a result of an increase in the number of filters as well as the filter lengths, or a refine-
ment in the discretization of the frequency-space domain, the number of constraints will
be very large and these problems will be very expensive to solve if the methods above are
applied. Hence, an efficient algorithm is necessary. Semi-definite programming (SDP) is
a generalization of linear programming (LP) where the decision variables are arranged in
a symmetric matrix instead of a vector, and the non-negative orthant is replaced by the
cone of positive semi-definite matrices [19, 20, 21]. Since interior point algorithms can be
employed, semi-definite programming has polynomial time computational complexity and
can be solved efficiently. It has also been successfully applied to many signal processing
problems, such as frequency response masking filter design [22], antenna design [23], filter
bank design [24] and sensor network [25], achieving very good performance. Hence, in
this paper, we will apply the SDP method to solving the broadband beamformer design
problem.
One of the assumptions in applying the aforementioned design techniques is that the

locations of the microphones are required to be measured exactly. In practice, the mi-
crophones could be scattered around and could even be moving around occasionally. If
very precise measurements are needed every time, this will make the design process very
tedious and repetitive. If wireless microphones are deployed instead, we just need to
make use of the accurate positions of a few anchor nodes in the network together with
the pairwise distance measurements between any two nodes to estimate the locations of
the wireless microphones. Since the distance measurements always contain noise and the
effect of the measurement uncertainty usually depends on the geometrical relationship
between sensors which is not known a priori, optimization techniques are often deployed
to find the best estimates. Here, we also adopt the SDP method for solving the prob-
lem [26, 27]. The basic idea behind the technique is to convert the nonconvex quadratic
distance constraints into linear constraints by introducing a relaxation to remove the qua-
dratic term in the formulation. The performance of this technique is highly satisfactory
compared with other techniques [28, 29]. Very few anchor nodes are required to accurately
estimate the position of all the unknown nodes in a network. Also the estimation errors
are minimal even when the anchor nodes are placed arbitrarily within the network.
Owing to perturbations in the estimated sensor locations, a robust formulation is re-

quired to allow for a certain amount of errors. In fact, the designed beamformers turn out
to be very sensitive to errors in the microphone locations. In this paper, the sensor net-
work technology will be employed and incorporated into broadband beamforming design.
In particular, an appropriate robust formulation is proposed to give more flexibility in the
designs. We will demonstrate by examples that the proposed robust approach is essential
to regain the accuracy in the designs if microphone locations are indeed erroneous.
The rest of the paper is organized as follows. In Section 2, we formulate the wireless

beamformer design problem and the localization problem of microphones. Then, we
introduce its corresponding robust problem. In Section 3, we transform all the problems
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into equivalent semi-definite programming problems. For illustration, several examples
are solved in Section 4. Conclusions are presented in Section 5.

2. Formulation. The structure of a wireless near-field broadband beamformer can be
found in Figure 1, where the positions of microphones can be arbitrary and the sound
signal is received by the microphone array and processed by the FIR filters behind.

FIR Filter

+Source
Output

FIR Filter

FIR Filter

FIR Filter

FIR Filter

Figure 1. The structure of a wireless near-field beamformer

We assume that there are N elements in the array. Using a simple spherical model, the
transfer function from the source point r to the i-th element of the broadband beamformer
is given by

Ai(r, f) =
1

‖r − ri‖
e−j2πf‖r−ri‖/c, (2.1)

where r is the position vector of the source signal, ri is the position vector of the i-th
microphone, f is the frequency, and c is the sound speed. Then, the array response vector
is therefore given by

a(r, f) = (A1(r, f), . . . , AN(r, f))
ᵀ. (2.2)

Let each microphone signal be sampled at a rate of fs, and suppose that each FIR filter
has L taps. Denote the filter response vector by

d0(f) =
(
1, e−j2πf/fs , . . . , e−j2πf(L−1)/fs

)ᵀ
(2.3)

and the filter coefficients by

w = (wᵀ
1, . . . ,w

ᵀ
N)

ᵀ, (2.4a)

where

wi = (wi(0), . . . , wi(L− 1))ᵀ, i = 1, . . . , N, (2.4b)

then the actual response of the broadband beamformer is given by

G(r, f) = wᵀd(r, f) (2.5)

with

d(r, f) = a(r, f)⊗ d0(f), (2.6)

where ⊗ denotes the Kronecker product and the dimension of w is n = N × L.



