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Abstract. Particle Swarm Optimization (PSO) is a population-based computational
intelligence paradigm; it originated as a simulation of simplified social model of birds
in a flock. The PSO algorithm is easy to implement and has been proven to be very
competitive for solving diverse global optimization problems including both test and ap-
plication problems in comparison to conventional methods and other meta-heuristics. In
the present study, a new velocity vector is introduced in the BPSO algorithms and is
analyzed on thirty six benchmark problems and three real life problems taken from the
literature. The numerical results show that the incorporation of the proposed velocity
vector helps in improving the performance of BPSO in terms of final objective function
value, number of function evaluations and convergence rate.
Keywords: Particle swarm optimization, Velocity update equation, Premature conver-
gence

1. Introduction. Evolutionary Algorithms (EAs) [1] are a broad class of stochastic op-
timization algorithms inspired by biology and, in particular, by those biological processes
that allow populations of organisms to adapt to their surrounding environments, genetic
inheritance and survival of the fittest. EAs have certain prominent advantages over other
types of numerical methods and the two are the most important [2] beings:

• Their application to problems that consist of discontinuous, non-differentiable and
non-convex objective functions and/or constraints.

• Their efficiency in escaping the local optima.

EAs have been applied to a wide range of benchmark functions (single and multi-objective)
and real life problems [3-9]. Some common EAs are Genetic Algorithms (GA), Evolution-
ary Programming (EP), Particle Swarm Optimization (PSO) and Differential Evolution
(DE), etc. In the present research paper, we have concentrated our work to PSO.
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Particle Swarm Optimization (PSO) is relatively a newer addition to a class of popula-
tion based search technique for solving numerical optimization problems. Metaphorically,
PSO imitates the collective and cooperative behavior of species moving in groups. Some
classic examples are a swarm of birds, school of fish, cooperative behavior of ants and
bees, etc. In classical (or original PSO), developed by Kennedy and Eberhart [10], each
particle adjusts its position in the search space from time to time according to the flying
experience of its own and of its neighbors (or colleagues).
For a D-dimensional search space, the position of the ith particle is represented as

Xi = (xi1, xi2, . . . , xiD). Each particle maintains a memory of its previous best posi-
tion Pi = (pi1, pi2, . . . , piD). The best one among all the particles in the population is
represented as Pg = (pg1, pg2, . . . , pgD). The velocity of each particle is represented as
Vi = (vi1, vi2, . . . , viD). In each iteration, the P vector of the particle with best fitness in
the local neighborhood, designated g, and the P vector of the current particle are com-
bined to adjust the velocity along each dimension and a new position of the particle is
determined by using that velocity. The two basic equations which govern the working of
PSO are that of velocity vector and position vector given by:

vid = wvid + c1r1(pid − xid) + c2r2(pgd − xid) (1)

xid = xid + vid (2)

The first part of Equation (1) represents the inertia of the previous velocity; the second
part is the cognition part and it tells us about the personal experience of the particle;
the third part represents the cooperation among particles and is named as the social
component [11]. Acceleration constants c1, c2 and inertia weight w [12] are the predefined
by the user and r1, r2 are the uniformly generated random numbers in the range of [0, 1].
The working of PSO in space is given in Figure 1.

Figure 1. Searching mechanism of PSO

Many recent versions of PSO propose modifications in the basic control parameters, like
acceleration coefficients, inertia weight, velocity clamping and swarm size [13-17]. From
these empirical studies, it can be concluded that PSO is sensitive to control parameters,
but few studies are involved in the basic mechanism. In the Basic PSO (BPSO), velocity
is an important parameter and is dynamically adjusted according to the historical behav-
ior of the particle and its companions. The present study proposes a Modified Particle
Swarm Optimization algorithm (MPSO) with new velocity vector, based on the maximum
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distance between any two points in the solution space, distance between the global best
particle and the personal best particle, objective function value of global best particle, ob-
jective function value of current particle, the current iteration number and the maximum
number of iterations. Numerical results show MPSO is quite a permissible algorithm for
solving global optimization problems.

The rest of the paper is organized as follows: in Section 2, we have given the literature
review; Section 3 describes the MPSO algorithm. The experimental setup, parameter
settings and benchmark problems are reported in Section 4. The experimental results of
benchmark problems are analyzed in Section 5 and in Section 6, the real life problems
and their results are given. Finally, this paper concludes with Section 7.

