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Abstract. In this paper we prove the existence for optimal control problems with termi-
nal constraints on time scales. A definition of the solution of semi-linear control systems
involving Sobolev space W 1,2

T is proposed and new existence and uniqueness results of
this kind of dynamic systems on time scales are presented under a weaker assumption.
According to L2

T strong-weak lower semi-continuity of integral functionals, we establish
the existence of optimal controls. In particular, the existence for calculus of variations
on time scales is derived.
Keywords: Time scales, Existence and uniqueness of solutions of control systems, Cal-
culus of variations, Optimal control

1. Introduction. Continuous-time modelling and discrete-time modelling are two main
approaches which dominate the methodology of mathematical modelling. System dynam-
ics can be analyzed by using either approach. For example, both continuous-time recurrent
neural networks and their discrete-time analogue have been studied in the literature (see,
for example, [1] and the references therein). However, in practice, some processes con-
sist of both continuous and discrete elements. A simple example of this kind of hybrid
continuous-discrete time system is seasonally breeding population whose generations do
not overlap. Temperate zone insects (including many economically important crop and
orchid pests) are of this kind. These insects lay their eggs just before the generation dies
out at the end of the season, with the eggs laying dormant, hatching at the start of the
next season, and giving rise to a new, nonoverlapping generation. During each generation
the population varies continuously (due to mortality, resource consumption, predation,
interaction, etc.), while the population varies in a discrete fashion between the end of one
generation and the beginning of the next [2,3].
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On the other hand, sometimes certain real world phenomena cannot be described by
continuous or discrete dynamics only. For example, the received income, the adjustment
of asset holdings, and the consumption, etc. are with discrete features. Moreover, the con-
sumption and the saving decisions can be modelled to occur with arbitrary, time-varying
frequency. Therefore, there is a need to find a more flexible mathematical framework to
accurately model the aforementioned hybrid dynamical systems [4].
Calculus on the so-called time scales initiated by S. Hilger [5] unifies the theory of

differential equations and difference equations and it even allows dynamic systems to be
both partially continuous and partially discrete. Hence, it provides a possible theory to
investigate optimal control problems on arbitrary time scales in a unified way. To our
best knowledge, results in the literature for time scales relevant to optimal control are
restricted to calculus of variations problems. The pioneering work of calculus of variations
on time scales was done by Bohner [6]. The theory has been developed in several different
directions; see [7] for non-fixed boundary conditions, [8] for two independent variables, [9]
for higher-order delta derivatives. These works seem to be of special interest to practical
applications, in particular, in economics [4,10]. Problems studied in the above mentioned
works typically are in the general form of minimizing Lagrange type cost functionals
involving the so-called delta or nabla derivatives in Ck

rd (see [6] for the definitions).
However, even though the existence of the variational problem on time scales is one

of the most important issues for optimal controls, it seems that there are few works on
it. The existence of the LQ problem on time scales was studied in [11]. In [12], the
existence of unconstrained Lagrange optimal control governed by a class of the first-order
linear dynamic systems on time scales has been shown. In this paper, we will consider
the following problem,

L[y(·)] =
∫
[a,b)T

l(t, y(t), y∆(t))∆t → inf, y(a) = ξ, y(b) = η, (1)

where ξ, η ∈ R. A natural function space for this problem is the space of absolutely
continuous functions AC([a, b]T,R), or the space of functions of the bounded variation
BV ([a, b]T,R). This is because of the fact that such functions are differentiable ∆-almost
everywhere and the derivatives are locally integrable. However, we may have difficulties
to prove that a minimizing sequence has a weakly convergent subsequence. A more
convenient function space is the Sobolev space W 1,2

T ([a, b]T,R). Our problem is to find a

solution y(·) ∈ W 1,2
T ([a, b]T,R) satisfying the boundary conditions y(a) = ξ, y(b) = η.

First, we consider an optimal problem with a terminal state constraint on time scales.
Let T be a time scale with minT = a > −∞ and maxT = b < ∞. Consider a control

system on T{
y∆(t) + p(t)yσ(t) = f(t, y(t)) +m(t)u(t), ∆-a.e. t ∈ [a, b)T,
y(a) = y0,

(2)

where m(·) ∈ L2
T([a, b)T,R), p : [a, b)T → R is a known regressive rd-continuous function

and u(·) is taken from

Uad := {u(t), t ∈ [a, b)T : u is ∆-measurable and u(t) ∈ U ∆-a.e.}, (3)

where U is a convex and compact subset of R. Any element in Uad is called an admissible
control.
Let S ⊆ R be a final target set, and

y(b) ∈ S (4)
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be the terminal constraint. Next, we introduce the following cost functional

J(u(·)) =
∫
[a,b)T

l(t, y(t|u), u(t))∆t. (5)

Under proper conditions (which will be assumed later), for any y0 ∈ R, u(·) ∈ Uad, the
control system admits a unique solution y(·; |u).

Problem (P). Find u∗(·) ∈ Uad and a corresponding state trajectory y(·|u∗) ∈ W 1,2
T ([a,

b]T,R) satisfying the constraint (4), such that

J(u∗) = inf
u∈Uad

J(u) = m.

