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ABSTRACT. In this work the authors present a dynamic integral sliding mode controller
which is based on the existing dynamic sliding mode control and integral sliding mode con-
trol techniques. The proposed control law makes use of an integral manifold instead of
the conventional sliding manifold which provides dynamic sliding mode without reaching
phase. The robustness is inherited from dynamic sliding mode control and is enhanced
by the elimination of reaching phase. In addition, this new designed control law reduces
chattering with the incorporation of the dynamic sliding mode control concept. Further-
more, the performance is improved via the linear control law design. A comprehensive
comparative analysis carried out with dynamic sliding mode control demonstrates the su-
periority of the proposed control law. A chatter free requlation control of a kinematic car
model with improved performance in the presence of uncertainties certifies the robustness
of the proposed dynamic integral sliding mode controller.

Keywords: Dynamic integral sliding mode control, Nonlinear control, Chattering, Ro-
bustness

1. Introduction. Sliding mode control (SMC) plays a significant role in the theory of
variable structure systems (VSSs) and it is suitable for the control of uncertain nonlinear
systems. In SMC robustness is guaranteed against uncertainties, un-modeled dynamics,
parametric uncertainties and external disturbances [1, 2]. However, it experiences chat-
tering phenomenon which leads to the damage in actuators and the system itself. A brief
overview about the contributions to ensure robustness and performance with reduced
chattering is discussed below.

Robust stabilization of uncertain systems has been widely addressed in [1]. Zak et al. [3]
developed a generic condition for the existence and stability of the reduced order sliding
motion. Edwards [4] developed an algorithm to handle matched disturbances acting in the
channel of input. Based on the work in [3], some dynamic output feedback control schemes
have been proposed for robust control of uncertain systems [5, 6]. Silva et al. [7] have
developed an algorithm in which the existence and the reachability problems have been
formulated using a polytopic description in order to tackle mismatched uncertainties with
reduced chattering. Bartolini et al. [8] have identified some conditions under which, even
in the presence of uncertainty, the convergence to the sliding manifold is ensured via the
application of a multi-input control. A nonlinear integral-type sliding surface is proposed
in [9], for the system in the presence of both matched and unmatched uncertainties. The
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stability of the controlled system with unmatched uncertainties depends on the controlled
nominal system, and the nature and size of the equivalent unmatched uncertainties.

The robustness of the SMC based control algorithms is directly related to chattering
phenomena and vice versa. In order to avoid chattering and its adverse effects, in the
last two decades many of the researchers devoted their efforts to handle the chattering
reduction. The approach of Higher Order Sliding Mode Control (HOSM) generalizes
the basic idea of SMC. The main idea of HOSM [10, 11] is to act on higher order time
derivatives of sliding manifolds as compared with the 1st order derivative in standard
sliding mode technique. With this action chattering is attenuated and high order precision
is achieved but with a compromise on robustness [12]. The 7" order sliding mode is
determined by s = § = § = ... = s"1 = 0, which form an r-dimensional condition on
state of the dynamic system. The sliding order is a measure of the smoothness of the
sliding variable in the vicinity of the sliding manifold. A number of such controllers were
described in [12, 13, 14, 15]. Some realization problems of r-sliding mode are caused by the
complicated structure of the transient process, which was difficult to monitor with r > 2
[17, 18]. Another Problem concerns the above mentioned procedure, when u(!) is treated
as new control. Due to the intersection of u and its derivatives during the convergence of
(r+1)-sliding mode s = § = ... = s"+=Y = 0, any (r+1) sliding controller is only effective
in some vicinity of the mode. Global convergence is only proved for r =1 =1 [15]. In
[19], X. Liu et al. used higher order sliding mode for tracking control of piezoelectric
systems to improve the chattering attenuation in the presence of some uncertainties.
Furuta et al. [20] designed a variable structure (VS) controller with sliding sector that
enables the system states to move from the outside to the inside of the sliding sector.
The proposed VS controllers are quadratically stable and chatter free. In [21], Feng et
al. have proposed a second order terminal sliding controller which utilizes a non-singular
terminal sliding mode manifold for the input-output subsystem to realize fast convergence
and better tracking precision. Meanwhile, a chattering-free second-order terminal sliding
mode control law is presented. In [11] dynamic surfaces were under consideration with
conventional sliding modes which provide a dynamic controller only if the system contains
certain control derivatives (u(®), 8 > 1) in the input output representation for chattering
elimination.