2. Previous Works. Based on the velocity update Equation (1), each particle’s new po-
sition is influenced by its personal best position and the best position in its neighborhood.
Kennedy and Mendes [18] introduced a new velocity equation in which each particle is
influenced by the success of all its neighbors, and not on the performance of only one
individual. Thompson et al. [19] implemented an alternative approach where different
velocity update equations are used for cluster centers and particles within clusters. In
their method, each particle is adjusted on the basis of the distance from its own personal
best position, the corresponding cluster’s best position, and the current position of the
cluster center. Blackwell and Bentley [20] developed the charged PSO based on an anal-
ogy of electrostatic energy with charged particles. The charged PSO changes the velocity
equation by adding particle acceleration to standard velocity update Equation (1). The
Fitness-Distance-Ratio PSO (FDR PSO) is introduced by Peram et al. [21], in which a
new term is added to the velocity update equation; each particle learns from the expe-
rience of the neighboring particles that have a better fitness than itself. Wei et al. [22]
introduced a disturbance in velocity or position to prevent the premature phenomenon
in basic PSO algorithm. Krohling [23] proposed a velocity update vector with the use of
absolute value of the Gaussian probability distribution.

Yang and Simon [24] proposed NPSO algorithm, in which each particle adjusts its po-
sition according to its own previous worst solution and its group’s previous worst solution
to find the optimum value. That is the velocity update equation of NPSO depends upon
the particle’s personal worst position and the global worst position whereas in classical
PSO the velocity update equation depends on the particle’s personal best position and
the global best position. Another version is PSO-E, a new PSO version proposed by
Krohling and Coelho [25] in which the exponential distribution is used for generating the
weighting coefficients of velocity update equation of basic PSO. θ-PSO algorithm is a
recently proposed PSO algorithm by Zhong et al. [26], based on the phase angle vector
but not on the velocity vector. In θ-PSO, an increment of phase angle vector ∆θ replaces
velocity vector υ and the positions are adjusted by the mapping of phase angles.

3. Modified Particle Swarm Optimization (MPSO). The proposed MPSO algo-
rithm is a simple and modified version of Basic Particle Swarm Optimization Algorithm
(BPSO). It introduces a new velocity vector, based on maximum distance between any
two points in the solution space, distance between the global best particle and the personal
best particle, objective function value of global best particle, objective function value of
current particle, the current iteration number and the maximum number of iterations.

In the proposed algorithm, we have fixed a probability Pv having a certain threshold
value provided by the user. In every iteration, if the uniformly distributed random num-
ber U(0, 1) is less than Pv then the velocity vector is generated by using Equation (3)
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otherwise the velocity vector follows the standard PSO algorithm, i.e., the velocity vector
is generated by using Equation (1).
The proposed velocity vector is defined as:

vid = α ∗ α1 ∗ α2 ∗ α3 ∗ (pgd − pid) (3)

where α is an adjustable coefficient. α1 = (MAXITE − ITE)/MAXITE, MAXITE
represents the maximum number of iterations and ITE represents the current iteration
number.

α2 = (dmax − dgi)/dmax,

dmax represents the maximum distance between two points in the solution space and dgi
represents the distance between the global best particle and the ith particle.
The maximum distance dmax between two points in the solution space (a, b) is computed

as:

dmax =

√√√√ D∑
i=1

(bi − ai)2

where a = (a1, a2, . . . , aD), b = (b1, b2, . . . , bD).
The distance between two particles xp and xq can be calculated as follows:

dpq =

√√√√ D∑
i=1

(xpi − xqi)2,

D represents the dimension of swarm particle.

α3 = f(Pg)/f(Xi),

where f(Pg) is a fitness function value of the global best particle Pg, f(Xi) is a fitness
function value of the ith particle Xi.
The pseudo code of the proposed MPSO algorithm is given in Figure 2.

Initialize the population
Do

Linearly decrease w from 0.9 to 0.4 and set c1 = c2 = 2.0
For i = 1 to population size = M

For d = 1 to dimension D
Set Pv and Generate U(0, 1)

If (U(0, 1) < Pv) then
vid = α ∗ α1 ∗ α2 ∗ α3 ∗ (pgd − pid)

Else
vid = wvid + c1r1(pid − xid) + c2r2(pgd − xid)

End if
xid = xid + vid

End for
If (f(Xi) < f(Pi)) Pi = Xi

If (f(Pi) < f(Pg)) Pg = Pi

End if
End if

End for
Until stopping criteria is reached

Figure 2. Pseudo code of MPSO algorithm
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The four parameters α, α1, α2, α3 help in controlling the velocity of the swarm par-
ticles. Unlike the usual velocity equation of the basic PSO (given by Equation (1)) the
proposed velocity vector do not make use of inertia weight and acceleration constants
and is more or less adaptive in nature. From the velocity Equation (3), we can easily see
that in the beginning the velocity is large therefore the particles move rapidly but during
the subsequent generations the velocity decreases and the particles slow down as they
reach towards the optimum solution. The presence of the parameter Pv, which helps in
stochastic application of the basic velocity vector and the proposed velocity vector, helps
in preventing the algorithm in becoming greedy in nature, thereby helping in preventing
the premature convergence of the swarm.

