
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 4, April 2012 pp. 2665–2679

PERFORMANCE ENHANCEMENT OF THE DIFFERENTIAL
EVOLUTION ALGORITHM USING LOCAL SEARCH

AND A SELF-ADAPTIVE SCALING FACTOR

Ching-Hung Lee1,2, Che-Ting Kuo1 and Hao-Han Chang1

1Department of Electrical Engineering
Yuan Ze University

135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan
chlee@saturn.yzu.edu.tw

2Department of Mechanical Engineering
National Chung Hsin University

No. 250 Kuo Kuang Rd., Taichung 402, Taiwan

Received May 2010; revised September 2010

Abstract. This paper presents a novel differential evolution (DE) algorithm using a
dynamic strategy, local search, and a self-adaptive scaling factor (DELSBP) to enhance
the performance of the traditional DE algorithm. The DELSBP consists of a dynamic
strategy, which updates the optimal vector instantaneously, and back-propagation-based
local search, which enhances its searching capability from the corresponding neighborhood.
In addition, a self-adaptive scaling factor strategy, developed using a fuzzy logic system,
is introduced to accelerate the convergence velocity. The inputs of fuzzy systems incor-
porate the change in fitness values and generation number to calculate a change in the
scaling factor. The performance of the DELSBP algorithm has been demonstrated using
experimental results from a set of standard test functions and through the estimation of
coefficients for an IIR filter with noise. These results demonstrate the performance and
efficacy of the DELSBP algorithm.
Keywords: Differential evolution, Optimization, Fuzzy system, Evolutionary computa-
tion, Estimation

1. Introduction. Over the last few decades, evolutionary algorithms (EAs) have re-
ceived attention for their potential as global optimization techniques [1-8]. As a method
of solving optimization problems, a powerful stochastic global optimization technique –
the differential evolution (DE) algorithm – was proposed by Storn and Price [9,10]. DE
utilizes mutation and recombination operations as searching mechanisms and selection
operators to determine the most promising regions of the search space. It creates new
candidate solutions by combining the parent individual and several other individuals by
randomly choosing from the same population. A candidate replaces the parent only if
it has a better fitness value. This is a rather greedy selection scheme that often out-
performs traditional EAs [1,2,4-8]. Recently, the DE algorithm has received increasing
attention and has been applied to many real-world applications, e.g., data mining, pattern
recognition, digital filter design, neural network training, and fuzzy system design [11-31].

Although the DE algorithm benefits from the aforementioned advantages, the DE con-
vergence velocity is slow for high-dimensional optimization problems. In addition, DE
is sensitive to algorithm parameters, such as low precision, and it cannot easily deter-
mine the global optimal solution if these parameters are not properly met. Therefore,
the selection of the scaling factor F is very important and difficult. In our experience,
large values of F can converge quickly, but they usually converge at a local minimum.

2665

2666 C.-H. LEE, C.-T. KUO AND H.-H. CHANG

Inversely, small values of F converge slowly. In the literature [23], F was selected by
experienced human operators. In the literature [17,19,20], several self-adaptive strategies
are proposed that adjust the parameter of the traditional DE algorithm. In this paper,
we developed a novel DE algorithm based on the advantages of a dynamic strategy, back-
propagation local search (or the gradient-descent method), and a self-adaptive scaling
factor using a fuzzy system to improve the efficiency of the traditional DE algorithm.
First, the dynamic strategy updates the optimal vector instantaneously, which provides
the current best information for other individuals for updating the corresponding vector.
The proposed DELSBP not only has a local search ability but also updates the best vec-
tor instantaneously and uses a fuzzy logic system to adjust the scaling factor F . The
generation number and change of fitness value are used to generate changes in F using
a fuzzy approach. These improvements could increase the precision and convergence ve-
locity of DE. The experimental results of a set of standard test functions are adopted to
demonstrate the effectiveness of the technique.
For digital signal processing, digital filter design is a basic but important topic. The

digital filter can preserve some desired frequencies and remove others when an external
input signal is passed through the filter. In the field of time domain filter estimation,
system identification is the subject of identifying coefficients given measurements of the
input and output signal [33]. In this paper, time domain coefficient identification of
infinite impulse response (IIR) filters was considered to demonstrate the performance of
our proposed DELSBP algorithm.
The rest of this paper is organized as follows. Section 2 gives an introduction of tra-

ditional DE and the procedure of the DELSBP algorithm. Numerical results from a set
of standard functions are introduced in Section 3. Section 4 describes the IIR filter and
coefficient estimation scheme using the DELSBP algorithm. The simulation results are
also reported in Section 4. Finally, Section 5 concludes this paper.