2. Preliminaries. A time scale T is a closed nonempty subset of R. The two most
popular examples are T = R and T = Z. The forward and backward jump operators
σ, ρ : T → T are defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

We put inf ∅ = supT and sup ∅ = inf T, where ∅ denotes the empty set. If there is the finite
maxT, then σ(maxT) = maxT and if there exists the finite minT, then ρ(minT) = minT.
The graininess function µ : T → [0,+∞) is µ(t) := σ(t)− t. A point t ∈ T is called left-
dense (left-scattered, right-dense, right-scattered) if ρ(t) = t (ρ(t) < t, σ(t) = t and σ(t) >
t) holds. If T has a left-scattered maximum value M , then we denote Tk := T − {M}.
Otherwise, Tk := T. Throughout the paper, we denote [a, b]T = [a, b] ∩ T. On [a, b]T, let
I[a,b]T := {i ∈ I : ti ∈ [a, b]T} be the index of all right-scattered points of the set [a, b)T.
Let µ∆ be the Lebesgue ∆-measure on time scales defined in terms of the Caratheodory
extension (see [13, 14] for details). Here, we enumerate some crucial definitions which will
be used in this paper. For each t0 ∈ T\{maxT}, the single-point set {t0} is ∆-measurable,
and its ∆-measure is given by

µ∆({t0}) = σ(t0)− t0 = µ(t0).

Let P denote a proposition w.r.t. t ∈ T and A a subset of T. If there exists E1 ⊂ A
with µ∆(E1) = 0 such that P holds on A\E1, then P is said to hold ∆− a.e on A.

Let f : [a, b)T → R. Define f̃ : [a, b] → R to be the extension of f(·) to real interval
[a, b] by

f̃(t) =

{
f(t), if t ∈ [a, b)T,
f(ti), if t ∈ (ti, σ(ti)), for some i ∈ I[a,b)T .

(6)

For any f : [a, b)T → R, if f̃(·) ∈ L1([a, b],R) then f(·) is said to be Lebesgue
∆−integrable on [a, b)T, and define∫

[a,b)T

f(t)∆t :=

∫
[a,b]

f̃(t)dt. (7)

The set of all Lebesgue ∆−integrable function on [a, b)T is denoted by L1
T([a, b],R).

Furthermore, we say that f belongs to L2
T([a, b)T,R) provided that∫

[a,b)T

|f(t)|2∆t < ∞.

The set L2
T([a, b)T,R) is a Banach space together with the norm defined as

‖f‖L2
T([a,b)T,R) =

(∫
[a,b)T

|f (t) |2∆t

)1/2

.
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A function f : [a, b]T → R is said to be right-dense continuous (rd−continuous, for
short) on T if it is continuous at right-dense point sets and has finite left-sided limits at
all left-dense points. We have a similar definition for the left-dense continuous function.
Let C([a, b]T,R)) be the set of continuous functions f : [a, b]T → R (namely, both rd−

continuous and left-dense continuous). Define

‖ f ‖0= sup
t∈[a,b]T

| f(t) | .

Clearly, the above is a norm under which C([a, b]T,R)) is Banach spaces.
A function f : T → R is ∆ differentiable at t ∈ Tk if there exists a number α with the

following property: for any ε > 0 there exists a neighborhood U ⊆ T of t such that

|f(σ(t))− f(s)− α[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ U . We denote such α by f∆(t).
A function p : T → R is said to be regressive if 1 + µ(t)p(t) 6= 0 for all t ∈ T. For

regressive functions p : T → R, 	p is defined as

	p := − p

1 + µp
.

Now, for a regressive and right-dense continuous function p(·) on the time scale T,
consider the following initial value problem{

y∆ = p(t)y, t ∈ T,
y(a) = 1.

One can show that the above admits a unique solution, denoted by ep(·, a) which is given
by

ep(t, s) = exp

{∫
[s,t)T

ξµ(τ)(p(τ))∆τ

}
, ξh(z) =

{
ln(1+hz)

h
, if h 6= 0,

z, if h = 0.

We call ep(·, a) a generalized exponential function.

Lemma 2.1. [15] (Gronwall inequality) Let y(·) be rd-continuous and β, γ ∈ R with
γ > 0. Then

y(t) ≤ β + γ

∫
[a,t)T

y(τ)∆τ , ∀t ∈ T,

implies

y(t) ≤ βeγ(t, a), ∀t ∈ T.

A function f : T → R is said to be absolutely continuous on T if for every ε > 0, there
is δ > 0 such that if {[ak, bk)T}nk=1, with ak, bk ∈ T, is a finite pairwise disjoint family of
subintervals of T satisfying

n∑
k=1

(bk − ak) < δ,

then
n∑

k=1

| f(bk)− f(ak) |< ε.

We denote all absolutely continuous functions on [a, b]T by AC([a, b]T,R).
For an absolutely continuous function, the following integration by parts formula on

time scales is true.
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Lemma 2.2. [14] If f, g : [a, b]T → R are absolutely continuous functions on [a, b]T, then
f · g is absolutely continuous on [a, b]T and the following equality is valid.∫

[a,b)T

(f∆g + fσg∆)(s)∆s = f(b)g(b)− f(a)g(a) =

∫
[a,b)T

(fg∆ + f∆gσ)(s)∆s. (8)

3. Existence and Uniqueness of the Solution for a Control System. In this
section, we study the existence and uniqueness of solutions for the control system (2).
Firstly, we consider the dynamic Cauchy problem{

y∆(t) + p(t)yσ(t) = f(t, y(t)), ∆-a.e. t ∈ [a, b)T,
y(a) = y0.