3758 K. F. C. YIU, M. J. GAO AND Z. G. FENG

Let Gd(r, f) be the specified desired response of the broadband beamformer, and con-
sider a region Ω = ∪m

i=1Ωi in the space-frequency domain where each Ωi is a convex set
and Ωi ∩ Ωj = ∅ for i 6= j. Then, the minimax design problem can be formulated as

min
w∈Rn

max
(r,f)∈Ω

|wᵀd(r, f)−Gd(r, f)|.

Obviously, if the term |wᵀd(r, f)−Gd(r, f)| above is replaced by |wᵀd(r, f)−Gd(r, f)|2,
the optimal solution will not be changed. Hence, we can formulate the filter design
problem as

Problem 1. Find a coefficient vector w ∈ Rn of the FIR filters to minimize the following
cost function

max
(r,f)∈Ω

|wᵀd(r, f)−Gd(r, f)|2. (2.7)

For wireless microphones, since they can be placed anywhere, it is more practical if we
can estimate the locations spontaneously. In fact, the locations of the microphones can be
estimated by a method whose principle is the same as the localization problem in sensor
network. That is, to estimate the locations of the microphones, we need to have some
points whose locations are known. These points are called anchors and can be denoted
by a = {ak :∈ Rh, k ∈ M (1)}, where M (1) is the index set of the anchors and h is the
dimension which can be 1, 2 or 3, depending on the structure of the anchors. The unknown
microphones are called sensors, which can be denoted by r = {rj :∈ Rh, j ∈ M (2)}, where
M (2) is the index set of the sensors. An example of sensors and anchors can be seen
in Figure 2, where three diamond points are the anchors and two circle points are the
sensors.
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Figure 2. An example of sensor network

For every pair of points, we can estimate the distance. That is, we have Euclidean
distance measures d̂kj between anchor ak and sensor rj for some k, j, and d̂ij between
sensor ri and sensor rj for some i < j. Denoting Na = {(k, j) : k ∈ M (1), j ∈ M (2)} and
Nr = {(i, j) : i < j, i ∈ M (1), j ∈ M (1)}, we have

‖ak − rj‖2 = d̂2kj ∀(k, j) ∈ Na,

‖ri − rj‖2 = d̂2ij ∀(i, j) ∈ Nr.
(3.1)
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From the information of distances, we can then estimate the locations of the sensors. The
localization problem is to find the sensor coordinates r such that (3.1) is satisfied. The
localization problem is equivalent to the optimization problem below:

Problem 2. Find the locations r of the sensors to minimize

F (r) =
∑

(i,j)∈Nr

∣∣∣‖ri − rj‖2 − d̂2ij

∣∣∣+ ∑
(k,j)∈Na

∣∣∣‖ak − rj‖2 − d̂2kj

∣∣∣ . (3.2)

Thus, we can find the locations r of the sensors by optimizing the cost function (3.2). If
the optimal value F ∗ is zero, then the solution obtained is the exact locations. However, in
most cases, the optimal value F ∗ is strictly greater than zero. To see this, we suppose that
the number of a ism. Then, the number of Na ismN and the number of Nr is N(N−1)/2.
Hence, the total number of the equalities in (3.1) is mN + N(N − 1)/2. On the other
hand, the number of decision variables is hN . Then, when mN + N(N − 1)/2 > hN ,
that is, m+ (N − 1)/2 > h, this problem is over-determined. Since h ≤ 3, this condition
is satisfied in most cases. Hence, the optimal value of Problem 2 is strictly greater than
zero and the obtained locations are not exact in most cases. Since the locations r is not
exact and the performance of the designed beamformer is very sensitive to the errors in
the locations, a robust design is needed.