4. Experimental Settings and Benchmark Problems. In order to make a fair com-
parison of BPSO and MPSO algorithms, we fixed the same seed for random number
generation so that the initial population is same for both the algorithms. The population
size is taken as 50 for all the test problems. A linearly decreasing inertia weight is used
which starts at 0.9 and ends at 0.4, with the user defined parameters c1 = 2.0 and c2 = 2.0.
For each algorithm, the stopping criteria is to terminate the search process when one of
the following conditions is satisfied: (1) the maximum number of generations is reached
(assumed 1000 generations), (2) |fmax − fmin| < 10−4, where f is the value of objective
function. A total of 30 runs for each experimental setting were conducted. If the run
satisfies the second stopping condition then that run is called successful run.

We varied the additional probability parameter Pv for various values and observed
that the best results are obtained for 0.6. The adjustable coefficient α is kept at 0.5 for
MPSO. To check the efficiency of the proposed MPSO algorithm we tested it on thirty six
benchmark problems having box constraints. The mathematical models of the problems
are given in Appendix A.

5. Results Discussion of Benchmark Problems. The results of the benchmark prob-
lems f1 − f36 are shown in Table 1 in terms of mean best fitness, standard deviation and
SR (success rate). Table 2 gives the results of all benchmark problems NFE (number of
function evaluations) and time. Comparison results of MPSO algorithm with BPSO and
θ-PSO algorithms are given in Table 4 and Table 5 respectively. In order to make a fair
comparison of MPSO and θ-PSO, we fixed the same error goal as stated in [26] as: for
f2, f3 and f4 are 0.01, 0.1 and 100 respectively.

The MPSO algorithm is compared with the classical PSO in terms of average fitness
function value, number of function evaluations (NFE), success rate in % (SR) and run
time. As expected the proposed MPSO algorithm performed much better than the clas-
sical PSO algorithm. From Table 1, we can see that when MPSO is used to solve the
given benchmark problems the improvement in terms of average fitness function value is
more than 99% in comparison to the PSO for about 9 out of 36 test cases. Also, MPSO
gave more than 75%, 50% and 30% improvement in 3 test cases for each in comparison
with PSO in terms of fitness value. For all the remaining test cases, both the algorithms
gave the same performance in terms of fitness value. In comparison of PSO and MPSO
in terms of success rate, MPSO gave better performance than PSO in most of the test
cases. Some of the test cases (f2, f3, f5, f11, f12, f16, f17, f19, f25 and f35) PSO gave 0%
SR whereas MPSO gave more than 30% SR (including 100% SR). In terms of number of
function evaluation also MPSO gave much better performance than PSO; Figure 3 shows
the comparison of BPSO and MPSO based on number of function evaluations. However,
if we compare the convergence time of PSO and MPSO, then MPSO has taken more
time for convergence than PSO in 22 test cases, that is because of the inclusion of added
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velocity part in the algorithm. However, MPSO has taken less time than PSO in 14 out of
36 test cases. Figure 4 shows the comparison of BPSO and MPSO based on convergence
time.

Figure 3. Comparison of BPSO and MPSO based on number of function
evaluations of all test problems

Figure 4. Comparison of BPSO and MPSO based on convergence time of
all test problems

Thus, from the numerical results, it is concluded that the incorporation of the proposed
velocity vector helps in improving the performance of basic PSO in terms of final objective
function value, NFE and convergence rate. Also, the performance of proposed MPSO
algorithm is compared with θ-PSO, a variant of BPSO. From the numerical results of
Table 4 and Table 5, it is clear that the performance of proposed MPSO is better than
the θ-PSO algorithm also. Performance curves of selected benchmark problems are given
in Figures 5(a)-5(r). From these figures also we can see the superior performance of MPSO
in comparison with basic PSO.
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(a) Function f1 (b) Function f2

(c) Function f3 (d) Function f4

(e) Function f5 (f) Function f6

(g) Function f9 (h) Function f10

(i) Function f13 (j) Function f14
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(k) Function f15 (l) Function f16

(m) Function f17 (n) Function f18

(o) Function f19 (p) Function f20

(q) Function f21 (r) Function f22

Figure 5. Performance curves of BPSO and MPSO for selected benchmark problems
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6. Real Life Problems and Results. The credibility of an optimization algorithm also
depends on its ability to solve real life problems. In this paper, we took three real life
engineering design problems to validate the efficiency of the proposed MPSO algorithm.
Mathematical models of the real life problems are given below.

