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ABSTRACT. This work presents a novel multi-objective bee swarm optimization (MOBSO)
method. The proposed method divides a swarm as experienced foragers, onlookers and
scouts. An adaptive windowing mechanism is used by the experienced foragers in order to
select their own leaders and adjust their next positions. Also, the adaptive windowing is
used for truncating the most crowded members of the archive. A new way is proposed in
which the scouts and adaptive windowing are used to maintain diversity over the Pareto
front. A scout creates a hypercube using knowledge provided by a pair of archive members,
and flies spontaneously in it. The provided knowledge by the experienced foragers is used
by the onlookers in order to adjust their flying trajectories. The proposed algorithm was
compared with existing multi-objective optimization methods. The experimental results
indicate that the proposed approach not only presents a uniformly distributed Pareto front
but also identifies results with greater accuracy.

Keywords: Bee swarm optimization, Multi-objective optimization

1. Introduction. Optimization problems with more than one objective function are
common in many engineering problems. Our goal is to find a set of solutions that rep-
resent a trade-off among the objectives; because in such areas there is no single solution
available for these problems.

The multi-objective optimization approaches can be classified as aggregative, lexico-
graphic, sub-population, pareto-based and hybrid methods. The aggregative methods
work by combining all the objectives into a single one. The behavior of an aggregative
method depends on the aggregative function which can be linear, dynamic or bang bang
[1,2]. In lexicographic methods, the objectives are ranked based on their importance.
These objective functions are minimized separately in order to obtain the optimum solu-
tion [3,4]. Lexicographic ordering has deficiency in optimizing problems with a large num-
ber of objectives. A sub-population method subdivides a population in sub-populations.
Each sub-population is responsible for optimizing one of the objective functions. Trade-off
among different solutions is obtained by exchanging information between sub-populations
[5,6]. Pareto-based methods select non-dominated individuals based on Pareto dominance
notion as leaders. Usually leaders are maintained in an external archive [7-12]. Finally, a
hybrid method is designed as a combination of two or more techniques in order to exploit
their advantages [13,14].

Among the multi-objective methods, the majority of researches are concentrated on
Pareto-based approaches. Due to computational complexity, the evolutionary search meth-
ods have received significant attention to optimize multi-objective problems [8-11].

In this paper, we present a novel method based on intelligent behaviors of honey bees
to handle problems with multiple objectives. In MOBSO, a swarm is divided into three
types of bees, and a fixed-sized archive is used to maintain good solutions. This archive
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which acts as a leader is used by experienced forager bees to adjust their trajectories.
An experienced forager employs a decision making process to select an archive member
as its own leader. A new windowing mechanism has been provided, which is used by
experienced foragers to select their own leaders. Also a pair of archive members are used
by a scout to create a hypercube and fly randomly in it. Onlookers use the provided
knowledge by the experienced foragers. A new adaptive windowing mechanism and the
scouts are used as a new way to provide appropriate diversity over the Pareto front.

The rest of the paper is organized as follows. The basic concepts are presented in Section
2. Section 3 describes the details of the proposed algorithm. Next, the experimental
results are discussed in Section 4. Finally, Section 5 concludes the paper.

2. Basic Concepts. Let © = (z1,x9,...,2p) be a D-dimensional vector of decision vari-
ables and S be a search space. Multi-objective optimization (MOQO) concerns optimization
problems with multiple and often conflicting objectives. A MOO problem can be stated as
finding a solution vector & € S which minimizes the function z with conflicting objectives:

z=f(z) = (f1i(x), fox), ..., fu()) (1)
subject to k inequality constraint
9(@) = (g1(2), 92(2), - .., gi(2)) = 0 (2)

and m equality constraint
h(z) = (hi(x), ha(x),..., hp(x)) = 0. (3)

Unlike single objective optimization, MOO solutions are in such a way that the perfor-
mance of each objective cannot be improved without sacrificing performance of at least
another one. Hence, the solution to a MOO problem exists in the form of an alternate
tradeoff known as a Pareto optimal set. The Pareto Optimal set is defined based on
Pareto Dominance. A decision vector x, dominates another vector z; (denote as x, < )
if f(xa;) < flap;) Vi={1,2,...,D} and 35 € {1,2,..., D} where f(z,;) < f(xp;)-