Similar to Problem 1, we consider a corresponding robust problem where the location
vector contains certain uncertainties. Denote the position vector by r̃ = p(r, θ), where r
is a position vector in Problem 1 and θ ∈ [−η, η] is the parameter for uncertainty. Without
loss of generality, we define p(r, 0) = r. We can formulate the robust filter design problem
as

Problem 3. Find a coefficient vector w ∈ Rn of the FIR filters to minimize the following
cost function

max
θ∈[−η,η]

max
(r,f)∈Ω

|wᵀd(r̃, f)−Gd(r̃, f)|2. (2.8)

Both Problem 1 and Problem 3 are nonlinear minimax optimization problems. After
the discretization of the space-frequency domain Ω̃ = [−η, η]×Ω, gradient-based methods
can be applied to solving for numerical solutions. However, if the discretization of Ω̃ is
very large, these problems become very expensive to solve. Thus, an algorithm with
polynomial time computational complexity is desirable.

3. Methodology.

3.1. Robust broadband beamformer design. The cost functions in Problem 1 and
Problem 3 are quadratic. They can be rearranged as SDP problems as follows. Expanding
the complex functions

d(r, f) = d1(r, f) + jd2(r, f), (2.9)

Gd(r, f) = Gd1(r, f) + jGd2(r, f), (2.10)

and denoting
u(r, f) = (wᵀd1(r, f)−Gd1(r, f)), (2.11)

v(r, f) = (wᵀd2(r, f)−Gd2(r, f)), (2.12)

by adding an additional variable z, Problem 1 becomes

min
w∈Rn,z∈R

z

s.t. u(r, f)2 + v(r, f)2 ≤ z, ∀(r, f) ∈ Ω. (2.13)

We will make use of the following theorem proven in [30]:
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Theorem 3.1. Let A be an n× n real symmetric matrix of rank r. Then, the following
statements are equivalent:

1. A is positive semi-definite.
2. All eigenvalues of A are nonnegative.
3. There exists an n× r matrix S such that A = SST .
4. All principal minors of A are nonnegative.

By Theorem 3.1, the constraint in the above problem holds if and only if

Φ(z,w, r, f) =

 z u(r, f) v(r, f)
u(r, f) 1 0
v(r, f) 0 1

 � 0, ∀(r, f) ∈ Ω, (2.14)

where “ � ” denotes the positive semi-definite symbol. Denote

G(z,w) = diag{Φ(z,w, r1, f 1), . . . ,Φ(z,w, rk, fk)}, (2.15)

where Ωd = {(r1, f 1), . . . , (rk, fk)} ⊂ Ω is a set of dense grid points. Then, we transformed
Problem 1 into a SDP optimization problem:

Problem 4. Find a coefficient vector w ∈ Rn of the FIR filters and z, such that z is
minimized, subject to the constraint

G(z,w) � 0. (2.16)

Similarly to Problem 1, Problem 3 can also be transformed into an SDP optimization
problem. Denote

G̃(z,w) = diag{Φ(z,w, p(r1, θ1), f 1), . . . ,Φ(z,w, p(rk, θk), fk)}, (2.17)

where Ω̃d = {(θ1, r1, f 1), . . . , (θk, rk, fk)} ⊂ Ω̃ is a set of dense grid points. Then, Problem
3 is transformed into an SDP optimization problem:

Problem 5. Find a coefficient vector w ∈ Rn of the FIR filters and z, such that z is
minimized, subject to the constraint

G̃(z,w) � 0. (2.18)

Basically, since there is a discretization of the interval [−η, η], Problem 5 is more ex-
pensive to solve than Problem 4. However, if η is small, it is not necessary to do the
whole discretization of the interval [−η, η] and Problem 5 can be simplified. This can be
seen in the next theorem.