(i) Gas transmission compressor design [27]:
Minimize

Table 1. Result comparison of PSO and MPSO (mean fitness/standard
deviation/SR (%)

F Dim
PSO MPSO

Fitness Std SR Fitness Std SR
f1 10 8.44052 4.03724 – 3.52897 1.34857 –
f2 10 2.49e-08 2.86e-08 – 1.27e-11 2.11e-11 100
f3 10 0.09489 0.03934 – 0.03903 0.01274 30
f4 10 23.7877 34.4229 – 5.09976 6.65036 –
f5 10 9.9569 9.95228 – 2.19e-08 3.42e-08 50
f6 10 0.00480 0.00191 – 0.00296 0.00167 –
f7 2 –1.8013 9.93e-03 100 –1.8013 1.57e-06 100
f8 5 –4.32364 0.44702 – –4.66848 0.04535 –
f9 10 –6.62579 0.67245 – –9.3255 0.22641 –
f10 10 0.00000 0.00000 60 0.00000 0.00000 70
f11 10 0.83576 3.76452 – 1.04e-12 2.69e-12 40
f12 10 0.00015 0.00018 – 9.98e-10 1.26e-09 60
f13 10 0.09027 0.03896 – 0.01979 0.02145 –
f14 10 1.53e-11 4.01e-11 100 1.05e-13 2.12e-13 100
f15 10 0.00667 0.01921 – 0.00021 0.00065 –
f16 10 –1.1504 4.23e-05 – –1.15044 2.46e-11 60
f17 10 1.44e-06 1.90e-06 – 1.72e-12 1.53e-13 90
f18 10 –3201.6 369.23 20 –3751.61 130.28 70
f19 10 –19.4018 4.2009 – –21.5023 1.10e-12 30
f20 2 3.87e-11 7.29e-11 30 9.53e-16 2.83e-15 100
f21 3 –3.86278 3.97e-16 100 –3.86278 3.71e-16 100
f22 6 –3.18244 0.14725 90 –3.25608 0.06475 100
f23 2 0.00000 0.00000 100 0.00000 0.00000 100
f24 2 1.81e-15 5.23e-15 100 0.00000 0.00000 100
f25 2 –1.03163 2.22e-22 – –1.03163 2.22e-22 80
f26 10 5.58e-13 1.13e-12 80 1.53e-15 4.01e-15 100
f27 4 0.05054 0.05190 – 0.03758 0.03171 –
f28 2 3.00000 1.60e-15 100 3.00000 2.90e-16 100
f29 2 –1.91322 0.00000 100 –1.91322 0.00000 100
f30 2 –186.731 4.21e-14 – –186.731 2.00e-14 –
f31 10 –98.4351 10.4653 – –117.776 1.60425 –
f32 2 1.00000 1.85e-16 80 1.00000 9.93e-17 100
f33 2 0.397886 0.00000 50 0.397886 0.00000 100
f34 10 0.67169 0.20006 – 0.29862 0.08075 –
f35 10 –78.3323 1.92e-06 – –78.3323 3.55e-13 90
f36 2 –3.58972 0.388473 30 –3.78396 0.00000 50
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f(x) = 8.61× 105 × x
1/2
1 x2x

−2/3
3 (x2

2 − 1)−1/2 + 3.69× 104 × x3 + 7.72× 108

× x−1
1 x0.219

2 − 765.43× 106 × x−1
1

Subject to: 10 ≤ x1 ≤ 55, 1.1 ≤ x2 ≤ 2, 10 ≤ x3 ≤ 40.
(ii) Optimal thermohydralic performance of an artificially roughened air heater [28]:

Maximize L = 2.51 ∗ ln e+ + 5.5− 0.1RM −GH

where RM = 0.95x0.53
2 , GH = 4.5(e+)0.28(0.7)0.57, e+ = x1x3(f̄/2)

1/2, f̄ = (fs+fr)/2,
fs = 0.079x−0.25

3 , fr = 2(0.95x0.53
3 + 2.5 ∗ ln(1/2x1)

2 − 3.75)−2.
Subject to: 0.02 ≤ x1 ≤ 0.8, 10 ≤ x2 ≤ 40, 3000 ≤ x3 ≤ 20000.