Therefore, a set of M decision vectors {w;} is a non-dominate set if:

w; < w; 4,5 =1,2,..., M. (4)

By considering Pareto Dominance, decision vector z, is Pareto optimal if for every
decision vector z, and I = {1,2,..., D} either V;cr (f; (zp) = fi (x4)) or there is at least
one i € I such that f;(z,) > fi(x,). The Pareto Optimal Set (Px) for a given multi-
objective problem f(Z) which contains all Pareto Optimal solutions is defined as:

Px={r e S|-32' € Sand f(z') < f(x)}. (5)

Therefore, a Pareto front (PFx) for a given multi-objective problem f(Z) and Pareto
optimal set Px is defined as:

PFx = {f(x)|x € Px}. (6)

A Pareto-based MOO method tries to find the optimal Pareto front. A Pareto front
can be convex, concave or partially convex and/or concave and/or discontinuous [1]. The
determination of true Pareto front is a difficult task due to large number of suboptimal
Pareto fronts, the existing memory constraints, the nature of Pareto front and computa-
tional complexity.
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3. Multi-objective Bee Swarm Optimization. The MOBSO algorithm is designed
based on the BSO method proposed by Akbari et al. in [15]. The MOBSO divides a
swarm to experienced forager, onlooker, and scout bees which fly in a D-dimensional
search space S C RP to find the optimal Pareto front. Assume that we have a set of bees,
B, in a swarm, these bees are partitioned as f =9 U k U&, where £, k and 9 respectively
represent the sets of experienced forager, onlooker and scout bees. We use a small part of
bees as scouts. The other part of bees is divided dynamically as onlooker and experienced
forager bees throughout iterations.

In MOBSO, each bee i is associated with a position vector Z (/3,4) which represents a
feasible solution in a D-dimensional search space S. Each position vector ¥ (3,1) repre-
sents a food source with an associated quality vector f (Z(3,1)).

Figure 1 presents the pseudocode of MOBSO algorithm. MOBSO has three main
phases: initialization, update and termination. The first phase initiates the algorithm.
The second phase is the body of algorithm and iteratively updates the swarm and the
external archive. Finally, the third phase terminates the algorithm and returns the known
Pareto front. The details of different phases are described in the following subsections.

3.1. Inmitialization. MOBSO receives number of bees, n (), percentage of scouts, ps,
number of dimensions, D, maximum number of iterations, MAX-ITER, and maximum
archive size, MAX_ARCH_SIZFE as inputs. In the initialization phase, the number of
scouts and the number of onlookers and experienced forager, n (£ U k), are respectively
determined as n (¥) < ps x n () and n (§ U k) < n(B) — n (9).

Except the scouts, the types of other bees are dynamically determined at each cycle of
the algorithm as described in Subsection 3.2. After that, all the bees are positioned ran-
domly in the search space S. Then MOBSO initializes the archive of size n(ARCH).
Each of the bees in the swarm SW; (the initial swarm) is evaluated using function
add_non_dominated (SWy), and the positions of the non-dominated bees are stored in
the archive ARC' H, (the initial archive).

3.2. Update. After initiation, the bees of the swarm employ the following processes to
adjust their positions throughout iterations until the termination condition is met. At each
iteration of the algorithm, a predefined percentage of the swarm SW acts as scouts, while
the remaining bees are dynamically partitioned as experienced foragers and onlookers.
The non-domination process is carried out using function select_non_dominated (SWiger_1)
to select experienced foragers. The whole swarm except scouts is evaluated and the non-
dominated ones are selected as experienced foragers while the others are selected as on-
lookers. The classification of bees into three categories provides a swarm with highly
dynamic behaviour which can use different flying behaviours. The experienced forager,
onlooker, and scout bees use these flying behaviours to probabilistically adjust their tra-
jectories in the search space for finding new food sources with better nectars. The flying
patterns of the bees are explained below.