The robust stabilization of uncertain systems attracted many researchers but perfor-
mance was addressed by very few. J. Liu et al. [23] developed a dynamic terminal sliding
mode based robust algorithm which provided chattering reduction and improved perfor-
mance. Laghrouche et al. [18] proposed a HOSM algorithm which was based on the idea
of integral sliding mode control. This algorithm improved the performance of the control
law with reduced chattering along the switching manifold. In regards to applications, [24]
used integral sliding mode for permanent-magnet synchronous motor (PMSM) speed regu-
lation with improved performance and enhanced robustness. In [25], an indirect adaptive
control scheme is derived in which the proposed scheme provides arbitrarily improved
transient performance in the presence of disturbances. Dynamic Sliding Mode control
(DSMC) is a robust output feedback control strategy which enforces additional dynamics
which are termed as compensator dynamics. The dynamic sliding system becomes an
augmented system with compensators, which is higher order system as compared with
the original system. The compensator dynamics are designed to achieve and/or improve
the stability of the sliding system, yielding chatter free control with desired performance.
DSMC provides a dynamic control law [11, 21, 26, 27, 28] which robustly asymptotically
stabilizes the nonlinear systems.

In this paper, the authors propose a control design methodology which is based on the
core ideas of dynamic sliding mode control and integral sliding mode control schemes.
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This newly designed control law provides better results than that of DSMC and integral
sliding mode. The sliding mode is established without reaching phase. The reaching
phase is eliminated using an integral manifold and the chattering is reduced by using the
concept of dynamic sliding mode control. The robustness is enhanced via the reaching
phase elimination as well as via the robust nature of DSMC. In nutshell the proposed
controller improved performance, robustness and chattering reduction. The rest of the
paper is presented in the following sequence. In Section 2 the problem is converted
into generalized controllable canonical form and in Section 3 the design method of the
new control law, stability analysis and sliding mode existence is discussed. In Section
4, a standard car model is considered to clarify the design procedure. In Section 5, the
comparative analysis of the simulation results of new control law with dynamic sliding
mode is presented. Section 6 contains the comprehensive concluding remarks followed by
references.

2. Problem Formulation. Consider a SISO nonlinear system described by the state
equation

&= f(zx) + g(x)u+ ((z,1) (1)
y = h(z) (2)

where z € R" is the measurable state vector, u € R is scalar control input, f(x) and g(x)
are smooth vector fields, ((x,t) represents the uncertainties. These uncertainties occur
due to unmodeled dynamics, parametric variations and external disturbances and h(z) is a
measurable scalar output function. The unknown function ((z,t) is some norm bounded
scalar function which represents the uncertainties in the system, where ||((z,1)|] < (o
represents some norm and (p is some positive constant. In order to present the new
designed control law, a short discussion on the output feedback technique is presented
in the forthcoming paragraphs which provide the standard form of the problem. The
derivative of the output function h(x) with respect to the function f(x) is defined as [29].
_ Oh(x)

Loh(e) = S5 () = Vhia)f(0)

Recursively it can be defined as
Lih(z) = h(x)
Lih(x) = Ly(LY~Vh(x) = V(L h(a) f(x), j=1.2,...

The 7" derivative of the output function in which the input v appears explicitly is
called the relative degree. Mathematically, the r*" derivative of the output along the
dynamics of system (1) becomes

y® = Lhh(x) + Ly(LY Y h(z))u + ((x,t) (3)