Table 2. Result comparison of PSO and MPSO (diversity/NFE/time (sec))

F Dim
PSO MPSO

Diversity NFE Time Diversity NFE Time
f1 10 3.05529 50050+ 2.7 1.02237 50050+ 3.2
f2 10 0.0805151 50050+ 2.7 0.0405957 43570 2.9
f3 10 0.713923 50050+ 2.4 2.6207 47540 3.1
f4 10 4.58719 50050+ 6.3 0.678667 50050+ 8.8
f5 10 4.1804 50050+ 1.7 0.00014 46800 3.7
f6 10 0.647542 50050+ 2.1 0.39727 50050+ 4.6
f7 2 0.00365 38495 0.7 0.0433284 18375 0.5
f8 5 0.0524459 50050+ 2.6 0.0291604 50050+ 2.8
f9 10 2.14912 50050+ 5.8 1.35232 50050+ 6.4
f10 10 0.793882 49215 0.5 0.14526 46860 0.3
f11 10 0.59298 50050+ 2.1 0.02419 49715 2.6
f12 10 0.06367 50050+ 0.1 2.07e-05 48615 0.24
f13 10 3.21891 50050+ 0.1 0.38093 50050+ 0.25
f14 10 0.16440 34135 0.6 0.32737 22315 0.21
f15 10 3.73003 50050+ 0.2 0.91417 50050+ 0.25
f16 10 1.80214 50050+ 5.4 0.38154 49550 7.4
f17 10 0.443238 50050+ 5 0.00436 45745 6.1
f18 10 0.45694 49630 2.2 0.00704 48510 2.6
f19 10 0.10776 50050+ 4.8 0.46810 48680 6.9
f20 2 0.14613 49970 2 0.13494 40755 4.1
f21 3 0.01927 37945 2.2 0.01299 20465 1.4
f22 6 0.01558 43920 5.1 0.00763 37295 4.3
f23 2 0.00693 37020 1.0 0.00053 22525 0.7
f24 2 0.18571 33945 0.2 0.16375 17655 0.1
f25 2 0.27273 50050+ 1.1 0.0069 38575 0.9
f26 10 0.16440 45700 5 0.00153 34135 4.1
f27 4 0.27199 50050+ 2.2 0.16179 50050+ 3.0
f28 2 0.00021 40895 1.0 0.00184 19885 0.6
f29 2 0.11743 32970 0.4 0.01701 13855 0.2
f30 2 1.57827 50050+ 0.2 0.91083 50050+ 0.4
f31 10 2.9924 50050+ 2.0 3.38776 50050+ 2.2
f32 2 0.07937 39390 12.5 0.38103 37840 12.1
f33 2 0.01523 42785 1.0 0.01535 41820 0.6
f34 10 7.09519 50050+ 2.8 1.60477 50050+ 3.4
f35 10 0.05004 50050+ 3.9 0.00107 45840 3.6
f36 2 1.08611 47120 1.0 0.15180 35930 0.8
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Table 3. Comparison of proposed MPSO with BPSO in terms of improve-
ment (%) and t-test values in fitness function values

Function Improvement (%) t-value Function Improvement (%) t-value
f1 58.190135 6.320111 f19 10.82632 2.738678
f2 99.948996 4.7662 f20 99.99754 2.907591
f3 58.868163 7.398961 f21 0.00000 0.00000
f4 78.561357 2.919559 f22 2.313948 2.507455
f5 100 5.479768 f23 0.00000 –
f6 38.333333 3.972251 f24 100 1.89556
f7 0.00000 0.00000 f25 0.00000 0.00000
f8 7.9756872 4.203663 f26 99.72581 2.69725
f9 40.745481 20.84008 f27 25.64306 1.16712
f10 0.00000 – f28 0.00000 0.00000
f11 100 1.215997 f29 0.00000 –
f12 99.999335 4.564324 f30 0.00000 0.00000
f13 78.07688 8.679908 f31 19.64838 10.00557
f14 99.313725 2.075443 f32 0.00000 0.00000
f15 96.851574 1.840845 f33 0.00000 –
f16 0.0034771 5.17941 f34 55.54199 9.47145
f17 99.999881 4.151155 f35 0.00000 0.00000
f18 17.179223 7.694049 f36 5.411007 2.738662

Table 4. Comparison of MPSO with BPSO and θ-PSO (w = 0.6, c1 =
c2 = 1.7)

F Algorithm Swarm size Dimension
Number of iterations to achieve the goal

w = 0.6, c1 = c2 = 1.7
Minimum Average SR

f2

BPSO 20 30 722 778 100
θ-PSO 20 30 523 598 100
MPSO 20 30 236 324 100
BPSO 40 30 783 847 100
θ-PSO 40 30 352 406 100
MPSO 40 30 270 321 100

f3

BPSO 20 30 368 455 100
θ-PSO 20 30 343 512 100
MPSO 20 30 211 390 100
BPSO 40 30 684 836 100
θ-PSO 40 30 231 334 100
MPSO 40 30 219 293 100

f4

BPSO 20 30 426 533 100
θ-PSO 20 30 223 376 100
MPSO 20 30 208 267 100
BPSO 40 30 544 597 100
θ-PSO 40 30 194 283 100
MPSO 40 30 184 214 100