2. Traditional Differential Evolution Algorithm. The differential evolution (DE)
algorithm proposed by Storn and Price is a population-based algorithm of evolutionary
computation designed to solve nonlinear global optimization problems [4-8]. DE is ef-
fective, efficient, and robust, and it utilizes mutation and recombination operations as
searching mechanisms and selection operations to determine the most promising regions
of the search space. New candidate solutions are created by combining the parent individ-
ual and several other individuals by randomly choosing from the same population, where
the candidate with a better fitness value replaces the parent individual. This is a rather
greedy selection scheme that often outperforms traditional EAs [1-8].

2.1. Initialization. Like others EAs, the DE algorithm starts with initial population
vectors that are randomly generated when no preliminary experimental knowledge about
the searching space is available. To start the DE, we must decide the population size
PS, the maximum generation G, and D-dimensional parameters vectors, and we must
generate parameters randomly. The pth vector of the population at generation g (or
iteration) is denoted as Θp(g) = (θp1, θp2, . . . , θpD), p = 1, . . ., PS, g = 1, 2, . . ., G, where
D is the parameter dimension of the optimization problem. After that, the evaluation is
implemented.

2.2. Mutation. Mutation can be viewed as an operation that combines a differential
vector with a population vector. The formula for mutation is that a population vector
Θp(g) is mutated into a mutation vector vp(g + 1) by adding the weighted difference of
two randomly selected population vector Θr1(g) and Θr2(g), i.e.,

vp(g + 1) = Θp(g) + F · (Θr1(g)−Θr2(g)) (1)

PERFORMANCE ENHANCEMENT OF THE DIFFERENTIAL EVOLUTION ALGORITHM 2667

where F ∈ [0, 1] is the scaling factor (or mutation factor), r1, r2 ∈ {1, 2, . . ., PS}, and
p 6= r1 6= r2. The scaling factor F is a real constant that controls the amplification of the
differential variation.

2.3. Crossover. To increase the diversity, crossover is introduced. The goal of imple-
menting the crossover is to obtain a trial vector by replacing certain parameters of the
parent with corresponding parameters of a randomly generated donor vector. A vector of
solutions is selected randomly from the mutant individuals when rand(d) is less than the
value of the crossover probability CR (0 ≤ CR ≤ 1), i.e.,

up(g) = (up1(g + 1), up2(g + 1), . . . , upD(g + 1)) (2)

upd(g + 1) =

{
vpd(g + 1) if (rand(d) ≤ CR)
Θpd(g) if (rand(d) > CR),

d = 1, 2, . . . , D (3)

where rand(d) ∈ [0, 1] is a random number.

2.4. Selection. Selection is the procedure of producing better offspring. If trial vector
up(g+1) has an equal or smaller fitness value than that of its parents Θp(g), it replaces the
parent vector in the next generation; otherwise, the parent is retained in the population,
i.e.,

Θp(g + 1) =

{
up(g + 1) if f(up(g + 1)) ≤ f(Θp(g))
Θp(g) if otherwise,

p = 1, 2, . . . , PS. (4)

3. Differential Evolution Using Local Search and a Self-Adaptive Scaling Fac-
tor (DELSBP). Although DE is easy to use for solving the optimization problems, the
convergence velocity is slow, and it has low precision. We proposed a novel DE algo-
rithm (called the DELSBP algorithm) to improve the efficiency of the traditional DE. The
DELSBP consists of a dynamic strategy to determine the best vector, gradient-descent-
based local search, and self-adaptive scaling factor. A detailed description for DELSBP

algorithm is introduced below.
The DELSBP algorithm for optimization problems is in the form of

Minimize f(Θ)
subject to Θ ∈ S, S =

{
Θ ∈ <D |θd ∈ <, d = 1, . . . , D

}
where D is dimension of the problem and f(Θ) is the function to be minimized. Each
vector Θ represents a solution.

3.1. Initialization. The procedure is similar to the traditional DE algorithm. The dif-
ference is that the best vector Θbest must be obtained. Afterward, the DELSBP algorithm
process begins.