Theorem 3.2. Suppose that η is small. Then, for any given coefficients vector w ∈ Rn

and frequency f , we have

max
θ∈[−η,η]

|G(p(r, θ), f)−Gd(p(r, θ), f)|2 =

max
{
|G(p(r,−η), f)−Gd(p(r,−η), f)|2 , |G(p(r, η), f)−Gd(p(r, η), f)|2

}
+ |o(η)|.

(2.19)

Proof: Denote H(f) = (H1(f), . . . , HN(f))
ᵀ, where Hi(f) = wᵀ

id0(f). Then, the
actual frequency response G(p(r, θ), f) can be reformulated as

G(p(r, θ), f) = Hᵀ(f)b(p(r, θ), f). (2.20)

Denote the gradient of b(p(r, θ), f) with respect to the parameter θ as

∂b(p(r, θ), f)

∂θ
=

(
∂B1(p(r, θ), f)

∂θ
, . . . ,

∂BN(p(r, θ), f)

∂θ

)ᵀ
. (2.21)
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Then, since p(r, 0) = r and η is small, we can rewrite G(p(r, θ), f) as

G(p(r, θ), f) = Hᵀ(f)

(
b(r, f) +

∂b(p(r, 0), f)

∂θ
θ

)
+ o(θ). (2.22)

Similarly, Gd(p(r, θ), f) can be rewritten as

Gd(p(r, θ), f) = Gd(r, f) +
∂Gd(p(r, 0), f)

∂θ
θ + o(θ). (2.23)

Then, we have

|G(p(r, θ), f)−Gd(p(r, θ), f)|2

=

∣∣∣∣G(r, f)−Gd(r, f) +

(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
θ + o(θ)

∣∣∣∣2
=

∣∣∣∣G(r, f)−Gd(r, f) +

(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
θ

∣∣∣∣2 + |o(θ)|. (2.24)

Note that the first term of the right hand side of (2.24) is convex with respect to θ and
the maximum of a convex function exists when θ is in the boundary. Then, we have

max
θ∈[−η,η]

∣∣∣∣G(r, f)−Gd(r, f) +

(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
θ

∣∣∣∣2
=max

{∣∣∣∣G(r, f)−Gd(r, f) +

(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
η

∣∣∣∣2 ,∣∣∣∣G(r, f)−Gd(r, f)−
(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
η

∣∣∣∣2
}

=max
{
|G(p(r,−η), f)−Gd(p(r,−η), f) + o(η)|2 ,

|G(p(r, η), f)−Gd(p(r, η), f) + o(η)|2
}

=max
{
|G(p(r,−η), f)−Gd(p(r,−η), f)|2 ,

|G(p(r, η), f)−Gd(p(r, η), f)|2
}
+ |o(η)|. (2.25)

This completes the proof.
By Theorem 3.2, if η is small, Problem 5 can be simplified to

Problem 6. Find a coefficient vector w ∈ Rn of the beamformer filters and z, such that
z is minimized, subject to the constraint

Ĝ(z,w) � 0, (2.26)

where

Ĝ(z,w) = diag
{
Φ(z,w, p(r1, η), f 1),Φ(z,w, p(r1,−η), f 1),

. . . ,Φ(z,w, p(rk, η), fk),Φ(z,w, p(rk,−η), fk)
}
. (2.27)

3.2. Localization of microphones. Let R(= [r1, r2, . . . , rn]) ∈ Rh×N be the unknown
matrix. Then, we have

‖ri − rj‖2 = eᵀ
ijR

ᵀReij

‖ak − rj‖2 =
(
aᵀ
k eᵀ

j

) [ I
Rᵀ

]
[I R]

(
ak

ej

)
,

where eij is the vector with 1 at the i-th position, −1 at the j-th position and 0 elsewhere,
ej is the vector with−1 at the j-th position and 0 elsewhere. Let Y = RᵀR, then Problem
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2 is equivalent to find a symmetric matrix Y ∈ RN×N and a matrix R ∈ Rh×N such that
the following equations are satisfied:

eᵀ
ijY eij = d̂2ij, ∀(i, j) ∈ Nr(
aᵀ
k e

ᵀ
j

)( I R
Rᵀ Y

)(
ak

ej

)
= d̂2kj, ∀(k, j) ∈ Na

Y = RᵀR.