(9)

We assume that

[HF: ]
(i) for every r ∈ R, f(·, r) is ∆-measurable in [a, b)T and f(t, ·) ∈ C(R;R) for

t ∈ [a, b)T,
(ii) there is a constant L1 > 0 such that

|f(t, y)| ≤ L1(1 + |y|), ∀ t ∈ [a, b)T, y ∈ R,
(iii) and there is a constant L2 > 0 such that

|f(t, x)− f(t, y)| ≤ L2|x− y|, ∀ t ∈ [a, b)T, x, y ∈ R.
We begin with the following first-order Sobolev’s space on [a, b]T equipped with the

Lebesgue ∆-measure.

Definition 3.1. [14] Let u : [a, b]T → R, then we say that u(·) ∈ W 1,2
T ([a, b]T,R) if and

only if u(·) ∈ L2
T([a, b)T,R) and there exists g : [a, b)T → R such that g(·) ∈ L2

T([a, b)T,R)
and ∫

[a,b)T

(u · ϕ∆)(s)∆s = −
∫
[a,b)T

(g · ϕσ)(s)∆s ∀ϕ ∈ C1
0,rd([a, b]T,R) (10)

with

C1
0,rd([a, b]T,R) := {f : [a, b]T → R : f ∈ C1

rd([a, b]T,R), f(a) = 0 = f(b)}
and C1

rd([a, b]T,R) is the set of all continuous functions on [a, b]T such that they are ∆-
differentiable on [a, b)T and their ∆-derivatives are rd−continuous on [a, b)T.

Lemma 3.1. [14] The set W 1,2
T ([a, b]T,R) is a Banach space together with the norm defined

for every u(·) ∈ W 1,2
T ([a, b]T,R) as

‖u‖W 1,2
T

:= ‖u‖L2
T
+ ‖u∆‖L2

T
.

The following lemma asserts thatW 1,2
T ([a, b]T,R) is continuously immersed into C([a, b]T,

R) equipped with the supremum norm ‖ · ‖0.

Lemma 3.2. [14] There exists a constant K > 0, only depending on b− a, such that the
inequality

‖u‖0 ≤ K · ‖u‖W 1,2
T

holds for all u(·) ∈ W 1,2
T ([a, b]T,R) and therefore, the immersion W 1,2

T ([a, b]T,R) ↪→
C([a, b]T,R) is continuous.

From now on, we consider the dynamic Cauchy problem (9).

Definition 3.2. A solution of Cauchy problem (9) will be defined as a function y(·) ∈
W 1,2

T ([a, b]T,R) satisfying (9) for ∆-a.e. t ∈ [a, b)T.
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We firstly show that the Problem (9) is equivalent to delta integral equation.

Lemma 3.3. Let assumptions (i) and (ii) of [HF ] hold, then
(a) if y(·) is a solution of Cauchy problem (9),

y(t) = e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)f(τ, y(τ))∆τ, t ∈ [a, b]T, (11)

(b) and if y(·) ∈ C([a, b]T,R) satisfies (11), y(·) is a solution of (9).

Proof: (a) If y(·) is a solution of Cauchy problem (9), then Lemma 3.2 implies y(·) ∈
C([a, b]T,R). Define the function h : [a, b)T → R as

h(s) = f(s, y(s)), for any s ∈ [a, b)T.

Then, by conditions [HF ](i) and (ii), we derive that h(·) ∈ L1
T([a, b)T,R). Hence, (11)

is well defined. Now, we multiply both sides of Equation (9) by the integrating factor
ep(·, a) and obtain

[ep(·, a)y]∆ = ep(·, a)y∆ + pep(·, a)yσ

= ep(·, a)f(·, y(·)).
Integrating both sides from a to t and using ep(t, s) =

1
ep(s,t)

= e	p(s, t), we obtain

y(t) = e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)f(τ, y(τ))∆τ, t ∈ [a, b]T.

(b) On the other hand, let y(·) ∈ C([a, b]T,R) and (11) hold. By applying Lemma 2.10
in [12] and Lemma 2.6 in [16] to (11), we have y(·) ∈ AC([a, b]T,R) and{

y∆(t) + p(t)yσ(t) = f(t, y(t)), ∆-a.e. t ∈ [a, b)T,
y(a) = y0.

Denote g(·) in (10) by g(t) = −p(t)yσ(t)+ f(t, y(t)) on [a, b)T. Using assumptions (i) and
(ii), we infer that g(·) is bounded and g(·) ∈ L2

T([a, b)T,R). Furthermore, it follows from
the integration by parts formula (Lemma 2.2) that∫

[a,b)T

(y · ϕ∆)(s)∆s = −
∫
[a,b)T

(g · ϕσ)(s)∆s ∀ϕ ∈ C1
0,rd([a, b]T,R) (12)

Therefore, Definition 3.1 and Definition 3.2 imply that y(·) ∈ W 1,2
T ([a, b]T,R) and y(·) is

a solution of Cauchy problem (9).
Define

M1 := sup
t∈[a,b]T

|e	p(t, a)| and M2 := sup
t,τ∈[a,b]T

|e	p(t, τ)|.