3.2. Mutation with self-adaptive scaling factor F . The mutation strategy of the
traditional DE algorithm is based on each population vector Θp(g) and a weighted dif-
ferential vector, which would search for the optimal solution slowly. Herein, a dynamic
strategy is used to provide the optimal solution updating instantaneously. The difference
between the traditional strategy and the dynamic strategy is that the Θp(g) is replaced
by the best vector Θbest (Θbest keeps the current best fitness value in the population).
This modification provides the current best information for other vectors and leads to the
optimal solution. For each population vector Θp(g), p = 1, 2, 3, . . ., PS, g = 1, 2, . . ., G, a
mutation vector is generated as follows:

vp(g + 1) = Θbest + F · (Θr1(g)−Θr2(g)) (5)

where F ∈ [0, 1] is the scaling factor (or mutation factor), r1, r2 ∈ {1, 2, . . ., PS}, and
p 6= r1 6= r2. The scaling factor F is a real constant that controls the amplification of

2668 C.-H. LEE, C.-T. KUO AND H.-H. CHANG

the differential variation. The differential vector is the deviation between two randomly
selected population vectors Θr1(g) and Θr2(g). The generated vector vp(g + 1) is the
mutation vector. The selection of an appropriate value of F is important in the DE
optimization process. Herein, we propose a novel self-adaptive strategy for selecting the
scaling factor based on fuzzy logic systems. The inputs of the fuzzy system are changes of
fitness value (∆e) and generation number. The corresponding output is ∆F . The fuzzy
system is constructed by the following fuzzy-rules table shown in Table 1.

