
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2012 ISSN 1349-4198
Volume 8, Number 1(A), January 2012 pp. 1–12

RISK SENSITIVE FIR FILTERS FOR STOCHASTIC DISCRETE-TIME
STATE SPACE MODELS

Soohee Han

Department of Electrical Engineering
Konkuk University

Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
shhan@konkuk.ac.kr

Received June 2010; revised November 2010

Abstract. In this paper, the finite impulse response (FIR) filter based on an exponential
quadratic cost function is proposed for a stochastic discrete-time state space model. The
joint probability density function of the current state and the external noises on the
recent finite horizon is introduced and the corresponding expected value of the exponential
quadratic cost function is minimized with respect to the current state. According to the
sign of the scalar real parameter in the cost function, we have a risk averse or seeking
criterion, from which the optimal FIR filter, called a risk sensitive FIR filter (RSFF), is
derived. Being risk averse means that large weights are put on large estimation errors
which are suppressed as much as possible. Being risk seeking means that large weights
are put on moderate estimation errors. It is also shown via simulation that the proposed
FIR filter has better performance than the conventional infinite impulse response (IIR)
robust Kalman filter.
Keywords: Risk sensitive, Risk averse, Risk seeking, FIR structure, State estimation

1. Introduction. The estimation of the unknown values from given measurements arises
in many fields such as control, signal processing and communications. Specially, how to
estimate a state from measurements on a state space model has been extensively exploited
since most dynamic systems can be easily described over state spaces.

For a long time, the optimal estimators or filters for state estimation have been devel-
oped on the basis of the Luenberger-type filters such as the Kalman filter [1] and the H∞
filter [2, 3, 4, 5, 6]. The duration of impulse response of the conventional Kalman and H∞
filters is infinite, which means that these filters belong to infinite impulse response (IIR)
filters in a signal processing area. Actually, these days, these IIR filters give way to finite
impulse response (FIR) filters in the signal processing area. It is generally known that
the FIR filters are robust against temporary modelling uncertainties or round-off errors.
Furthermore, FIR filters can resolve the divergence and the slow convergence known as
demerits of IIR filters. As the main disadvantage of FIR filters, they have the more com-
putation load than the conventional IIR filters. However, this computation burden can
be alleviated by the recent fast computer technology.

While IIR filters for state estimation have been widely used for a long time, FIR filters
for that purpose have not received much attention and have not been researched much.
As in the signal processing area, undesirable effects of the IIR filters for state estimation
may be alleviated by using the FIR structure. In this paper, we consider an FIR filter
given by

x̂k =
k−1∑

i=k−N

Hk−iyi +
k−1∑

i=k−N

Lk−iui, (1)
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Figure 1. Block diagram of FIR filter: D is a unit delay component

for some gains H· and L·. The basic block diagram of the FIR filter (1) is depicted in
Figure 1. If a forgetting factor is employed, conventional IIR filters such as the Kalman
and H∞ filters can be approximated to the form (1) [7], which may be called a soft FIR
filter if the FIR filter (1) is called a hard FIR filter. As anther method, the Kalman
filter is forced to put more weights on the recent data like the FIR filter (1), if necessary,
by increasing a system noise covariance [8]. However, these methods are very heuristic
and how much the optimality is spoiled for the given performance criteria is not clear.
In this paper, filter coefficients H· and L· in (1) will be computed to optimize the given
performance criterion. Among linear FIR filters of the form (1), we will obtain the filter
for the following performance criterion:

min
x̂k

− 2

α
log

[
Ee−

α
2
eTk ek

]
, (2)

where α is a constant, E(·) denotes the expectation, and ek
△
= x̂k − xk is the estimation

error at time k. − 2
α
log in (2) is just a scaling factor. The criterion (2) is equivalent

to minimizing E
[
− 2

α

(
e−

α
2
eTk ek − 1

)]
since a logarithmic function is monotonic increas-

ing and a constant term is not involved with the operation of the expectation. How

− 2
α

(
e−

α
2
eTk ek − 1

)
varies with eTk ek for different values of α is shown in Figure 2. Sharp-

ness and dullness of the graph can be varied with the value of α. As α goes to zero,

− 2
α

(
e−

α
2
eTk ek − 1

)
reduces to eTk ek so that the criterion (2) is equivalent to the minimum

variance one. It can be said that the criterion (2) is a general version of the minimum
variance one. For α < 0, the cost function (2) is called a risk averse criterion since large
weights are put on large estimation errors and thus the large or risky estimation errors
would be suppressed as much as possible. This also means that the designer is pessimistic
about the estimation errors so that the filter based on this criterion will work well when
large estimation errors often happen. For α > 0, the cost function (2) is called a risk
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seeking criterion since large weights are put on moderate estimation errors and large es-
timation errors are less weighted compared with the risk averse criterion for α < 0. It
is useful when the occasional occurrence of a large estimation error is tolerable. This
also means that the designer is optimistic about the estimation errors so that the filter
based on this criterion will work well when estimation errors are mostly moderate. The
FIR filter based on the risk averse or seeking criterion is called a risk sensitive FIR filter
(RSFF).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

e
k
T e

k

co
st

 v
al

ue
s

Cost values vs e
k
T e

k

As α increases from 0 

As α decreases from 0 

α=0 

Figure 2. Cost functions vs eTk ek

There have been a few results on FIR filtering for limited models or heuristic approaches.
For deterministic discrete-time systems without noises, a moving horizon least-square filter
of the form (1) was given in [9]. For special discrete stochastic systems without system
noises, a linear FIR filter was introduced from a maximum likelihood criterion [10]. Since
the system noise is not considered, the FIR filter is of a simple form and easy to derive.
For general discrete-time stochastic systems, FIR filters were introduced by a modification
from the Kalman filter [11] where the infinite covariance of the initial state information
is difficult to handle and the efficiency of the filters is not clear. Besides, this work brings
out a limitation that the system matrix is required to be nonsingular. In [12], the optimal
FIR filter with the unbiased condition was given under an assumption that the system
matrix is nonsingular. Even though the unbiased condition leads to an easy derivation,
it may go against the optimality of the performance criterion. In [9], the FIR filter was
derived without this assumption. Instead, the system noise was assumed not to exist.