Subject to the following conditions
1. Ly(LY(x)) = 0 for all = in the neighborhood of w for i < 7 — 1.
2. Ly(LY™Vh(x)) £ 0.
The n'" derivative of output function becomes,
y™ = L2h(w) + Ly(LY Vh(@))u+ -+ LyL, LTV h(z)u®—Y (4)
+L§L5f_1)h(x)uu(k_1) + Lngf_l)h(x)u(k) + (w1, w1
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where ¢*(z,u, 1, ...,u™ Y t) is bounded function which represents the uncertainties and

their time derivatives. The constant k& shows the number of differentiation of (2). Fol-
lowing assumptions and transformations will be considered for the system defined in (3).
Suppose that

o(7,@) = L2h(x) + Ly(LY Vh(@))u+ -+ Ly L, LY Vh(2)u® = 4+ 2LV h(w)uu®=D

and
() = >h<x>
where gj = (y g, -,y ) and 4 = (u, (n=1)). Now by defining the transforma-
tion yV =¢ fori=1,2,...,nand § = C, the system (3) results in the form:
&=6
&=6
&n = (5, 0) +v(Ou® + (£, 1) (5)

= ¢(&, i, u®™) + (1)

The representation in (4) is called Local Generalized Controllable Canonical Form([L.GCCF)
of Fliess [31].

Assumption 2.1. Let (*(¢,t) satisfy:

1C7E )| < Ko
where K is the uncertainty bound in C. Edward, et al. [15].

The nominal system corresponding to system (4) can be obtained by replacing C*(f, t) =
0 and is termed as proper if 4) It is single input single output; i7) ¢(&, @, u™) € C*; iii)

det [%] # 0. A wide class of nonlinear systems can be put into I-O form with the

addition of compensator term which appears as a chain of integrators [31].

Definition 2.1. The zero dynamics of the nominal system in (5) are defined as [28]
$(0, 1, u®) = 0. That nominal system in (5) is called minimum phase if the aforemen-
tioned zero dynamics are uniformly asymptotically stable.

3. Control Law Design. The usual dynamic control law consists of a control law which
is totally based on the sliding mode control theory. However, the proposed dynamic
control law contains two dynamic terms which appear with the following mathematical
expression:

u®) = ugk) + ugk) (6)

The first part u(()k) € R, is continuous which is used to stabilize the nominal system
in finite time when sliding mode is being established from the beginning of the process.
The second part ugk) € R is discontinuous in nature called the dynamic integral control
which efficiently rejects the uncertainties. These uncertainties may be due to external
uncertainties and internal parametric uncertainties, etc. In the subsequent subsections,

the design methodology is demonstrated.
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3.1. Design of ugk). To facilitate the design of the linear control law, the nominal system
in (6) can be written in alternate form as follows:

& =6
& =6

where y(&, @, u®™) = (&, @) + (v(€) — 1)u®). This linear control law is designed in ideal
(nominal) case with the subsequent assumption:

Assumption 3.1. The system in (7) is considered to be independent of nonlinearities,
i.e., X(&,1,u®) = 0 in the very beginning and it is also supposed that the system operates
under v onl he beginni

0 y from the beginning of the process.

Consequently, the system in (7) takes the following form:
£ = A + Buy’) (8)

where A = On-1yx1 Ln-1)x(n-1) and B = On-1)x1 . The control law u*¥ is then
01><1 le(nfl) Il><1 0

designed via LQR method.

Remark 3.1. The aforementioned control law performs best when it is designed by robust
techniques such as LMIs. The proposed methodology assumes that system in (5) is either
minimum phase in sense defined in Definition 2.1 or the zero dynamics are marginally
stable.

3.2. Design of u( ). In the proposed design technique, the dynamic controller design
uses an integral manlfold instead of conventional sliding surface which is used in the
existing dynamic sliding mode controller. In order to attain the desired performance and
to robustly compensate the uncertainties with reduced chattering, the dynamic controllers
ugk) is formulated by first defining the integral sliding surface. The integral sliding surface
is designed in such a way that the reaching phase is eliminated. This elimination boosts
the robustness against uncertainties from the very beginning. The integral manifold is

defined as follows

=)

o(§) = 00(&) + 2 (9)

where 0y(£) is the Hurwitz polynomial which is mathematically defined by o¢(§) =
o & with ¢, = 1 and z is the integral term. The time derivative of (9) along (5)
yields

n—1

5(&) =D cibirr + x(& i u®) + (1(€) = Du® + (&) +ul +u +2 (10)

=1

Inserting

(chzﬂ +ulf ) (11)

with initial conditions z(0) = —0o(£(0)), one has
(&) = p(&, 1) + (v(&) — Dug” + v(E)u + ¢*(&,1) (12)
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This initial condition, z(0), of the integral terms is adjusted in such a way that the
sliding surface starts at 0 at time ¢t = 0. The design of the discontinuous control law can
be facilitated with the use of Definition 2.1.