Table 1. Fuzzy rules table for the self-adaptive scaling factor F

``````````````Generation
∆e

Zero Small Large

Small Positive Positive Zero
Medium Positive Zero Negative
Large Zero Negative Negative

(a)

(b)

(c)

Figure 1. Membership functions of the fuzzy system: (a) input variable
– ∆e, (b) input variable – generation, and (c) output variable – ∆F



PERFORMANCE ENHANCEMENT OF THE DIFFERENTIAL EVOLUTION ALGORITHM 2669

Figure 2. The corresponding surface of ∆F for a self-adaptive scaling
factor F

The corresponding membership functions for inputs ∆e and generation and output ∆F
are shown in Figures 1(a), 1(b), and 1(c), respectively. The consequence ∆F is deduced
from ∆e and generation by taking the max-min composition. The center-of-area (COA)
method is used as the defuzzification strategy. Figure 2 shows the corresponding change
surface ∆F of an adaptive scaling factor F .

3.3. Local search by the back-propagation technique. To improve the capabilities
of the traditional DE algorithm, gradient-descent-based local search was adopted [1,17].
The back-propagation algorithm was integrated as an operator in the global search to
increase the convergence rate of the optimization process.

First, the learning rate η has to be determined properly, and corresponding error cost
function E(vp(g + 1)) is defined as

E(vp(g + 1)) =
1

2

T∑
k=1

e2(k) =
1

2

T∑
k=1

[y(k)− ŷ(k)]2 (6)

where e(k) is the error between the two outputs of the actual system and the estimated
system and T is the data number. By the gradient-descent method, the update law is

v′pd(g + 1) = vpd(g + 1) + ∆vpd(g + 1) = vpd(g + 1) + ηd

(
−∂E(vp(g + 1))

∂vpd(g + 1)

)
(7)

where d = 1, 2, . . . , D. Equation (7) provides the update of the mutation vector v′p(g+1).
In our experience, this hybridized approach can speed up the convergence and easily find
the optimal solution. Experimental results from several standard test functions and an il-
lustrated example of applications for digital filter coefficients estimation will be introduced
in Section 4, Examples 4.1 and 4.2, to demonstrate the effectiveness and performance of
our algorithm.

3.4. Crossover (recombination). The goal of implementing the crossover is to obtain a
trial vector by replacing certain parameters of the parent with the corresponding parame-
ters of a randomly generated donor vector. A vector of solutions is selected randomly from
the mutant individuals when rand(d) is less than the value of the crossover probability



2670 C.-H. LEE, C.-T. KUO AND H.-H. CHANG

CR (0 ≤ CR ≤ 1), i.e.,

up(g + 1) = (up1(g + 1), up2(g + 1), . . . , upD(g + 1)) (8)

upd(g + 1) =

{
v′pd(g + 1) if (rand(d) ≤ CR)
Θpd(g) if (rand(d) > CR),

d = 1, 2, . . . , D (9)

where rand(d) ∈ [0, 1] is a random number.

3.5. Selection. Selection is the procedure of producing better offspring. If trial vector
up(g+1) has an equal or smaller fitness value than that of its parent Θp(g), it replaces the
parent vector in the next generation; otherwise, the parent is retained in the population,
i.e.,

Θp(g + 1) =

{
up(g + 1) if f(up(g + 1)) ≤ f(Θp(g))
Θp(g) if otherwise

p = 1, 2, . . . , PS (10)

The flowchart of the proposed DELSBP algorithm is described in Figure 3.

Figure 3. Flowchart of the proposed DELSBP algorithm



PERFORMANCE ENHANCEMENT OF THE DIFFERENTIAL EVOLUTION ALGORITHM 2671

4. Simulation Results. In this section, two illustrated examples are introduced to show
the performance of this approach, including optima searching of the testing function and
infinite impulse response (IIR) filter coefficients estimation by the proposed DELSBP

algorithm. All of the simulations were performed using MATLAB on an Intel Pentium 4
computer with a clock rate of 2.4 GHz and 2.96 GB of main memory.

Example 4.1. Optmization of the Testing Functions
In engineering fields, one is often confronted with the problem of functional optimiza-

tion. To illustrate the performance and viability of the proposed DELSBP algorithm, a
set of standard test functions, given in Table 2, is used. The algorithms used for the
comparison are the DELSBP algorithm, the traditional DE algorithm, and the DELSBP

algorithm without local search. The population size PS is set to be 10 for all algorithms
and test functions, and no other parameters were adjusted during the evolution. Other
parameters are shown in Table 3. For the optimization of these test functions, the per-
formance index is adopted as an error square between the searched value and the optimal