(3.3)

To relax the sensor network localization problem, we relax Y = RᵀR to Y � RᵀR which
is equivalent to [31]:

Z :=

(
I R
Rᵀ Y

)
� 0.

Then, the relaxed version of the problem (3.3) can be represented as a standard semi-
definite programming model, that is, we need to find a symmetric matrixZ ∈ R(h+N)×(h+N)

such that the following equations are satisfied:

(bᵀ 0ᵀ)Z

(
b
0

)
= bᵀb, for some vectors b ∈ Rh

(0ᵀ eᵀ
ij)Z

(
0
eij

)
= d̂2ij, ∀(i, j) ∈ Nr(

aᵀ
k e

ᵀ
j

)
Z

(
ak

ej

)
= d̂2kj, ∀(k, j) ∈ Na

Z � 0.

(3.4)

The first set of equations in (3.4) is to assure that the first h×h submatrix of Z is I. The
number of the vector b depends on the dimension h. If h = 1, there is only one element
in I and the minimum number of b is 1. If h = 2, since I is symmetric, there are three
elements to be determined and the minimum number of b is 3. If h = 3, there are six
elements in the symmetric matrix I to be determined and the minimum number of b is
6. There are many choices for b. An example can be seen in Table 1.

Table 1. A typical choice of the vector b

h b
1 1
2 (1 0)ᵀ, (0 1)ᵀ, (1 1)ᵀ

3 (1 0 0)ᵀ, (0 1 0)ᵀ, (0 0 1)ᵀ, (1 1 0)ᵀ, (1 0 1)ᵀ, (0 1 1)ᵀ

A relaxed solution Z can be obtained by solving Equations (3.4). However, as we
discuss in Section 2, the second and third set of equations in (3.4) are not satisfied in
most cases and the solution does not exist. Therefore, we need to consider Problem 2. To
transform Problem 2 into a semi-definite programming problem, we add some nonnegative
slack variables as α = {α+

ij, α
−
ij, α

+
kj, α

−
kj :≥ 0,∀(i, j) ∈ Nr, ∀(k, j) ∈ Na}. Then, Problem

2 is reformulated as

Problem 7. Find α and the locations r of the sensors, such that the cost function∑
(i,j)∈Nr

(α+
ij + α−

ij) +
∑

(k,j)∈Na

(α+
kj + α−

kj)

is minimized, subject to the constraints

‖ri − rj‖2 − d̂2ij = α+
ij − α−

ij, ∀(i, j) ∈ Nr

‖ak − rj‖2 − d̂2kj = α+
kj − α−

kj, ∀(k, j) ∈ Na.
(3.5)
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With the introduced relaxed matrix Z, Problem 7 is transformed into a standard SDP
problem:

Problem 8. Find α and the symmetric matrix Z, such that∑
(i,j)∈Nr

(α+
ij + α−

ij) +
∑

(k,j)∈Na

(α+
kj + α−

kj)

is minimized, subject to the constraints

(bᵀ 0ᵀ)Z

(
b
0

)
= bᵀb, for some vectors b ∈ Rh

(0ᵀ eᵀ
ij)Z

(
0
eij

)
− α+

ij + α−
ij = d̂2ij, ∀(i, j) ∈ Nr(

aᵀ
k e

ᵀ
j

)
Z

(
ak

ej

)
− α+

kj + α−
kj = d̂2kj, ∀(k, j) ∈ Na

Z � 0.