(iii) Optimal capacity of gas production facilities [27]:
Minimize

f(x) = 61.8 + 5.72x1 + 0.2623
[
(40− x1) ln

( x2

200

)]−0.85

+ 0.087(40− x1) ln
( x2

200

)
+ 700.23x−0.75

2 + 0.087(40− x1) ln
( x2

200

)
+ 700.23x−0.75

2
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Table 5. Comparison of MPSO with BPSO and θ-PSO (w = 0.729,
c1 = c2 = 1.494)

F Algorithm Swarm size Dimension
Number of iterations to achieve the goal

w = 0.729, c1 = c2 = 1.494
Minimum Average SR

f2

BPSO 20 30 598 682 100
θ-PSO 20 30 362 734 100
MPSO 20 30 207 239 100
BPSO 40 30 620 707 100
θ−PSO 40 30 266 683 100
MPSO 40 30 203 233 100

f3

BPSO 20 30 420 686 100
θ-PSO 20 30 385 564 95
MPSO 20 30 178 198 100
BPSO 40 30 883 965 100
θ-PSO 40 30 263 356 100
MPSO 40 30 192 294 100

f4

BPSO 20 30 363 443 100
θ-PSO 20 30 328 402 100
MPSO 20 30 140 185 100
BPSO 40 30 459 537 100
θ-PSO 40 30 272 325 100
MPSO 40 30 165 198 100

Table 6. Comparison of proposed MPSO with PSO for real life problems

Gas Transmission Compressor Design
Item PSO MPSO Results in [27]
x1 55 53.4471 55
x2 1.19541 1.1901 1.195
x3 24.7749 24.7185 25.026
f(x) 296.446e+04 296.436e+004 296.455e+04
NFE 23631 18270 NA

Optimal Thermohydralic Performance
of an Artificially Roughened Air Heater

Item PSO MPSO Results in [28]
x1 0.05809 0.04227 0.052
x2 10 10 10
x3 10400.2 13289.4 10258
f(x) 4.21422 4.21422 4.182
NFE 6207 3030 NA

Optimal Capacity of Gas Production Facilities
Item PSO MPSO Results in [27]
x1 17.5 17.5 17.5
x2 600 600 465
f(x) 169.844 169.844 2 173.76
NFE 342 297 NA

Subject to: x1 ≥ 17.5, x2 ≥ 200; 17.5 ≤ x1 ≤ 40, 300 ≤ x2 ≤ 600.

Numerical results for the real life problems are listed in Table 6. As evident from the
empirical results, the average number of function evaluations (NFE) required to reach
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the optimum solution, the proposed MPSO algorithm gave the best results. However,
in terms of function value all the algorithms gave more or less similar results. This is
probably because of the fact that all the real life problems considered here are simple in
nature and do not have more than three variables.

7. Conclusion. In the present research paper, a Modified Particle Swarm Optimization
algorithm called MPSO is presented. In MPSO algorithm, a new time varying velocity
update equation is introduced which is applied stochastically along with basic PSO veloc-
ity equation. A test suit of 36 benchmark problems and three real life problems were used
to analyze the characteristics of MPSO; the test suit consists of scalable and nonscalable
functions. The results of MPSO are compared with basic PSO and recent variant PSO,
θ-PSO. The numerical results showed that MPSO outperforms the BPSO and θ-PSO with
a noticeable percentage. Thus, it can be concluded that the incorporation of the proposed
velocity vector helps in improving the performance of BPSO.

Acknowledgment. The authors would like to extend their thanks to the unknown ref-
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Appendix.

1. Ratringin function

min
x

f1(x) =
n∑

i=1

(
x2
i − 10 cos(2πxi) + 10

)
, −5.12 ≤ xi ≤ 5.12,

x∗ = (0, 0, . . . , 0), f1(x
∗) = 0.

2. Sphere function

min
x

f2(x) =
n∑

i=1

x2
i , −5.12 ≤ xi ≤ 5.12,

x∗ = (0, 0, . . . , 0), f2(x
∗) = 0.

3. Griewank function

min
x

f3(x) =
1

4000

n−1∑
i=0

x2
i −

n−1∑
i=0

cos

(
xi√
i+ 1

)
+ 1, −600 ≤ xi ≤ 600,

x∗ = (0, 0, . . . , 0), f3(x
∗) = 0.