Theorem 3.1. (Local existence of solution) Suppose that assumptions [HF ](i) and
(ii) hold. Then the dynamic Cauchy problem (9) has at least one solution in some interval

a ≤ t ≤ a+ h, where a < h ≤ K−M1|y0|
M2L1(1+K)

for every K ≥ (M1 + 1)|y0|.

Proof: If a is right scatted, it follows from Equation (9) that we obtain

y(σ(a)) =
(y0 + f(a, y0))(σ(a)− a)

(1 + p(a)(σ(a)− a))
.

If a is a right dense, we define the operator F : C([a, a+ h]T,R) → C([a, a+ h]T,R) as

(Fy)(t) := e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)f(τ, y(τ))∆τ, t ∈ [a, a+ h]T. (13)
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It follows from Lemma 3.3 that y(·) is a fixed point of the operator F if and only if y(·)
is a solution of Cauchy problem (9) on [a, a+ h]T. Introduce a set

X := B(0, K) := {x ∈ C([a, a+ h]T,R), ‖ x ‖0≤ K} .
Then, it is easy to show that F maps from X into F (X) ⊆ X, F (X) is uniformly bounded
with ‖ Fy ‖0≤ K for all y ∈ X and F (X) is equicontinuous. Hence, Arzela-Ascoli theorem
(Lemma 2.1 in [12]) implies that F (X) is a precompact subset of X.

Moreover, F is continuous. Otherwise, there exists a sequence {yn(·)} convergent to
y(·) in X, and {Fyn(·)} is not uniformly convergent to (Fy)(·) in [a, a + h]T. Then we
can find ε > 0 and a sequence {tn} ⊂ [a, a+ h]T such that

|(Fyn)(tn)− (Fy)(tn)| ≥ ε.

On the other hand,

|(Fyn)(tn)− (Fy)(tn)|

= |
∫
[a,a+h)T

χ[a,tn]T(τ)e	p(tn, τ)[f(τ, yn(τ))− f(τ, y(τ))]∆τ |

≤ M2

∫
[a,a+h)T

|f(τ, yn(τ))− f(τ, y(τ))|∆τ,

where χ[a,tn]T is the characteristic function of [a, tn]T. By the continuity of f w.r.t. to y,
[HF ](ii), and Lebesgue dominated convergence theorem (Lemma 2.6 in [12]), we have

|(Fyn)(tn)− (Fy)(tn)| → 0 as n → ∞,

which contradicts the above inequality. Therefore, F is continuous on X.
Now, we can use Schauder’s fixed-point theorem (Theorem 2.0.14 in [17]) and derive

that F has at least one fixed point in X. Hence the Cauchy problem (9) also has at least
one solution in [a, a+ h]T .

For the global existence of the solutions for (9), we need the following lemma.
For some fixed positive R̃ > 0, we denote

B(0, R̃) := {y ∈ C([a, b]T,R) :‖ y ‖0≤ R̃}.

Lemma 3.4. (A priori estimate) Assume that [HF ](i) and (ii) hold. If y(·) is a
solution of the Cauchy problem (9) in [a, b]T, then y(·) ∈ B(0, R̃), with R̃ = [M1|y0| +
M2L1(b− a)]eM2L1(b, a).

Proof: If y(·) is a solution of (9) in [a, b]T, then it follows from Lemma 3.3 that

y(t) = e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)f(τ, y(τ))∆τ, t ∈ [a, b]T.

By condition (ii), we have

|y(t)| ≤ |e	p(t, a)||y0|+
∫
[a,t)T

|e	p(t, τ)||f(τ, y(τ))|∆τ

≤ M1|y0|+
∫
[a,t)T

M2L1(1 + |y(τ)|∆τ.

Now the Gronwall inequality (Lemma 2.1) implies

‖ y ‖0= sup
t∈[a,b]T

|y(t)| ≤ [M1|y0|+M2L1(b− a)]eM2L1(b, a) := R̃.

Theorem 3.2. (Global existence of solution) Let the assumptions (i) and (ii) of
[HF ] hold. Then the Cauchy problem (9) has at least one solution in C([a, b]T,R).
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Proof: If h is left-scattered, then y(ρ(h)) exists. By Equation (9), we have

y(h) =
y(ρ(h) + (h− ρ(h))f(ρ(h), y(ρ(h)))

1 + (h− ρ(h))p(ρ(h))
.

If h is left-dense, then y(h) = lim
t→h−

y(t) exists and |y(h)| ≤ R̃. Using Theorem 3.1, we

may solve the system Equation (9) with the initial condition y(h) = y(h) and obtain the
solution in [h, h̄]T. Repeating the process, until y(h̄) = ∞ or h̄ = b. But Lemma 3.4
ensures that y(h̄) 6= ∞. Consequently, we obtain the global existence of solution for the
Cauchy problem (9) in C([a, b]T,R).