(3.6)

Problem 8 is a semi-definite programming problem which can be solved by any SDP
software. Note that any solution of Problem 8 has at least rank h. For a localizable
system, we need to impose certain conditions on the rank of Z and the relaxation of Y .
This is summarized in the following.

Definition 3.1. The localization problem is localizable if there is a unique localization in
Rh and there is no rj ∈ Rh′

, j = 1, . . . , n, where h′ > h, such that

‖ri − rj‖2 = d2ij, ∀(i, j) ∈ Nr∥∥∥∥( ak

0

)
− rj

∥∥∥∥2

= d2kj, ∀(k, j) ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space where the
locations of the anchors are augmented to (aᵀ

k 0
ᵀ)ᵀ ∈ Rh′

, k ∈ M (1).

Then, we have the following theorems (proven in [27]):

Theorem 3.3. The following statements are equivalent:

1. The problem is localizable.
2. The max rank of the solution Z has rank h.
3. The solution Z satisfy Y = RᵀR or Trace(Y −RᵀR) = 0.

Theorem 3.4. If a problem contains a subproblem that is localizable, then the submatrix
solution corresponding to the subproblem in the SDP solution has rank h. That is, the
SDP relaxation computes a solution that localizes all possibly localizable unknown sensor
points.

From these two theorems, we can see that the solution to the SDP problem provides
the first and second moment information on R [32]. After we find a solution Z by solving
Problem 8, rj will be the estimated position of j-th microphone and Yjj − ‖rj‖2 will be
used as its perturbation. The total perturbation of the microphones is then given by

Trace(Y −RᵀR) =
N∑
j=1

(
Yjj − ‖rj‖2

)
.
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4. Illustrative Examples. In solving the formulated linear SDP problems (Problem 4,
Problem 5, Problem 6 and Problem 8), interior point algorithms can be applied. There
are several software packages available, such as LMI control toolbox [33], SDPA-M [34],
SDPSOL [35] and SeDuMi [36]. All these software packages can be applied. In this
section, we use SDPA-M [34] and the computation was performed in Matlab.
The proposed method is first used to design several broadband beamformers with dif-

ferent target performances. At the same time, we will study the performances of the
designs towards errors in speaker and microphone locations. We focus on multimedia
applications and the desired frequency response function will include the frequency range
of human voice together with a range of positions that the speaker is located. We choose
the desired response function as

Gd(r, f) =

{
e−j2πf( ||r−rc||

c
+L−1

2
T), if (r, f) is in passband region

0, if (r, f) is in stopband region
,

where rc is the coordinate for the center element, the sound speed is c = 340.9m/s and
the sample increment is T = 125µs, that is, the sampling rate is set as 8kHz.
In the first example, we consider an equispaced linear array with five elements. To

avoid spatial aliasing for the frequency of interest, the element spacing is 5cm. That is,
they are located at the coordinates {(−0.1, 0), (−0.05, 0), . . ., (0.1, 0)}. A seven-tap FIR
filter behind each element is used. The passband region and stopband region are specified
on an x-axis parallel with, and y = 1 meter in front of, the array. The passband region is
defined as

{(r, f) : −0.4m ≤ x ≤ 0.4m, y = 1m, 0.5kHz ≤ f ≤ 1.5kHz}
while the stopband region is the union of several parts as

{(r, f) : −0.4m ≤ x ≤ 0.4m, y = 1m, 2.5kHz ≤ f ≤ 4kHz},
{(r, f) : 1.5m ≤ |x| ≤ 2.5m, y = 1m, 0.5kHz ≤ f ≤ 1.5kHz},
{(r, f) : 1.5m ≤ |x| ≤ 2.5m, y = 1m, 2.5kHz ≤ f ≤ 4kHz}.