3.2.1. Ezperienced foragers. An experienced forager bee uses the good solutions main-
tained by external archive ARCH to adjust its movement trajectory at the next time.
At each cycle of the algorithm, the nectar information about food sources and their po-
sitions (social knowledge) which are maintained by external archive are shared between
experienced foragers. After that, an experienced forager evaluates the provided nectar
information by archive members, employs a probabilistic approach to choose one of that
food sources as its own leader using function select_leader_-bee (ARC Hjter 1), and adjust
its flying trajectory towards the selected food source. In other words, an experienced
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Algorithm MOBSO(n(f), ps .D, MAX-ITER, MAX ARCH SIZE) /* n{ﬁ): number of bees, ps: percentage of scouts,
D: dimensions of the search space S, MAX-ITER: max number of iterations, MAX ARCH SIZE: max size of archive™®/
(1) Initialization

iter = 0, Initialize swarm SW, randomly /* SW; is the swarm at iteration 0%/

Calculate 1.*(9)<— psxn(,ﬁ), n(éw K)(—H(ﬁ]*ﬂ(@)
/*determine the number of scout, onlookers and experienced foragers™/
Initialize x, (ﬁ.lj), vie {1.2,....11(,6)}. vj e {1,2...‘,D} * .t(ﬁ,z'j) is the j-th coordinate of the i-th bee at the iter. 0%/
ARCHj « add_non_dominated(sWG) /Estore the non-deminated solutions in the ARCHy™/
/*ARCH, is the archive at iteration 0%/
(2) Update
For iter =1 to MAX-ITER
I select7110117d0minmr[ed(SW}m._1)
/#select non-dominated bees at the previous iteration as experienced foragers™/
Kitar—1 < Biter—1 — {f_fr-m av 3} /*dominated solutions at the previous iteration constitute the onlookers*/

(2.1) Experienced Foragers

Fori=1to (&, 1) /*dofor each experienced forager bee*/
L (ARCH srer_1.1) select_leader_bee(ARCH er_1) /Eselect a leader bee from archive for experienced forager i*/
Ford=1toD
Xiter (":imi'—l .fﬂ'): Citer -1 (fimr'—l -id)+ wgre('f(ARCHmr—l ’ ?'{f)* Niter—1 (‘:ifér'—l .id ))
Fupdate d-th coordinate of the experienced forager bee i*/
Next d
Next i
(2.2) Onlookers
Fori=1to n(xy,._; )/*do for each onlooker bee*/
e Eipop11) 4 select_elite_bee(&yy,,_y ) *select an elite bee from experienced forager bees for onlooker i*/
Ford=1toD
Xiter (K.im'—l =m,): “tirer—1 (’Cr’mr—l jd)"' DBy (e(‘.firer—l id )_ Niter -1 (":r'mr—l id })
[*update d-th coordinate of an onlooker bee i*/
Next d
Next i
(2.3) Scouts
Fori=1to n(8) /*do for each scout bee*/

by « select_boundary(4RCH ., ) /*randomly select a non-dominated solution as boundary 1%/

b, < select_boundary(4RCH ;e _y) /Hrandomly select a non-dominated solution as boundary 2%

Ford=1to D
Ld Ud « selectﬁlowerJuppe1‘7b01111d(f)1 ‘5)2) /*select lower and upper bounds for dimension d*/

Next d

Fyper (97) = .Sf(L,U) /* flv spontaneously in the hypercube®/
Next 7
(2.4) Archiving
ARCH ;,, add7110117d01ninated(ARCH”er71 . SW,—W_?.) /*update the archive by adding non-dominated solutions*/
If( n(ARCH ;1) > MAX _ ARCH _SIZE ) Then truncate_archive(4RCH ;)

Next iter

(3) Termination
Return ARCH,,,. /*return the known Pareto front and exit*/

F1GURE 1. Pseudocode of MOBSO algorithm

forager bee i selects an archive member j from the archive ARCH;.,_1 as its own inter-

esting leader bee, denoted as F(ARC’Hiter_l, i), with probability p;. The probability p; is
defined as a relative fitness of the selected archive member j:

th (.f (ARCHiterfla ]))
Zn(ARC’Hiter—l) fit (£ (ARC Hypop 1, €))

c=1

(7)

p; =
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FIGURE 2. Adaptive windowing mechanism is performed in five steps

where ARCH;e, 1 is the archive at the previous iteration, n (ARCH ji.,1) is the number
of archive members at the previous iteration, and fit (Z (ARCHjjer1,7)) is the fitness
value of the food source proposed by the archive member j which is proportional to the
quality of food source. The quality of food source depends on the number of food sources
in its neighborhood:

1
"~ Neighborsie, 1 (7) + 1

th (f (ARCHiterfla ])) (8)
where Neighborsie,—1 (j) is the number of neighbors of the archive member j at the
previous iteration. To count the number of food sources in the neighborhood of archive
member j, an adaptive windowing mechanism is used. As shown in Figure 2, for each
archive member, a window is determined and centered at the position of that member.
These windows are determined based on the approximated knowledge and the size of the
archive. For a MOO problem with n objectives, the window width in the ¢-th objective
dimension can be calculated as:

o ‘fzr,rzl?e);—l (z) — irgritlelr—l (m)‘

Wi = n(ARCH 1)

ie{l,2,...,n} 9)

where 3% | () and f5%. | respectively presents the maximum and minimum values for
the i-th objective function obtained at the previous iteration. The Neighbors;,, 1 (j) for
the archive member j is considered as the number of archive members located at its local
window. The roulette wheel approach is used by an experienced forager for selecting an
interesting archive member as its own leader. In this approach, as the fitness of an archive
member increases, the probability of its selection increases, too. After selecting the leader,

the flying trajectory of an experienced forager 7 is controlled using the following equation:
fiter (giter—la Z) = fiter—l (giter—la Z) + WeTy (f (ARCHiter—la Z) - fiter—l (giter—la Z)) (10)

where ¢ (ARCHyer—1,1) is the position vector of the interesting leader bee selected by
experienced forager i € £ using Equation (7), Zier—1 (&iter—1,1) and Tiger (Eiter—1,1) respec-
tively represents the position of the old food source and the new one which are selected
by the experienced forager i. Finally, r, is a random variables of uniform distribution
in range of [0, 1], and parameter w, controls the importance of the knowledge provided
by the leader bee. The product of theses two parameter probabilistically controls the
attraction of the experienced forager bee towards its interesting food source area.
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3.2.2. Onlookers. At each cycle of MOBSO, the bees with the poor quality (i.e., domi-
nated ones) are selected as onlookers. The onlooker bees use the social knowledge provided
by experienced forager bees. An onlooker bee ¢ randomly selects an experienced forager
bee using function select_elite_bee ({;1er 1) as its own elite bee. The position of the se-
lected elite bee is represented as € (&jer—1,%). The position of an onlooker bee i € k is
updated as:

fiter (’{iterfla Z) - fiterfl (h;iterfla Z) + WeT'e (é (giterfla Z) - fiterfl (Hiterfla Z)) (11)

where Zier 1 (Kiter1,1) and Zier (Kier 1, 1) respectively represents the position of the old
food source and the new one which are found by the onlooker bee i € k, r. is a random
variables of uniform distribution in range of [0, 1] which model the stochasticity of flying
pattern, and parameter w, respectively control the importance of the knowledge provided
by the elite bee.

3.2.3. Scouts. A scout bee flies randomly in the search space in order to find more prof-
itable regions. The spontaneous fly is performed in a hypercube which represents a region
in the search space. MOPSO determines the hypercube by selecting two archive members
by and by using function select_boundary (ARC Hjer—1). This function selects an archive
member at random. After that the lower and upper bounds (i.e., Ld and Ud) of the
hypercube along each dimension d are determined by comparing the archive members b,
and by using function select_lower _upper_bound (by, bs). By iterating this process on all
dimensions, a hypercube will be created for the scout bee i € 9.

Maintaining diversity over the Pareto front has an important role in approximating
a well distributed Pareto fronts. We use scout bees as well as the adaptive windowing
mechanism as a new way for maintaining diversity over the Pareto front. This approach
provides the MOBSO with high exploration capability while the exploitation is controlled
at an appropriate level. Under this approach, a well distributed Pareto front will be
obtained for most of the test functions.

3.2.4. Archiving. MOBSO algorithm uses a fixed size external archive in order to maintain
the good solutions found by the swarm. The size of archive, MAX _ARC'H_SIZFE, can be
adjusted according to the desired number of solutions distributed over the Pareto front.
The archive is updated at each cycle as follows:

(1) Each candidate solution in the current swarm SWj,, is evaluated against the archive
ARC Hjter—1 using function add_-non_dominated (ARC Hjjer 1, SWiter). If the candi-
date solution is not dominated by any members of the archive, it will be added to the
archive.