Theorem 3.3. (Uniqueness of the solutions) Suppose that assumptions [HF ] hold.
Then the Cauchy problem (9) has a unique solution y(·) ∈ W 1,2

T ([a, b]T,R), which is equiv-
alent to the following

y(t) = e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)f(τ, y(τ))∆τ, t ∈ [a, b]T.

Proof: By virtue of Theorem 3.2 and Lemma 3.3, let y1(·) and y2(·) be solutions of (9)
in [a, b]T. Then,

|y1(t)− y2(t)| =

∣∣∣∣∫
[a,t)T

e	p(t, τ)[f(τ, y1(τ))− f(τ, y2(τ))]∆τ

∣∣∣∣
≤ M2L2

∫
[a,t)T

|y1(τ)− y2(τ)|∆τ , ∀t ∈ [a, b]T.

It follows from the Gronwall inequality that

|y1(t)− y2(t)| = 0, ∀t ∈ [a, b]T.

This completes the proof.
Next, we establish the existence and uniqueness of the solutions of the control system

(2). For any fixed u(·) ∈ Uad, we define

Fu(t) = f(t, y(t)) +m(t)u(t), t ∈ [a, b)T.

Obviously, Uad is a bounded subset of L2
T([a, b)T,R). If m(·) ∈ L2

T([a, b)T,R), then the
Hölder’s inequality on time scales (Lemma 2.8 in [12]) implies Fu(·) ∈ L1

T([a, b)T,R).
Therefore, by virtue of Theorem 3.3, we have the following corollary.

Corollary 3.1. (Existence and uniqueness of solutions for control system (2))
Suppose assumptions [HF ] hold. Furthermore, m(·) ∈ L2

T([a, b)T,R). Then, for every fixed
u(·) ∈ Uad, the control system (2) has a unique solution y(·|u) ∈ W 1,2

T ([a, b]T,R) which
satisfies

y(t|u) = e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)[f(τ, y(τ |u)) +m(τ)u(τ)]∆τ, t ∈ [a, b]T.

4. Main Results. In this section, we study the existence of optimal solutions of Problem
(P) and Lagrange Variational Problem (1).
To this end, we first introduce some notations and assumptions for Problem (P).
For the solution y(·|u) of the control system (2) corresponding to the control u(·) ∈ Uad,

define

Yad := {y(·) ∈ W 1,2
T ([a, b]T,R) : y(·) = y(·|u) for some u(·) ∈ Uad and y(b) ∈ S},

and
A := {(y, u) ∈ Yad × Uad : y(·) = y(·|u)}.



EXISTENCE FOR CALCULUS OF VARIATIONS AND OPTIMAL CONTROL PROBLEMS 3801

Assume that:

[HL: ]
(i) the set S is a closed subset in R, and
(ii) l = l(t, y, w) is lower-semicontinuity in (y, w) for ∆-a.e. t in [a, b)T and l is
∆-measurable on [a, b)T for each (y, w) ∈ R × R. Furthermore, l is convex in w for
each fixed t, y and there exists h(·) ∈ L1

T([a, b)T,R), λ, µ > 0, such that

l(t, y, w) ≥ h(t) + λ|y|2 + µ|w|2, ∀ y, w ∈ R. (14)

Now, we introduce an operator T : L2
T([a, b)T,R) → L2([a, b],R) given for every f(·) ∈

L2
T([a, b]T,R)

Tf := f̃ (15)

defined in (6). We also need the following lemmas.

Lemma 4.1. [12] L2
T([a, b)T,R) is a reflexive Banach space and T (Uad) is bounded and

weakly closed in L2([a, b],R).

Lemma 4.2. (Relative compact of the set of trajectories in C([a, b]T,R)) Under
the conditions of Corollary 3.1, the set of trajectories for the control system (2) is relatively
compact in C([a, b]T,R).

Proof: For any {un(·)} ⊂ Uad, it follows from Corollary 3.1 that

y(t|un) = e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)[f(τ, y(τ |un)) +m(τ)un(τ)]∆τ, t ∈ [a, b]T.

By the boundedness of Uad, [HF](ii) and Hölder’s inequality, we obtain

|y(t|un)| ≤ |e	p(t, a)||y0|+
∫
[a,t)T

|e	p(t, τ)||f(τ, y(τ |un)) +m(τ)un(τ)|∆τ

≤ M1|y0|+M2

∫
[a,t)T

L1(1 + |y(τ |un)|)∆τ +M2

∫
[a,b)T

|m(τ)un(τ)|∆τ

≤ [M1|y0|+M2‖m‖L2
T
‖un‖L2

T
+M2L1(b− a)] +M2L1

∫
[a,t)T

|y(τ |un)|∆τ.

Let M be a bound for ‖un‖L2
T
, then it follows from the Gronwall inequality that

‖ y(·|un) ‖0 = sup
t∈[a,b]T

|y(t|un)|

≤ [M1|y0|+MM2‖m‖L2
T
+M2L1(b− a)]eM2L1(b, a).