4. Rosenbrock function

min
x

f4(x) =
n−1∑
i=0

100(xi+1 − x2
i )

2 + (xi − 1)2, −30 ≤ xi ≤ 30,

x∗ = (1, 1, . . . , 1), f4(x
∗) = 0.
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5. Ackley’s path function

min
x

f5(x) = 20 + e− 20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
,

− 32 ≤ xi ≤ 32, x∗ = (0, 0, . . . , 0), f5(x
∗) = 0.

6. Dejong’s function with noise

min
x

f6(x) =

(
n−1∑
i=0

(i+ 1)x4
i

)
+ rand[0, 1], −1.28 ≤ xi ≤ 1.28,

x∗ = (0, 0, . . . , 0), f6(x
∗) = 0.

7. Michalewicz function
Functions f7, f8 and f9 are Michalewicz function with dimension 2, 5 and 10 respec-
tively.

f(x) = −
n∑

i=1

sin(xi)

(
sin

(
i
x2
i

π

))2m

, m = 10, −π ≤ xi ≤ π,

f7(x
∗) = −1.8013, f8(x

∗) = −4.6876, f9(x
∗) = −9.66015.

8. Step function

min
x

f10(x) =
n−1∑
i=0

⌊xi + 1/2⌋2, −100 ≤ xi ≤ 100, x∗ = (0, 0, . . . , 0),

f10(x
∗) = 0.

9. Schwefel’s function 1.2

min
x

f11(x) =
n−1∑
i=0

(
i∑

j=0

xi

)2

, −100 ≤ xi ≤ 100,

x∗ = (0, 0, . . . , 0), f11(x
∗) = 0.

10. Schwefel’s function 2.21

min
x

f12(x) = max |xi|, 0 ≤ i < n, −100 ≤ xi ≤ 100,

x∗ = (0, 0, 0, . . . , 0), f12(x
∗) = 0

11. Schwefel’s function 2.22

min
x

f13(x) =
n−1∑
i=0

|xi|+
n−1∏
i=0

|xi|, −10 ≤ xi ≤ 10,

x∗ = (0, 0, . . . , 0), f13(x
∗) = 0

12. Sum of different power

min
x

f14(x) =
n∑

i=1

|xi|(i+1), −1 ≤ xi ≤ 1,

x∗ = (0, 0, 0, . . . , 0), f14(x
∗) = 0

13. Alphine function

min
x

f15(x) =
n∑

i=1

|xi sin(xi) + 0.1xi|, −10 ≤ xi ≤ 10,

x∗ = (0, 0, 0, . . . , 0), f15(x
∗) = 0
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14. Generalized penalized function 1

min
x

f16(x) =
π

n

{
10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2
[
1 + 10 sin2(yi+1π)

]
+ (yn − 1)2

}

+
n∑

i=1

u(xi, 10, 100, 4),

where yi = 1 +
1

4
(xi + 1), −50 ≤ xi ≤ 50, x∗ = (0, 0, . . . , 0), f16(x

∗) = 0

15. Generalized penalized function 2

min
x

f17(x) = (0.1)

{
sin2(3πx1) +

n−1∑
i=1

(
(xi − 1)2(1 + sin2(3πxi+1))

)
+ (xn − 1)

(
1 + sin2(2πxn)

)}
+

n−1∑
i=0

u(xi, 5, 100, 4),

−50 ≤ xi ≤ 50, x∗ = (1, 1, . . . ,−4.76), f17(x
∗) = −1.1428

In problem f16 and f17,

u(x, a, b, c) =

 b(x− a)c if x > a
b(−x− a)c if x < −a
0 if −a ≤ x ≤ a

16. Schwefel function

min
x

f18(x) = −
n∑

i=1

xi sin(
√
|xi|), −500 ≤ xi ≤ 500,

x∗ = (420.97, 420.947, . . . , 420.947), f18(x
∗) = −418.9829 ∗ n

17. Levy and Mantalvo function

min
x

f19(x) = sin2(3πx1) +
n−1∑
i=1

(xi − 1)2
(
1 + sin2(3πxi+1)

)
+ (xn − 1)

(
1 + sin2(2πxn1)

)
,

− 10 ≤ xi ≤ 10, x∗ = (1, 1, . . . , 1,−9.7523), f19(x
∗) = −21.5023

18. Dejong’s function (no noise)

min
x

f20(x) =
n−1∑
i=0

(i+ 1)x4
i , −1.28 ≤ xi ≤ 1.28,

x∗ = (0, 0, . . . , 0), f20(x
∗) = 0.