(2) The function add-non_dominated (ARC H;yer 1, SWiter) also evaluates each member
of the archive. Any archive member dominated by the added solution will be removed
from the archive.

(3) If the predetermined archive size, MAX_ ARCH_SIZE, is reached, the function trun-
cate_archive(ARC Hy,,) will be used in order to perform truncation process. The
truncation process eliminates the most crowded members of the archive in order to
maintain good distribution of solution over the Pareto front. For this purpose, the
adaptive windowing mechanism as described in Subsection 3.2.1 is used and the fit-
ness of each archive member is calculated based on the archive boundary and the
archive size. The roulette wheel approach is conducted in order to eliminate the most
crowded members. In this way, the probability of eliminating a member increases as
its neighbors increases.



MULTI-OBJECTIVE BEE SWARM OPTIMIZATION 721

3.3. Termination. The algorithm terminates after predefined number of iterations. Af-
ter termination, the external archive ARCH s ax_rEr contains the known Pareto front.

4. Experimental Results.

4.1. Performance metrics. We use Generational Distance and Spacing metrics in order
to provide a quantitative assessment of the MOBSO.

Generational Distance: This metric estimates the gap between discovered non-
dominated vectors and the optimal Pareto front [10]. This metric is defined as:

(12)

where n is the number of non-dominated vectors in the Preto-front, and d; is the Euclidean
distance between i-th non-dominated vectors in the Pareto-front and its nearest member
in the Pareto-optimal set.

Spacing: This metric measures the distribution of non-dominated vectors throughout
discovered Pareto-front [10]. This metric is defined as:

n

S = 112(di—d)2 (13)

n — -
=1

where n is the number of non-dominated vectors, d; is the Euclidean distance between i-th
non-dominated vectors in the Pareto-front and its nearest member in the Pareto-optimal
set, and d is the mean of all d;.

4.2. Benchmarks. Several test functions are used in order to investigate performance
of the proposed method. We choose eight test problems: Fonseca and Fleming’s study,
Kursawe’s study, Deb’s study, Ziztler’s study, Kita’s study and Binh’s study [16]. All the
problems have two objective functions. Binh’s and Kita’s problems are side constrained
while the other problems have no constraints. All the problems are minimization except
Kita’s study.

4.3. Settings of the algorithms. The performance of our algorithm is compared against
two most representative multi-objective algorithms so called MOPSO [10] and NSGAII
[11]. The settings of the algorithms are given as follows: all the algorithms used a popula-
tion of 100 individuals and the archive size was set at 100. For all test functions, we report
the results obtained from performing 30 independent runs of each algorithm compared.
The total number of evaluations for Fonseca, Kursawe and Kita is set at 1000, and Debl,
Deb2, ZDT1, ZDT6, Binh2 are respectively evaluated after 3000, 500, 10000, 5000 and
3000 evaluations.

MOPSO uses 30 divisions for the adaptive grid. Also, mutation rate in MOPSO was
set at 0.5. For NSGALII, a binary crossover operator with the crossover rate of 0.8, and a
polynomial mutation with the mutation rate of 1/¢, where ¢ is the number of real variables
was used in order to generate offsprings. In MOBSO, the scouts constitute 10 percent of
the population and the other part of population is subdivided dynamically as experienced
foragers and onlookers at each cycle of the algorithm. The weighting coefficients w, and
we were set at 2.5 and 2.15 respectively.
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4.4. Performance analysis. Simulations were conducted on the eight test problems in
order to analyze the performances of the algorithms. Table 1 presents the results obtained
by the algorithms for Generational Distance and Spacing metrics. The Generational Dis-
tance metric shows the average error from the optimal Pareto front. Hence, an algorithm
with smaller Generational Distance provides better performance over a test function.
Also, in multi-objective optimization problem, we prefer Pareto fronts with uniform dis-
tributions. Hence, we have used Spacing metric to show this ability of the algorithms.
We say an algorithm has better distribution over the Pareto front if it obtains smaller

Spacing metric.