Definition 3.1. A general sliding convergence condition ¢(§) = —u(k, o) [28], is globally
uniformly asymptotically stable if these conditions hold: i) u(k,0) = 0, i) u(k,o) € C!
if 0 #£0 and iii) 6(&) = —p(k, o).

For the proposed control law design this convergence condition is defined by the follow-
ing mathematical form:

(&) = =K, (0 + Wsign(o)) (13)
By comparing (12) and (13), the expression of dynamic controller ugk) becomes
1 o o
z&ﬁz—%@(mam+«%a—mm?+4aw+MMWM®) (14)

This control law enforces sliding mode along the sliding manifold defined in (9). The
constant Ky is the control gain and can be selected according to uncertainty bounds
[18], and the constant W can be defined according to application with value between
0 < W < 1. Thus, the final control law can be obtained by replacing the optimal linear
control law and the control law (14) in (6) and can be implemented by first integrating
the derivative of the control u(®) k times.

Remark 3.2. The coefficients of the conventional sliding surface are chosen by looking
at the dynamic response of the system. However, in real application these constants can
also be optimized using LMIs methods and PSO.

Theorem 3.1. Consider the nonlinear system in (4) subject to Assumptions 2.1 and
3.1. If the sliding surface is chosen according to (9), the discontinuous control law ugk)
is selected according to (14) and the integral term is taken according to (11), then the

asymptotic convergence condition is satisfied.

Proof: Consider a Lyapunov function candidate as follows:
V =1/2(0)?

Using (11), (14) and the mentioned assumptions, the time derivative of this Lyapunov
function reduces to '

V < —0 (Ki(o + Wsign(o)))
This expression shows that the gradient of the Lyanpunov function is negative which con-
firms that o = 0 is stable equilibrium point and also guarantees the existence of dynamic
integral sliding mode even in the presence of external disturbances and uncertainties.

Proposition 3.1. The dynamics of the system (4), with control law (6) and integral
manifold (11), in sliding mode is governed by the linear optimal control law.

Proof: Consider (12), the expression of equivalent control law becomes

~

k) 1 ~ k %[ F
ol =g (e - + € (15)

Now, using (15) in (5), ones has
£ = A& + Bu? (16)

Thus, it is proved that the system in sliding mode operates under the linear control law.
The subscript s in (16) shows that the system is in sliding mode.
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A

FIGURE 1. Kinematic car model

4. Kinematic Car Model. Consider a simple kinematic car model [33]
I = wcos(xs) (17)
T9 = wsin(x3)
i3 = w/ltan(xy)
Ty = u+((x,t)

where x; and x5 are the Cartesian coordinates of the rear-axle middle point, x3 the
orientation angle and x4 the steering angle, u the control input. w is the longitudinal
velocity w = 10ms™', and [ is the distance between the two axles (I = 5m). The term
((z,t) = 0.1sin(x3)? + 0.01lzyx3 in (17) represents some unknown bounded uncertainty.
The objective is to regulate the output of the car from some initial position to the equi-
librium point (origin). The output of interest is y = h(x) = x5 and relative degree r of
the system verses this output function is 3. The LGCCF form of the system (17) becomes

gizgi—l—la Z:17273
& =06 ) +y()u+ ¢ (€ i)
where y = &, fy(é) = cos x3sec? x4 and

2

3 wowy 2
cos xr3tan” x4 — 2l_2 + 7 sin x3 sec” x4 tan r u

2
w
+ T (2 COS I3 sec? x, tan x4u)

The control based on the methodology presented in the previous is given by

. 1 s, 2 .
U= —k1& — koo — k383 — kys — (é) (W(f; @) + (v(§) — 1)“8“ + Ki(o + WSZQ”(U))
Y
In the forthcoming section the simulation results are presented to look at the response
of the system with the newly developed control law.