That is, {y(·|un)} is uniformly bounded on [a, b]T. Taking arbitrary points t1 and t2 of
the segment [a, b]T, we have

|y(t1|un)− y(t2|un)|

≤ M1|y0||e	p(t2, t1)− 1|+M2

∫
[t1,t2)T

|[f(τ, y(τ |un) +m(τ)un(τ)]|∆τ

+

∫
[a,t1)T

|e	p(t2, τ)− e	p(t1, τ)||[f(τ, y(τ |un) +m(τ)un(τ)]|∆τ

By using the absolute continuity of integration, the boundedness of Uad and the Hölder’s
inequality, we obtain

sup
n

|y(t1;un)− y(t2;un)| → 0 as |t1 − t2| → 0.
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thus, {y(·|un)} is equicontinuous in [a, b]T. Therefore, by the Arzela-Ascoli theorem, there
exists a continuous function ȳ(·) ∈ C([a, b]T,R) such that

‖y(·|un)− ȳ(·)‖0 → 0.

Lemma 4.3. If, under the conditions of Corollary 3.1, let {un(·)} ⊂ Uad converges weakly
to u∗(·) ∈ Uad in L2

T([a, b)T,R) and y(·|u∗) is a solution of the control system corresponding
to u∗(·), then y(·|un) converges strongly to y(·|u∗) in L2

T([a, b)T,R).

Proof: By Corollary 3.1, it follows that

y(t|un) = e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)[f(τ, y(τ |un)) +m(τ)un(τ)]∆τ, t ∈ [a, b]T.

For every fixed t ∈ [a, b]T, define

ϕ(τ) =

{
e	p(t, τ)m(τ), τ ∈ [a, t)T,
0, τ ∈ [t, b)T,

then we have ϕ(·) ∈ L2
T([a, t)T,R). Hence the weak convergence of {un(·)} implies that

lim
n→∞

e	p(t, a)

∫
[a,t)T

e	p(t, τ)m(τ)un(τ)∆τ = e	p(t, a)

∫
[a,t)T

e	p(t, τ)m(τ)u∗(τ)∆τ.

By Lemma 4.2, there exists a ȳ(·) ∈ C([a, b]T,R) such that

ȳ(t) = lim
n→∞

y(t|un) = e	p(t, a)y0 + lim
n→∞

e	p(t, a)

∫
[a,t)T

e	p(a, τ)f(τ, y(τ |un))∆τ

+ lim
n→∞

e	p(t, a)

∫
[a,t)T

e	p(a, τ)m(τ)un(τ)∆τ, t ∈ [a, σ(b)]T .

Therefore, it follows from the Lebesgue dominated convergence theorem that

ȳ(t) = e	p(t, a)y0 +

∫
[a,t)T

e	p(t, τ)[f(τ, ȳ(τ)) +m(τ)u∗(τ)]∆τ, t ∈ [a, b]T.

That is, ȳ(·) = y(·|u∗). Again, using the Lebesgue dominated convergence theorem and
the boundedness of solutions (Lemma 4.2), we obtain

‖y(·|un)− y(·|u∗)‖2L2
T
=

∫
[a,b)T

|y(t|un)− y(t|u∗)|2∆t → 0, as n → ∞.

Next, consider a functional

J(y, u) =

∫
[a,b)T

l(t, y(t), u(t))∆t. (16)

Let D denote the set of elements (y, u) in L2
T([a, b)T,R) × L2

T([a, b)T,R) for which the
integral in (16) exists and is finite. We present the following L2

T strong-weak lower semi-
continuity of the integral functional.

Lemma 4.4. Let the assumption [HL](ii) holds and {yn, un} ⊂ D. If un → u weakly in
L2
T, yn → y strongly in L2

T and lim infn J(yn, un) > −∞, then

J(y, u) ≤ lim
n

inf J(yn, un).

Proof: Throughout the proof of this lemma we will choose the subsequences of various
sequences. Unless stated otherwise, we shall relabel the subsequence with the labeling of
the original sequence.



EXISTENCE FOR CALCULUS OF VARIATIONS AND OPTIMAL CONTROL PROBLEMS 3803

Since {yn(·)} and {un(·)} are strongly and weakly convergent respectively in L2
T, the

sequences {yn(·)} and {un(·)} are bounded in norm in the space L2
T([a, b)T,R). It follows

from (14) that

J(yn, un) ≥
∫
[a,b)T

h(t)∆t+ λ

∫
[a,b)T

|yn(t)|2∆t+ µ

∫
[a,b)T

|un(t)|2∆t > −∞.

Let

γ = lim inf J(yn, un) > −∞.

Then, there exists a subsequence {(yn, un)}, such that

γ = lim J(yn, un).

Since

un → u weakly in L2
T([a, b)T,R) as n → ∞.

By virtue of the Mazur’s Theorem (Corollary A.7.5 in [18]), for every positive integer i
and integer n(i), m(i) increasing with i, and n(i), m(i) → +∞ as i → +∞, one can
construct a suitable convex combination of {un(·)}, such that

ûi(·) :=
m(i)∑
j=1

ai,jun(i)+j(·) → u(·) in L2
T([a, b)T,R) as i → ∞.

where,

ai,j ≥ 0,

m(i)∑
j=1

ai,j = 1 for all positive integer i.