solution. In addition, the variable dimension D is also chosen. We choose n = 1 for
Ackley, Griewangk, Michalewicz, and Parallel Axis and n = 2 for Rastrigin, Rosenbrock,
and Schwefel. For the statistical analysis, the optimization process is repeated for 50 in-
dependent runs for all the algorithms. The comparison results of optimization of testing
functions by each algorithm are shown in Table 4. The simulation results show the ef-
fectiveness of the DELSBP algorithm and demonstrate that it has the capability for global
searching. The DELSBP algorithm clearly outperforms the other algorithms, and the data
show that the modifications do indeed improve the performance of the DE algorithms.

Table 2. Test functions

Function Decision Space Optimal Solution

Ackley −20 + e+ 20e−
0.2
n

√∑n
i=1 x

2
i − e

1
n

∑n
i=1 cos(2πxi)xi [−1, 1]n 0

Griewangk
∑n

i=1
x2
i

4000 −
∏n

i=1 cos
(

xi√
i

)
+ 1 [−200, 200]n 0

Michalewicz −
∑n

i=1 sinxi

(
sin

(
i·x2

i
π

))
[0, π]n −0.87

Parallel Axis
∑n

i=1 i · x2i [−5.12, 5.12]n 0

Rastrigin 10n+
∑n

i=1

(
x2i − 10 cos (2πxi)

)
[−5.12, 5.12]n 0

Rosenbrock
∑n−1

i=1

((
xn+1 − x2i

)2
+ (1− x)2

)
[−2.048, 2.048]n 0

Schwefel
∑n

i=1 xi sin
(√

|xi|
)

[−500, 500]n −837.729

Table 3. Parameter settings for the optimization of the testing functions

Parameters PS G CR F η
Values 10 10 0.5 0.5 0.1

Example 4.2. Application in Coefficient Estimation of IIR Filter
In time domain filter estimation, filter coefficient identification provides measurements

from the input and output signals [33]. Herein, time domain coefficient identification of
infinite impulse response (IIR) filters is considered, i.e., the past and present inputs and
past output signals are used to generate each new output signal.



2672 C.-H. LEE, C.-T. KUO AND H.-H. CHANG

Table 4. Comparison results for the optimization of the test functions

Test Functions Traditional DE DELSBP without BP DELSBP

Ackley 8.0900 2.7689 0
Griewangk 0.1484 0.0676 3.34× 10−3

Michalewicz 1.1962× 10−4 1.3× 10−6 1.0645× 10−7

Parallel Axis 1.1047× 10−4 1.05× 10−5 2.2× 10−8

Rastrigin 5.8362 2.3235 0.4011
Rosenbrock 0.12 0.03 4× 10−8

Schwefel 344.3316 152.4282 42.7306

Consider the following IIR filter:

y[n] =
N∑
k=1

aky[n− k] +
M∑
k=0

bkx[n− k]

= a1y[n− 1] + a2y[n− 2] + · · ·+ aNy[n−N ] + b0x[n] + b1x[n− 1]
+b2x[n− 2] + · · ·+ bMx[n−M ]

(11)

where x is the external input signal; y is the output of the actual IIR filter or a signal
filtered by this filter; N is the number of past outputs, normally referred to as the order of
the filter; M is the number of past inputs; and ak and bk are parameters that determine
the contribution of each output and input value for each sample point. Herein, the values
of N and M of the IIR filter are assumed to be previously known for simplicity. Our
objective is to estimate the coefficients ak and bk. Therefore, we construct the estimated
system

ŷ[n] =
N∑
k=1

âkŷ[n− k] +
M∑
k=0

b̂kx[n− k]

= â1ŷ[n− 1] + â2ŷ[n− 2] + · · ·+ âN ŷ[n−N ] + b̂0x[n] + b̂1x[n− 1]

+b̂2x[n− 2] + · · ·+ b̂Mx[n−M ]

(12)

where âk and b̂k are the estimated coefficients and ŷ is the corresponding output of the
estimated filter. By using the proposed DELSBP algorithm, âk and b̂k will approach the
actual values of ak and bk. Let Θ = [θ1, θ2, . . . , θm] = [â1, â2, . . ., âN , b̂0, b̂1, . . ., b̂M ] be a new
estimated coefficients vector, where m = N +M + 1 is the dimension of the parameters.

Figure 4. The coefficient estimation architecture for IIR filters using DELSBP



PERFORMANCE ENHANCEMENT OF THE DIFFERENTIAL EVOLUTION ALGORITHM 2673

Figure 4 shows the architecture for filter coefficient estimation using the DELSBP algo-
rithm. For this optimization problem, a cost function value should be defined. The sum
of squared error (SSE) is adopted as the cost function

SSE =
T∑

k=0

(y[k]− ŷ[k])2 =
T∑

n=0

e2[k], (13)

where T is the sampling data number. The goal of this paper is to find the optimal model
coefficients in (12) such that the SSE in (13) is minimized as much as possible. We use the
following learning procedure for IIR filter coefficient estimation by applying the DELSBP

algorithm.

Learning Procedure DELSBP for IIR Filter Estimation

Step 1: Set the initial population size PS, parameter number D, mutation rate F , and
crossover rate CR.

Step 2: Define the cost function. In this paper, we use the sum of squared error (SSE)
in (13).