19. Hartmann function 1

min
x

f21(x) = −
4∑

i=1

αi exp

(
−

3∑
j=1

Aij(xj − Pij)
2

)
, 0 ≤ xi ≤ 1,

x∗ = (0.114614, 0.555649, 0.852547), f21(x
∗) = −3.86278

where α =
[
1 1.2 3 3.2

]
, A =


3 10 30
0.1 10 35
3 10 30
0.1 10 35

, P =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828





MODIFIED PSO WITH TIME VARYING VELOCITY VECTOR 217

20. Hartmann function 2

min
x

f22(x) = −
4∑

i=1

αi exp

(
−

6∑
j=1

Bij(xj −Qij)
2

)
, 0 ≤ xi ≤ 1,

x∗ = (0.20169, 0.50011, 0.476874, 0.275332, 0.311652, 0.6573), f22(x
∗) = −3.32237

where α =
[
1 1.2 3 3.2

]
, B =


10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

,

Q =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


21. Shaffer’s function 6

min
x

f23(x) = 0.5 +
sin2

√
(x2

1 + x2
2)− 0.5

1 + 0.01(x2
1 + x2

2)
2

, −10 ≤ xi ≤ 10,

x∗ = (0, 0), f23(x
∗) = 0

22. Matyas function

min
x

f24(x) = 0.26(x2
1 + x2

2)− 0.48x1x2, −10 ≤ xi ≤ 10,

x∗ = (0, 0), f24(x
∗) = 0

23. Six hump camel back function

min
x

f25(x) = 4x2
0 − 2.1x4

0 +
1

3
x6
0 + x0x1 − 4x2

1 + 4x4
1, −5 ≤ xi ≤ 5,

x∗ = (0.09,−0.71), f25(x
∗) = −1.03163

24. Axis parallel hyperellipsoid

min
x

f26(x) =
n∑

i=1

ix2
i , −5.12 ≤ xi ≤ 5.12,

x∗ = (0, 0, . . . , 0), f26(x
∗) = 0

25. Colvillie function

min
x

f27(x) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2

+ 10.1
(
(x2 − 1)2 + (x4 − 1)2

)
+ 19.8(x2 − 1)(x4 − 1),

−10 ≤ xi ≤ 10, x∗ = (1, 1, 1, 1), f27(x
∗) = 0

26. Goldstein and price problem

min
x

f28(x) =
{
1 + (x0 + x1 + 1)2(19− 14x0 + 3x2

0 − 14x1 + 6x0x1 + 3x2
1)
}

{
30 + (2x0 − 3x1)

2(18− 32x0 + 12x2
0 + 48x1 − 36x0x1 + 27x2

1)
}
,

−2 ≤ xi ≤ 2, x∗ = (0, 1), f28(x
∗) = 3

27. Mccormic function

min
x

f29(x) = sin(x1 + x2) + (x1 − x2)
2 − 1.5x1 + 2.5x2 + 1, −2 ≤ xi ≤ 2,

x∗ = (−0.5471,−1.5473), f29(x
∗) = −1.9132
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28. Shubert function 1

min
x

f30(x) =
5∑

j=1

j cos ((j + 1)x1 + j)
5∑

j=1

j cos ((j + 1)x2 + j) , −10 ≤ xi ≤ 10,

f30(x
∗) = −186.7309

29. Shubert function 2

min
x

f31(x) = −
n∑

i=1

5∑
j=1

j sin ((j + 1)xi + j),

− 10 ≤ xi ≤ 10

30. Shekel’s Foxholes function

min
x

f32(x) =

(
1

500
+

24∑
j=0

(
j + 1 +

1∑
i=0

(xi − aij)
6
)−1
)−1

, −65.54 ≤ xi ≤ 65.54,

x∗ = (−31.95,−31.95), f32(x
∗) = 1

31. Branin function

min
x

f33(x) =

(
x1 −

5.1

4π2
x2
0 +

5

π
x0 − 6

)2

+ 10

(
1− 1

8π

)
cos(x0) + 10, −10 ≤ xi ≤ 10,

x∗ = (9.42, 2.47), f33(x
∗) = 0.397886

32. Shaffer’s function 7

min
x

f34(x) =

(
n∑

i=1

x2
i

)1/4
sin2

50

(
n∑

i=1

x2
i

)1/10
+ 1.0

 , −32.767 ≤ xi ≤ 32.767,

f34(x
∗) = 0

33. Test2N function

min
x

f35(x) =
1

n

n∑
i=1

(x4
i − 16x2

i + 5xi), −5 ≤ xi ≤ 5,

x∗ = (−2.903,−2.903, . . . ,−2.903), f35(x
∗) = −78.3323

34. Modified Himmelblau function

min
x

f36(x) = (x2 + x2
1 − 11)2 + (x1 + x2

2 − 7)2 + x1, −5 ≤ xi ≤ 5,

x∗ = (−3.788,−3.286), f36(x
∗) = −3.7839.