Furthermore, it follows from Lemma 4.2 in [12] that there exists a subsequence {ûi(·)},
such that

ûi(t) → u(t) ∆-a.e. t ∈ [a, b)T as i → ∞. (17)

Similarly, since

yn(i)+j → y strongly in L2
T as i → ∞,

again by Lemma 4.2 in [12], we infer that there exists a subsequence {yn(i)+j(·)}, such
that

yn(i)+j(t) → y(t) ∆-a.e. t ∈ [a, b)T as i → ∞. (18)

Now, define

l̂i(t) :=

m(i)∑
j=1

ai,jl(t, yn(i)+j(t), un(i)+j(t)), ∆-a.e. t ∈ [a, b)T.

and

l∗(t) := lim inf l̂i(t), ∆-a.e. t ∈ [a, b)T. (19)

It follows from (14) that

l̂i(t) =

m(i)∑
j=1

ai,jl(t, yn(i)+j(t), un(i)+j(t))

≥
m(i)∑
j=1

ai,jh(t) = h(t), ∆-a.e. t ∈ [a, b)T.
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Thus the function l∗ is well defined and l∗(t) ≥ h(t) for ∆-a.e. t ∈ [a, b)T. And Fatou’s
lemma and (19) imply that∫

[a,b)T

l∗(t)∆t ≤ lim inf

∫
[a,b)T

l̂i(t)∆t

≤ lim inf

m(i)∑
j=1

ai,j

∫
[a,b)T

l(t, yn(i)+j(t), un(i)+j(t))∆t

≤ lim inf

m(i)∑
j=1

ai,jJ(yn(i)+j, un(i)+j) = γ.

Therefore, l∗(·) ∈ L1
T([a, b)T,R).

Then, by virtue of (17), (18), (19) and l.s.c. of l(t, y, w) w.r.t. (y, w) for ∆-a.e. t and
convexity w.r.t. w for each fixed t, y, we obtain

l(t, y(t), u(t)) = lim
i→+∞

l(t, yn(i)+j(t), ûi(t))

= lim
i→+∞

l(t, yn(i)+j(t),

m(i)∑
j=1

ai,jun(i)+j(t))

≤ lim
i→+∞

m(i)∑
j=1

ai,jl(t, yn(i)+j(t), un(i)+j(t))

= lim
i→+∞

l̂i(t) = l∗(t), ∆-a.e. t ∈ [a, b)T.

Therefore, combining the two last inequalities and (14) we have∫
[a,b)T

h(t)∆t ≤
∫
[a,b)T

l(t, y(t), u(t))∆t ≤
∫
[a,b)T

l∗(t)∆t ≤ γ.

Hence, (y, u) ∈ D and
J(y, u) ≤ lim inf J(yn, un).

Now we are in a position of prove the following principal theorems.

Theorem 4.1. (Existence for Optimal Control Problem (P)). Assume assump-
tions [HF ] and [HL] hold. If Yad 6= ∅, then the optimal control Problem (P ) has an
optimal solution.

Proof: Let
m = inf{J(u(·)) : (y(·|u), u(·)) ∈ A}.

If m = +∞, we do not need to prove. Hence, let m < ∞. Since U is compact, it follows
from (14) and Lemma 4.2 that

J(u(·)) ≥
∫
[a,b)T

h(t)∆t+ λ

∫
[a,b)T

|y(t|u)|2∆t+ µ

∫
[a,b)T

|u(t)|2∆t > −∞

for any (y(·|u), u(·)) ∈ A.
Since Yad 6= ∅, there exists a minimizing sequence {(y(·|un), un(·))} ⊂ A such that

y(b|un) ∈ S and lim
n→∞

J(un(·)) = m. (20)

It is clear that {un(·)} is bounded in L2
T([a, b)T,R), and so {(Tun)(·)} ⊂ T (Uad) is also

bounded. Hence, by Lemma 4.1, there exists a subsequence, relabeled as {(Tun)(·)},
such that (Tun)(·) → z(·) weakly in L2([a, b],R) and z(·) ∈ T (Uad). Hence, there exists
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u∗(·) ∈ Uad such that z(·) = (Tu∗)(·). Furthermore, ∀v(·) ∈ L2
T([a, b)T,R), we have

(Tv)(·) ∈ L2([a, b],R). It follows from∫
[a,b)T

v(t)(un(t)− u∗(t))∆t =

∫
[a,b]

(Tv)(t)(Tun − Tu∗)(t)dt → 0 as n → ∞

that
un → u∗ weakly in L2

T([a, b)T,R) as n → ∞. (21)

By virtue of Corollary 3.1 and Lemma 4.3, we select the subsequence relabeled as {y(·|un)}
such that

y(·|un) → y(·|u∗) in L2
T([a, b]T,R), as n → +∞. (22)

Furthermore, since S is closed, (20) and Lemma 4.2 imply that

y(b|un) → y(b|u∗) ∈ S, as n → +∞. (23)

Hence,
(y(·|u∗), u∗(·)) ∈ A. (24)

On the other hand, it follows from (20), (21), (22), (24) and Lemma 4.4 that

m ≤ J(u∗) = J(y(·|u∗), u∗(·)) ≤ lim inf J(y(·|un), un) = lim J(un) = m.

Therefore, the control u∗(·) is optimal. This completes the proof.
As an application of Theorem 4.1, we return to the problem of calculus of variations:

L[y(·)] =
∫
[a,b)T

l(t, y(t), y∆(t))∆t → inf, y(a) = ξ, y(b) = η, (25)

where ξ, η ∈ R.
Denote

N := {y ∈ W 1,2
T ([a, b]T,R) : y(a) = ξ, y(b) = η}.