Step 3: Evaluate the cost function value for all initial vectors and find the best vector
Θbest.

Step 4: Randomly choose two different vectors and mutate the best vector to get the
pth mutated vector in (5).

Step 5: Apply local search by using the back propagation algorithm to get v′p(g + 1).
Step 6: Apply the crossover between Θp(g) and v′p(g + 1) to obtain the trial vector

up(g + 1).
Step 7: Evaluate the cost function value of up(g+1) and select a better vector between

Θp(g) and up(g + 1).
Step 8: Update the best Θbest if up(g + 1) is better than Θbest.
Step 9: Repeat Steps 4 to 8 until the entire population is done.

Step 10: Adjust the mutation rate F by using a fuzzy system.
Step 11: Repeat Steps 4 to 10 until the maximum iteration has been reached.

The parameters used in the DELSBP operations for the following simulations are listed
in Table 5, and the external input signal x[n] is

x[n] =
2

3
cos

(
n
2π

3

)
+

1

6
cos

(
n
14π

15

)
, for n = 0, 1, 2, . . . , 50. (14)

Table 5. Parameter settings used in the DELSBP operations

Parameters T PS G CR F η (θmin,θmax)
Values 50 35 30 0.5 0.5 0.5 [−1, 1]

Case A. Noise-free case
Consider an actual band-pass IIR filter [34]

y[n] = −0.5926y[n− 1]− 0.1193y[n− 2] + 0.4404x[n]− 0.4404x[n− 2]. (15)

From (15), we know that the actual filter coefficients are al = −0.5926, a2 = −0.1193,
b0 = 0.4404, and b2 = −0.4404. Using the aforementioned design steps and Figure 4
for IIR filter coefficient identification, several numerical simulations and comparisons can
be made. To demonstrate the effectiveness, the estimated coefficients of the actual IIR
filter are compared with the estimated IIR filter, which is performed with traditional
DE, DELSBP without ∆F , and DELSBP as listed in Table 6. From the comparison
results of Table 6, the proposed DELSBP can exactly identify the actual IIR coefficients.



2674 C.-H. LEE, C.-T. KUO AND H.-H. CHANG

In addition, the results of DELSBP without ∆F have smaller error compared with the
traditional DE. This shows the performance of DELSBP and the adaptive fuzzy scaling
factor. The estimated trajectories of filter coefficients obtained by the proposed novel
DELSBP are shown in Figure 5. In addition, Figure 6 shows the convergence trajectories
of the cost function of the traditional DE (dashed-line), DELSBP without ∆F (dotted-
line), and DELSBP (solid-line). The value of the adaptive scaling factor F is shown in
Figure 7. This demonstrates the efficient tuning of the fuzzy scaling factor for improving
the optimization. The estimated results (Table 6 and Figures 5 and 6) reveal that all of
the filter coefficients are accurately approximated in DELSBP and that the coefficient of
the absent order x[n− 1] is also successfully identified.

Table 6. Comparison between the coefficients of the actual IIR filters and
IIR filters estimated by using DELSBP

a1 a2 b0 b1 b2
Actual values −0.5926 −0.1193 0.4404 0 −0.4404
Traditional DE −0.9135 −0.0612 0.3747 0.1279 −0.6509

DELSBP without ∆F −0.5628 −0.1059 0.423 −0.0471 −0.4698
DELSBP −0.5926 −0.1193 0.4404 0.0000 −0.4404

Figure 5. Trajectory of all DELSBP estimated coefficients

Case B. Noise disturbed
Consider an IIR filter disturbed by Gaussian noise

y[n] = −0.5926y[n− 1]− 0.1193y[n− 2] + 0.4404x[n]− 0.4404x[n− 2] + wgn[n]. (16)

The difference between the two examples is that we consider an actual band-pass IIR
filter, which is subject to additive white Gaussian noise. The estimated coefficients of the
additive noise filter are compared with the estimated IIR filter, which is calculated using
traditional DE, DELSBP without ∆F , and DELSBP, as listed in Table 7. The coefficient
trajectories estimated by the proposed DELSBP are shown in Figure 8. Figure 9 shows the



PERFORMANCE ENHANCEMENT OF THE DIFFERENTIAL EVOLUTION ALGORITHM 2675

Figure 6. SSE convergence trajectory of Example 4.1 – noise-free case

Figure 7. Simulation result of Example 4.1: trajectory of scaling factor F

Table 7. Comparisons between the coefficients of the actual IIR filter and
IIR filter estimated by using DELSBP (SNR = 20 dB)

a1 a2 b0 b2
Actual values −0.5926 −0.1193 0.4404 −0.4404

DE −0.5475 0.2875 0.3668 −0.4621
DELSBP without ∆F −0.5637 −0.173 0.5027 −0.5287

DELSBP −0.5866 −0.1066 0.4422 −0.4410



2676 C.-H. LEE, C.-T. KUO AND H.-H. CHANG

Figure 8. Estimated coefficient trajectories by DELSBP for Example 4.2
– noise disturbed

Figure 9. SSE convergence trajectory of Example 4.2 – noise disturbed case