5. Controller Evaluation. The proposed controller is evaluated for the predefined cri-
terion that includes performance, chattering reduction and robustness. The regulation
control of aforementioned academic car model is carried out with DSMC and DISMC and
is analyzed in detail with low and high control gains. The controller gains with small
values are defined in Table 1. Both DSMC and DISMC are evaluated with the same



4628 Q. KHAN, A. I. BHATTI, M. IQBAL AND Q. AHMED

design parameters. The assessment of the controllers is carried out on the basis of states
convergence, sliding manifold convergence and controller effort under various types of
uncertainties.

TABLE 1. Values of the controller gains used for both DISMC and DSMC controllers

Parameters ky ko ks ka Ki| W |e|lexles|a
Small Gains | 31.62 | 77.32 | 78.73 | 34.02 | 100 | 0.001 15| 30| 1 | 1
High Gains | 31.62 | 77.32 | 78.73 | 34.02 | 650 | 0.001 [ 30 [ 25 [ 10 | 1

5.1. Input additive uncertainty.

5.1.1. Case 1: u = u + ((x,t). This uncertainty ((z,t) = 0.1sinz3 + 0.01zoz3 is of
additive nature which is introduced at the input channel which may represent some noise
in the input channel. The states convergence under the application of DSMC and the
proposed DISMC with small control gains are shown in Figure 2. It can be observed
that with DSMC the state x5 settles to origin in 8 seconds with oscillatory response and
with DISMC x5 converges to origin in 5 seconds with slight overshoot is the response.
Furthermore, a close view of convergence revealed that DSMC instead of converging to
origin converged in the vicinity of origin, i.e., 0.01 and the proposed controller converged
the state exactly to the origin. The convergence of sliding manifold makes it clear that
DSMC sliding surface converges to —0.25 instead of origin and exhibits chattering in its
response. However, DISMC sliding manifold converges exactly to the origin without any
chattering. Similarly, the control effort of both the controllers are free of chattering but
DSMC exhibits oscillations with considerable magnitude. These oscillations may not be
too dangerous as chattering phenomena, but still a threat for system/actuator health. In
comparison, the proposed controller effort is smooth, free of chattering and oscillations.

The comparison of both the control techniques is carried out with high control gains in
order to make sure that the proposed control law performs better than DSMC in all case of
control gains. This claim is verified in Figure 3. The output convergence under the action
of the new control law is better than the DSMC controller. The control efforts of DSMC
observe small chattering along with some oscillatory behavior in the very beginning of the
process. However, the proposed controller is chatter free. The sliding surface convergence
of DISMC is exactly to the origin while the convergence of DSMC is in the vicinity of
the origin along with chattering. One more attribute that can be observed is that the
proposed controller has to exert much lesser effort as compared with DSMC. Thus, the
proposed controller evolves as cheaper controller as compared with DSMC.

5.1.2. Case 2. In this case, the uncertainty is introduced in the input channel. The con-
trol input is incremented by an additive term 3 when ¢ € [11,13]. This disturbance is
independent of the system parameters and is introduced after achieving steady state to
evaluate the robustness of the proposed controller. The designed controllers (DSMC and
DISMC) with same parameters as in Table 1 are chosen for evaluation. The results dis-
played in Figure 4 show that the output trajectory of the system under DSMC deviates
from the origin and takes 10 seconds to achieve back the equilibrium position. However,
the proposed controller efficiently tackles for the undesirable deviation and the trajectory
stay at the origin even in the existence of the disturbance. The respective control efforts
show that at the time of the introduction of the disturbance, the switching surface of
DSMC oscillates with some undesirable peaks which degrades the robustness and perfor-
mance of DSM control law. Conversely, the sliding manifold for DISMC remains at 0 with
slight peaks, keeping the robustness intact.