Our problem is to find a solution y(·) ∈ N of Problem (25). This problem can be reduced
to a particular optimal control problem:

J(u(·)) =
∫
[a,b)T

l(t, y(t|u), u(t))∆t → inf, (26)

subject to
y∆(t) = u(t), ∆-a.e. t ∈ [a, b)T, y(a) = ξ, (27)

y(b) = η. (28)

Theorem 4.2. (Solutions for Calculus of Variations Problem (25)) Suppose
assumptions [HL] hold. Then Calculus of Variations Problem (25) admits a solution
y∗(·) ∈ N .

Proof: In this case, Problem (26), (27) and (28) satisfies all the assumptions in Theo-
rem 4.1, hence, it admits an optimal pair (y(·|u∗), u∗(·)) ∈ A and y∗(·) := y(·|u∗) ∈ N is
a solution of variations Problem (25).

Example 4.1. (Optimal inventory problem in discrete time). In an inventory
problem, there is a product that can be acquired (either produced or purchased) at some
specified cost per unit, and that is consumed based upon demands at specified times. There
is also an inventory “holding” cost for storing products that are not consumed. We may
formulate such an inventory problem as an N-stage sequential decision process, where at
each stage k a decision must be made to acquire u(k) units at an acquisition cost C(k, x),
that may depend on the stage k and on the number of units acquired u(k). The state
is y(k), where y(k) is the size of the inventory, i.e., how many units of the product are
available at the start of the stage. The demand D(k) generally depends on the stage.
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If the decision in state k is to acquire u(k) units, the next-state k + 1 is y(k + 1) =
y(k) + u(k)−D(k). The inventory holding cost will be l(k, y(k)) for y(k) > 0.
Here, we consider the case that the restrictions on capacity (how many units may be

acquired or produced in each stage) are fixed constant M , an inventory limit on terminate
stage is y1 and there is no penalty cost for y(k) < 0 in each stage. Then, the optimal
inventory problem can be described as the following discrete optimal control problem.
To find the optimal control policy {u∗(k)}, k = 0, 1, 2, . . . , N such that

min J =
N∑
k=0

[C(k, u(k)) + l(k, y(k))], (29)

subject to

y(k + 1) = y(k) + u(k)−D(k), y(0) = y0, (30)

with control and terminal state constraints

u(k) ∈ [0,M ], y(N + 1) = y1. (31)

Some reasonable assumptions for cost functionals are as follows: C, l are continuous
w.r.t state y and control u, and C is convex w.r.t u. Therefore, in this case, the optimal
problem satisfies all the assumptions in Theorem 4.1, hence, it admits an optimal control
policy {u∗(k)}, k = 0, 1, 2, . . . , N .
If we let c(k, u(k)) = 0.005u2(k), h(k, y(k + 1)) = y(k) and the initial and terminal

inventory be y(0) = 0, y(N + 1) = 0. Together with N = 4, M = 1000, s(0) = 600,
s(1) = 700, s(2) = 500, s(3) = 1200. Then, the problem can be solved using the discrete
maximum principle:
The Hamiltonian

H(k, y(k), u(k), λ(k + 1)) = (0.005u2(k) + y(k)) + λ(k + 1)(y(k) + u(k)− s(k)).

Optimal inventory model satisfies the following necessary conditions:

H(k, y∗(k), u∗(k), λ(k + 1)) = min
u∈[0,M ]

H(k, y∗(k), u, λ(k + 1)),

λ(k) = −∂H(k, y∗(k), u∗(k), λ(k + 1))

∂y(k)
,

y(k + 1) =
∂H(k, y∗(k), u∗(k), λ(k + 1))

∂λ(k + 1)
,

with initial and boundary conditions

λ(N + 1) = µ, y(0) = 0, y(N + 1) = 0.

Therefore, the optimal inventory is

u∗ = [600, 700, 800, 900], y∗ = [0, 0, 0, 300, 0].

Example 4.2. Consider a system in the form of y∆(t) = f(y(t)) + c(t)u(t), ∆-a.e. t ∈ [a, b)T,
y(a) = y0, y(b) = y1,
u(t) ∈ [−1, 1],

(32)

where f(·) is bounded, continuously differentiable on R, and c(·) is bounded measurable on
[a, b)T. Let yd ∈ R be the desired value, the cost functional considered here is to minimize

J(u) =

∫
[a,b)T

|y(t|u)− yd|2∆t+

∫
[a,b)T

|u(t)|2∆t, (33)
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subject to the dynamic system Equation (29). Then, given b > a, it is clear that l =
|y − yd|2 + |u|2 satisfies the assumption [HL](ii). Hence, Corollary 3.1 and Theorem 4.1
imply that the problem has an optimal solution.

5. Conclusion. This paper has studied the problem of the existence for optimal control
problems with terminal state constraints on time scales. New conditions for the existence
and uniqueness of the control system on time scales are presented based on a weaker
assumption. Furthermore, the existence of optimal controls for the optimal control prob-
lems and Lagrange variational problems are analyzed as well. Finally, two examples are
presented to illustrate our results obtained.
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