TABLE 1. Experimental results for the generational distance and spacing metrics

Problem

Sp

Generational Distance metric

Spacing metric

MOBSO

MOPSO

NSGAII

MOBSO

MOPSO

NSGAII

Fonseca

Best,

0.001025303

0.001063

0.00122684

0.007781933

0.007893

0.00864307

Worst

0.001220845

0.001289

0.00122684

0.009170206

0.009851

0.00864307

Average

0.001178532

0.001202

0.00122684

0.008500765

0.008992

0.00864307

Std. Dev.

2.14721E-05

4.82E-05

0.00000000

0.000349263

0.000510

0.00000000

Kursawe

Best,

0.002105065

0.002584324

0.00143665

0.019427471

0.024640036

0.01163399

Worst

0.003022404

0.003485472

0.00397450

0.026572046

0.03949868

0.04865345

Average

0.002509865

0.003053565

0.00342352

0.001830602

0.033111776

0.04040135

Std. Dev.

0.002509865

0.00031664

0.00104039

0.023675545

0.005068935

0.01557745

Debl

Best,

0.000272849

0.000551503

0.00102548

0.00242209

0.004901858

0.00782336

Worst

0.000483363

0.000640838

0.00102548

0.004475277

0.005771291

0.00782336

Average

0.000339286

0.000588315

0.00102548

0.003299764

0.005303136

0.00782336

Std. Dev.

6.18426E-05

2.55983E-05

0.00000000

0.000640598

0.00025604

0.00000000

Deb2

Best

3.79852E-05

3.86121E-05

0.00016746

0.000267569

0.000293625

0.00159745

Worst

5.58309E-05

0.000167025

0.00016746

0.000570521

0.001618058

0.00159745

Average

4.40065E-05

0.000110415

0.00016746

0.000345527

0.001063151

0.00159745

Std. Dev.

4.32413E-06

3.47944E-05

0.00000000

5.58173E-05

0.000365194

0.00000000

ZDT1

Best

0.000445354

0.042984011

0.00029493

0.001692201

0.090522091

0.00287370

Worst

0.000704042

0.077879917

0.00029493

0.003319370

0.126463173

0.00287370

Average

0.000578208

0.05597199

0.00029493

0.002302196

0.102113335

0.00287370

Std. Dev.

6.06105E-05

0.006906754

0.00000000

0.000366320

0.008997605

0.00000000

ZDT6

Best

0.000190253

0.027296395

0.00712553

0.000844696

3.35404E-16

0.00642766

Worst

0.00033428

0.125910138

0.00712553

0.002042493

0.456130031

0.00642766

Average

0.000236312

0.041443009

0.00712553

0.001089539

0.191229333

0.00642766

Std. Dev.

3.54026E-05

0.019230312

0.00000000

0.000276969

0.120909724

0.00000000

Kita

Best

0.000594202

0.000584562

0.00427810

0.001176267

0.00395703

0.04329636

Worst

0.001858466

0.041693183

0.31075102

0.001324301

0.416320714

1.49035931

Average

0.000979901

0.007128203

0.021028169

0.001228209

0.07033469

0.20581371

Std. Dev.

0.000448417

0.008426248

0.016208540

1.58370E-05

0.08429853

0.13169046

Binh2

Best

0.027599568

0.031167808

0.04361098

0.199936183

0.186194005

0.31837609

Worst

0.032997496

0.040076849

0.04361098

0.232800131

0.26390553

0.31837609

Average

0.030688537

0.03537692

0.04361098

0.219349531

0.224332123

0.31837609

Std. Dev.

0.001658485

0.002351925

0.00000000

0.009673602

0.024218719

0.00000000

By considering the average values, we can see that the proposed MOBSO algorithm
has better convergence in most of the test functions. In addition, the best values for the
most test function were obtained by MOBSO algorithm. Also, MOBSO results better
solutions at the worst case compared to MOPSO and NSGAII algorithms. The results
show that the MOBSO is the best strategy in terms of Generational Distance metric.
However, NSGAII has relatively better performance on the ZDT1 test function. MOPSO
produces poor results on this test function whereas MOBSO has competitive performance.
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Except to ZDT1 test function, NSGAII is the least effective strategy on the Generational
Distance metric. For the most test functions, NSGAII has the zero standard deviation.