convergence trajectories of the cost function of the traditional DE (dashed-line), DELSBP

without ∆F (dotted-line), and DELSBP (solid-line). Figure 10 shows the trajectory of
the scaling factor F for Example 4.2, and Figure 11 shows the estimation performance
(estimated error of coefficients versus signal-to-noise ratio (SNR)) of the simulation results.

Herein, the estimated error of the coefficients is
2∑

i=1

(ai − âi)
2+

2∑
i=0

(bi − b̂i)
2. Our approach

performs well (the coefficients can be estimated exactly) even when the output signal is



PERFORMANCE ENHANCEMENT OF THE DIFFERENTIAL EVOLUTION ALGORITHM 2677

Figure 10. Simulation result of Example 4.2: trajectory of scaling factor F

Figure 11. Performance comparisons: SSE of estimated coefficients versus SNR

noisy. This illustrated example demonstrates that the proposed DELSBP algorithm is an
effective, efficient, and robust optimization method for IIR filter coefficient estimation.

5. Conclusion. In this paper, we proposed a novel differential evolution algorithm DEL
SBP using a dynamic strategy, gradient-descent-based local search, and a fuzzy self-
adaptive scaling factor to enhance the performance of the traditional DE algorithm. The
DELSBP includes an instant-update strategy for the best vector, a back-propagation tech-
nique, and a self-adaptive scaling factor by using a fuzzy logic system. The technique can
more easily determine the optimal solution in the search space and accelerate convergence
performance. The performance of the DELSBP algorithm has been demonstrated using



2678 C.-H. LEE, C.-T. KUO AND H.-H. CHANG

experimental results from a set of standard test functions and through the estimation
of coefficients for an IIR filter with noise. From the experimental results, it can be ob-
served that the proposed approach can accurately estimate the IIR filter coefficients even
when the system is noisy. Furthermore, the illustrated example shows that the DELSBP

has higher accuracy and convergence speed. These results demonstrate the efficacy and
performance of the proposed approach.

Acknowledgment. The authors would like to thank the Associate Editor and the anony-
mous reviewers for their insightful comments and valuable suggestions. This work was
partially supported by the National Science Council, Taiwan under contract No: NSC-
97-2221-E-155-033-MY3.

REFERENCES

[1] N. Noman and H. Iba, Enhancing differential evolution performance with local search for high dimen-
sional function optimization, Proc. of 2005 Conference on Genetic and Evolutionary Computation,
pp.967-974, 2005.

[2] W. Gong, Z. Cai and L. Jiang, Enhancing the performance of differential evolution using orthogonal
design method, Applied Mathematics and Computation, vol.206, pp.56-69, 2008.

[3] R. Sarker, M. Mohammadian and X. Yao, Evolution Optimization, Kluwer Academic Pub., 2002.
[4] S. M. Fard, A. Hamzeh and K. Ziarati, A new cooperative co-evolutionary multi-objective algorithm

for function optimization, International Journal of Innovative Computing, Information and Control,
vol.7, no.5(A), pp.2529-2542, 2011.

[5] Y. Guo, X. Cao and J. Zhang, Constraint handling based multiobjective evolutionary algorithm
for aircraft landing scheduling, International Journal of Innovative Computing, Information and
Control, vol.5, no.8, pp.2229-2238, 2009.

[6] T. Uno, H. Katagiri and K. Kato, An evolutionary multi-agent based search method for stackel-
berg solutions of bilevel facility location problems, International Journal of Innovative Computing,
Information and Control, vol.4, no.5, pp.1033-1042, 2008.

[7] Z. Wang and M. Li, A hybrid coevolutionary algorithm for learning classification rules set, ICIC
Express Letters, vol.4, no.2, pp.401-406, 2010.

[8] C. Liu, An evolutionary algorithm for solving dynamic nonlinear constrained optimization, ICIC
Express Letters, vol.4, no.3(B), pp.1039-1044, 2010.

[9] R. Storn, K. Price and J. Lampinen, Differential Evolution: A Practical Approach to Global Opti-
mization, Springer-Verlag, Berlin, 2005.

[10] R. Storn and K. Price, Differential evolution – A simple and efficient heuristic for global optimization
over continuous spaces, Journal of Global Optimization, vol.11, pp.341-359, 1997.

[11] W. D. Chang, Parameter identification of Chen and Lu systems: A differential evolution approach,
Chaos, Solitons and Fractals, vol.32, pp.1469-1476, 2007.

[12] W. D. Chang, Parameter identification of Rossler’s chaotic system by an evolutionary algorithm,