DISMC FOR SISO UNCERTAIN NONLINEAR SYSTEMS 4629

3 T 5 T
: X2(DISMC Trajectories) Control Law u (DISMC)
T x,(DSMC Trajectorics) | 2 A Conirol LawuiD i)
o
= o A Anpn LA,
£ V TRVATAA
=
=]
@]
3
o . :
= -5 I i 1
g 0 5 10 15 20
= 100 T
& : — Sliding Surface (DISMC)
b — Sliding Surface (DSMC)

Sliding Surface
La
=] =

th
(=}

e 5 10 15 20 0 5 10 15 20
Time (sec)

Ficgure 2. DISM and DSMC output regulation, control law efforts and
sliding surface convergence

1.4 . g ! 0.5 -
x, (DISMC Trajectories) Control Law u (DISMC)
12 x, (DSMC Trajectories) Control Law u (DSMC)
: _ _ = 5
é : g
: : [
1F : : 1B
i ; =
= . a
M - =4
5 ; o
0.8 e = .
3 é g
E @ :
o : : -0.5 L - :
2 06 : ; R 0 5 10 15 20
it ; ;
o : : 2 T T
L . | —— Sliding Surface (DISMC)
; : 1 | —Sliding Surface (DSMC)
| 4 - e
: 5 [=I¥]
! 3 =
: : g
-0.2 i i L : :
0 5 10 15 20 2, 5 10 15 20
Time(s ec) ’I‘ime(s ec}

Ficgure 3. DISM and DSMC output regulation, control law efforts and
sliding surface convergence

The proposed controller is tested with high control gains and their results are displayed
in Figure 5. These results clarify that the proposed controller in output convergence,
chattering reduction and performance improvement is better than DSMC.

5.2. Parametric uncertainty. This experiment involves the evaluation of the proposed
controller under parametric variations in kinematic car model. The objective is to steer
the output of the system to 0 in the presence of parametric variations. This system
has two parameters w, and [ with their nominal values 10m/s and 5m respectively. The
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Ficgure 5. DISM and DSMC output regulation, control law efforts and
sliding surface convergence

parametric uncertainty is introduced with a 40 percent variations in the nominal values of
the actual parameters with the time frame ¢ € [21,25]. These variations of the parameters
The gains of the discontinuous
controller are chosen to be Ky = 50 and W = 0.001. The coefficients of the sliding surface
are the same which were being used in Case 1 and Case 2. Figure 6 demonstrates the
state convergence, control efforts and sliding surface convergence in the presence of these
variations. It is clear that the steady state error of DSMC increases in the presence of

were introduced after the achieving the steady state.
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Ficgure 7. DISM and DSMC output regulation, control law efforts and
sliding surface convergence

parametric variations whereas the new control law, DISMC, keeps the system at desired
position. The sliding manifold is kept at zero by DISMC even in the presence of parametric
deviation which certify the superiority of the proposed controller. Similar to the previous
cases, the high gain performance of the controllers is displayed in Figure 7 which confirms
the robustness of the proposed control law to parametric variations. The new controller
evolves better than DSMC in output convergence, chattering reductions in the presence
of parametric variations. The controller gains for these results are mentioned in Table 2.
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TABLE 2. Comparative analysis of proposed controller with dynamic slid-
ing mode controller

Attributes DSMC DISMC

Robustness Rejects the disturbance Effectively rejects
but with deviation from the | the disturbance
origin

Settling Time 8 seconds 5 seconds

Oscillations Oscillations No Oscillations

Regulation To the vicinity of the origin | Exactly to the origin

Overshoot Exists with oscillations No Over Shoot

Chattering Analysis No chattering but oscilla- | No Chattering

tory response
S. Surface Convergence | To the vicinity of origin | To origin, No Chattering
with Chattering

Controller Gains High Gains for desired per- | Small Gains (~70 % small)

formance for desired performance
Controller Effort High Controller efforts Low control efforts
Computational Complex- | Low computation complex- | High computation complexi-
ities ities ties

6. Conclusions. This paper has proposed a novel dynamic integral sliding mode (DISM)
control design methodology for a class of SISO uncertain nonlinear systems. The control
law is designed to ensure the asymptotic stabilization of the system in the presence of
uncertainties. The control law incorporates an integral sliding manifold which guarantees
the elimination of the reaching phase. Consequently, it enhances the robustness of the
controller. The resulting controller considerably eliminates chattering at the system input.
The performance of the controller has been proved far better than that of the dynamic
sliding mode controller with low and high control gains. The better performance of the
proposed control law depends on the integral sliding surface as well as on the continuous
control law design. The simulation results confirm the applicability and efficient nature
of this new control law.
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