Spacing metric used here to compare distribution of the results obtained by the al-
gorithms. Table 1 contains the results for this metric. From the results, MOBSO out-
performs MOPSO and NSGAII in all test functions. The performances of NSGAII and
MOPSO are comparative with MOBSO in some cases such as Fonseca and Binh2. In
general, they are not dominating MOBSO.

In order to provide better comparison, the Pareto fronts obtained by the algorithms have
been plotted in Figures 3 and 4 with respect to the optimal Pareto optimal. These figures
clearly show the convergence of the algorithms and distribution of the obtained solutions
over the Pareto front. The Pareto fronts obtained by the algorithms for the Fonseca and
Fleming’s, Kursawe’s, Debl and Deb2 functions are shown in Figure 3. The continuous
line shows the Pareto optimal of the problem, and the circle signs show the obtained
results by an algorithm. For the Fonseca’s test function with non-convex Pareto front,
MOBSO outperformed MOPSO an NSGAII with respect to the Generational Distance
and Spacing metrics. It can be seen from Figure 3(a) that the Pareto fronts produced by
MOPSO and NSGAII are not evenly distributed as compared to MOBSO.

Kursawe’s function has a non-convex and discontinuous Pareto front. It is evident
from the Figure 3(b) that NSGAII unable to find the complete Pareto front. Although,
both MOPSO and NSGAII provided competitive results, they have some solutions that
are not converged to the optimal Pareto front. It can be seen that MOBSO have the
best performance among the algorithms. Also, MOBSO has the ability to evolve better
distribution over the Pareto front.

For both of the MOPSO and NSGAII, the solutions are not evenly distributed along
optimal Pareto front of Debl test function. It can be seen from Figure 3(c) that MOBSO is
able to evolve a diverse and well distributed nearly optimal Pareto front for this function.
Although competitive results obtained by the algorithms over the Deb2 test function, the
Pareto front obtained by MOBSO is found to be more uniformly distributed.

The Pareto fronts obtained by the algorithms for the ZDT1, ZDT6, Kita and Binh2
functions are shown in Figure 4. ZDT1 test function has convex Pareto front. Although,
the Pareto front obtained by MOPSO has good distribution over ZDT1, the convergence
to the optimal Pareto front was found comparatively inferior to MOBSO and NSGAII.
Although NSGAII has better convergence to the optimal Pareto front, the Pareto front
obtained by the MOBSO is found to be more uniformly distributed.

ZDT6 function has non-convex Pareto front. Similar to ZDT1 function, it can be noted
that MOPSO has the worst results in terms of both Generational Distance and Spacing
metrics. As evident from the figure, MOBSO successfully converged to the optimal Pareto
front, while the other algorithms failed to converge to the optimal Pareto front. Pareto
front obtained by MOBSO is found to be more uniformly distributed. However, the Pareto
front obtained by NSGAII has better distribution with respect to the MOPSO.

The performance of NSGAII was found comparatively inferior to MOBSO and MOPSO
over Kita’s test problem. Although Pareto front obtained by MOPSO has good distri-
bution, a part of its solution never converged to the Pareto optimal in all the test runs.
Unlike, in all the test runs, the MOBSO was found to converge to the optimal Pareto
front.

Although three algorithms have competitive solutions over Binh2 problem, the convex
Pareto front obtained by MOBSO is found to be more uniformly distributed. The MOBSO
have the best performance with respect to the Generational Distance and Spacing metrics.
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FIGURE 4. Pareto fronts produced for ZDT1, ZDT6, Kita and Binh2 test functions

5. Conclusion. In this paper, we presented MOBSO method for optimizing multi-objec-
tive problems. The effectiveness of the MOBSO depends on three factors: 1) a swarm of
different types of bees, 2) an adaptive windowing mechanism which dynamically adjusts
the windows throughout iteration by considering the number of archive members and
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the maximum and minimum values of the objective dimensions, and 3) an efficient way
for maintaining diversity over the Pareto front. The MOBSO with such properties can
be used as an efficient way for optimizing multi-objective problems. The comparative
study showed that the proposed strategy produced results that are highly competitive
with respect to the Generational Distance and Spacing metrics.
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