Chaos, Solitons and Fractals, vol.29, pp.1047-1053, 2006.

[13] Q. Yang, A comparative study of discrete differential evolution on binary constraint satisfaction
problems, Proc. of 2008 IEEE Congress on Evolutionary Computation, Hong Kong, China, pp.330-
335, 2008.

[14] A. Qing, Dynamic differential evolution strategy and applications in electromagnetic inverse scat-
tering problems, IEEE Trans. on Geoscience and Remote Sensing, vol.44, no.1, pp.116-125, 2006.

[15] D. Xu, S. Li and F. Qian, An improved differential evolution algorithm and its application in reaction
kinetic parameters estimation, Proc. of 2007 International Conference on Intelligent Systems and
Knowledge Engineering, 2007.

[16] C. Deng, B. Zhao, A. Deng and R. Hu, New differential evolution algorithm with a second enhanced
mutation operator, Proc. of 2009 International Workshop on Intelligent Systems and Application,
Wuhan, China, pp.1-4, 2009.

[17] B. Subudhi, D. Jena and M. Gutpa, Memetic differential evolution trained neural networks for
nonlinear system identification, Proc. of 2008 IEEE Region 10 Colloquium and the 3rd International
Conference on Industrial and Information Systems, Kharagpur, India, pp.1-6, 2008.

[18] R. Storn and K. Price, Home Page of Differential Evolution, http://www.icsi.berkeley.edu/∼storn/
code.html, 2003.



PERFORMANCE ENHANCEMENT OF THE DIFFERENTIAL EVOLUTION ALGORITHM 2679

[19] J. Liu and J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Computing, vol.9,
pp.448-462, 2005.

[20] B. Alatas, E. Akin and A. Karci, MODENAR: Multi-objective differential evolution algorithm for
mining numeric association rules, Applied Soft Computing, vol.8, no.1, pp.646-656, 2008.

[21] S. Das, A. Abraham and A. Konar, Automatic clustering using an improved differential evolution
algorithm, IEEE Trans. on Systems, Man, Cybernetics – Part A: Systems and Human, vol.38, no.1,
pp.218-237, 2008.

[22] C. H. Chen, C. J. Lin and C. T. Lin, Nonlinear system control using adaptive neural fuzzy networks
based on a modified differential evolution, IEEE Trans. on Systems, Man, and Cybernetics – Part
B: Cybernetics, vol.39, no.4, pp.459-473, 2009.

[23] X. Zhang, W. Chen, C. Dai and A. Guo, Self-adaptive differential evolution algorithm for reactive
power optimization, Proc. of 2008 IEEE Int. Con. on Natural Computation, pp.560-564, 2008.

[24] Z. F. Wu, H. K. Huang, B. Yang and Y. Zhang, A modified differential evolution algorithm with self-
adaptive control parameters, Proc. of 2008 IEEE Int. Conf. on Intelligent System and Knowledge
Engineering, vol.1, pp.524-527, 2008.

[25] Z. Yang, K. Tang and X. Yao, Self-adaptive differential evolution with neighborhood search, Proc.
of 2008 IEEE Congress on Evolutionary Computation, Hong Kong, China, pp.1110-1116, 2008.

[26] F. Neri and V. Tirronen, Scale factor local search in differential evolution, Journal of Memetic
Computing, vol.1, no.2, pp.153-171, 2009.

[27] A. Caponio, A. V. Kononova and F. Neri, Differential evolution with scale factor local search for
large scale problems, in Computational Intelligence in Expensive Optimization Problems, Y. Tenne,
C.-K. Goh (eds.), Springer, 2009.

[28] C. J. Lin, C. F. Wu and C. Y. Lee, Design of a recurrent functional neural fuzzy network using
modified differential evolution, International Journal of Innovative Computing, Information and
Control, vol.7, no.4, pp.669-683, 2011.

[29] V. Vegh, G. K. Pierens and Q. M. Tieng, A variant of differential evolution for discrete optimiza-
tion problems requiring mutually distinct variables, International Journal of Innovative Computing,
Information and Control, vol.7, no.2, pp.897-914, 2011.

[30] F.-T. Lin, Application of differential evolution for fuzzy linear programming, ICIC Express Letters,
vol.5, no.6, pp.1851-1856, 2011.

[31] F.-T. Lin, Performance comparison of differential evolution and genetic algorithms for the fuzzy
transportation problem, ICIC Express Letters, vol.4, no.6(B), pp.2469-2474, 2010.

[32] J. Kushida, K. Oba and K. Kamei, Generation alternation model for reducing the number of fitness
evaluations on differential evolution, ICIC Express Letters, vol.4, no.6(A), pp.2089-2095, 2010.

[33] L. Ljung and T. L. Soderstrom, Theory and Practice of Recursive Identification, MIT Press, Cam-
bridge, MA, 1983.

[34] W. D. Chang, Coefficient estimation of IIR filter by a multiple crossover genetic algorithm, Com-
puters and Mathematics with Applications, vol.51, no.9-10, pp.1437-1444, 2006.