The complexity of the implementation depends on the discretization of the space-
frequency domain Ω in this problem. Suppose that the number of discretization of Ω
is given by mx×mf . Then, for different numbers of discretization, the comparison of our
method with the SIP method [13] is given in Table 2.

Table 2. Comparison of the running times (seconds)

mx ×mf LP SDP
40× 40 17.66s 8.98s
80× 80 299.63s 36.97s
120× 120 1490.25s 85.04s
130× 130 2192.06s 102.89s

From Table 2, we see that our method is more efficient than SIP method [13], especially
when the number of discretization becomes very large. The amplitude of the actual
response G(r, f) is shown in Figure 3. We consider some perturbations to the design
parameters. When the speaker location changes, we found that the optimized performance
is very similar with or without robustness in the formulation. This again confirms the
findings in [13] that the optimal design is not too sensitive to the movement of speaker.
We then consider possible errors in the first and the last microphones. We set x1 ∈

[−0.15,−0.07] and x5 ∈ [0.07, 0.15]. When the x-coordinate of the first and the last
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Figure 3. Amplitude of G(r, f) in Example 1 where N = 5, L = 7 and y = 1m

microphone move to −0.15m and 0.15m, respectively, the performance is summarized in
Table 3. From the results, it is clear that the optimized beamformer is very sensitive
to perturbations in microphone locations. With the use of the robust formulation, the
optimized performance is recovered in spite of the perturbations.

Table 3. Optimized designs with errors in microphone locations

Methods Passband gain Passband ripple (dB) Stopband ripple (dB)
Robust design 1.03146 0.20281 −14.23836
Normal design 1.05639 0.36851 −6.87912

In the second example, we demonstrate how to incorporate the sensor localization
method together with the robust design formulation. We consider a 5m × 5m classroom
and the speaker stands in the middle of the room. At the corner of the room, there are two
anchors with coordinates {(−2.5, 2.5), (2.5, 2.5)}. Seven microphones are located at the
coordinates {(−0.15, 0.7), (−0.1, 0.8), (−0.05, 0.9), (0, 1), (0.05, 0.9), (0.1, 0.8), (0.15, 0.7)}.
We assume the distances between the nodes can be estimated and there exist errors in
the estimated distances. We simulate the estimated distances similar to [29]. That is, we
add a random error to the estimated distance:

d̂ij = dij · (1 + ε×Nf )

where Nf is a given noisy factor between [0, 1] and ε is a standard normal random
variable. For this example, we further assume that the microphone with coordinate
(0, 1) is also an anchor, and all the other microphones are sensors. The noisy fac-
tor is chosen as 0.005 and the distances between the nodes can be estimated. In the
first stage, we estimate the microphones’ positions by solving Problem 8. The esti-
mated positions are illustrated in Figure 4 and the perturbations of these six sensors
are 0.0139, 0.0007, 0.0004, 0.0005, 0.0004 and 0.0018, respectively. Since the perturbations
of three sensors with coordinates (−0.05, 0.9), (0.05, 0.9) and (0.1, 0.8) are very small,
they are neglected and we just consider the uncertainties of the other three sensors.

In the second stage, with the estimated positions and the perturbations, we design
a robust beamformer with a seven-tap filter behind each microphone. The passband
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Figure 4. Estimated positions via solving the localization problem

region, stopband region and the desired frequency response function are chosen in the
same manner as in Example 1. By solving Problem 6, we obtain the optimal design. The
amplitude of the actual response G(r, f) is shown in Figure 5.

Figure 5. Amplitude of G(r, f) in Example 2

5. Conclusions. In this paper, we have formulated the design problem of distributed
broadband beamformers with wireless microphones. The sensor network technology has
been used to estimate sensor microphone locations and was incorporated into the design
process. We have studied the performance of the optimized designs and found that it
was very sensitive to perturbations in microphone locations. We have proposed a suit-
able robust formulation as a remedy to regain the performance. From the examples, we
demonstrated that this approach is essential to regain accuracy in the optimized designs.
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