To the authors’ knowledge, there is no result about FIR filters for general state space
models without any artificial restrictions or conditions which may prevent FIR filters from
applying to real applications. In this paper, we derive FIR filters without these constraints.
General systems with the system and measurement noises will be considered and the
inverse of the system matrix is not required, i.e., H· and L· of (1) will be represented
without using the inverse of the system matrix. The unbiased condition for easy derivation
will not be employed during the design so that the optimality is not affected. While the
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existing results were based on the minimum variance or least square criteria, this paper
deals with the more general performance criterion (2) which includes a minimum variance
criterion with α = 0 as mentioned before.
For a long time, robustness has been addressed for the analysis and the design of the

IIR filters for state estimation. It was shown in [13, 14, 15, 16, 17] that the conventional
IIR filter, i.e., the Kalman filter can diverge and have the poor performance due to
model uncertainties. In order to build up robustness, robust Kalman and H∞ filters were
proposed in [18, 19]. In several works [20, 21, 22, 25, 26], it was shown through simulation
and a quantitative analysis that the FIR filtering for state estimation could also be a
good substitute to achieve a high degree of robustness as in the signal processing area.
Through simulation, we will show that the proposed RSFF has the robustness to model
uncertainties.
In Section 2, the RSFF is derived for a risk averse or seeking criterion. In Section 3,

it is shown via simulation that the performance of the proposed RSFF is compared with
that of the robust Kalman filter. Finally, conclusions are presented in Section 4.

2. Risk Sensitive FIR Filters. Consider a linear discrete-time state space model with
control input:

xi+1 = Axi +Bui +Gwi, (3)

yi = Cxi + vi, (4)

where xi ∈ ℜn, ui ∈ ℜl and yi ∈ ℜq are the state, the input and the measurement,
respectively. At the initial time i0 of the system, the state xi0 is a random variable
with a mean x̄i0 and a covariance Pi0 . The system noise wi ∈ ℜp and the measurement
noise vi ∈ ℜq are zero-mean white Gaussian and mutually uncorrelated. These noises are
uncorrelated with the initial state xi0 . The covariances of wi and vi are denoted by Q and
R, respectively. Through this paper, k denotes the current time.
The systems (3) and (4) will be represented in a batch form on the most recent time

interval [k − N, k], called the horizon. On the horizon [k − N, k], the finite number of
measurements is expressed in terms of the state xk−N , the input, and the noise on the
horizon as follows:

Yk−1 = C̃Nxk−N + B̃NUk−1 + G̃NWk−1 + Vk−1, (5)

where Yk−1, Uk−1, Wk−1 and Vk−1 are defined as:

Yk−1
△
=

[
yTk−N yTk−N+1 · · · yTk−1

]T
, (6)

Uk−1
△
=

[
uT
k−N uT

k−N+1 · · · uT
k−1

]T
, (7)

Wk−1
△
=

[
wT

k−N wT
k−N+1 · · · wT

k−1

]T
,

Vk−1
△
=

[
vTk−N vTk−N+1 · · · vTk−1

]T
,
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and C̃N , B̃N and G̃N are given by

C̃N
△
=


C
CA
CA2

...
CAN−1

 , (8)

B̃N
△
=


0 0 · · · 0 0

CB 0 · · · 0 0
CAB CB · · · 0 0

...
...

...
...

...
CAN−2B CAN−3B · · · CB 0

 , (9)

G̃N
△
=


0 0 · · · 0 0

CG 0 · · · 0 0
CAG CG · · · 0 0

...
...

...
...

...
CAN−2G CAN−3G · · · CG 0

 . (10)

The noise term G̃NWk−1+Vk−1 in (5) can be shown to be zero-mean with the covariance
ΠN given by

ΠN = G̃NQNG̃
T
N +RN , (11)

where QN and RN are defined as:

QN
△
=

[
diag(

N︷ ︸︸ ︷
Q Q · · · Q)

]
, (12)

RN
△
=

[
diag(

N︷ ︸︸ ︷
R R · · · R)

]
. (13)

The current state xk can be represented in terms of the state xk−N , the input, and the
noise on the horizon as:

xk = ANxk−N +
[
AN−1G AN−2G · · · G

]
Wk−1

+
[
AN−1B AN−2B · · · B

]
Uk−1,

= ANxk−N +MBUk−1 +MGWk−1, (14)

where MB and MG are given by

MB
△
=

[
AN−1B AN−2B · · · B

]
,

MG
△
=

[
AN−1G AN−2G · · · G

]
.

Now, we compute the cost function (2). Note that Uk−1 and Yk−1 are known variables
and xk−N , Wk−1, and Vk−1 are random variables. The expectation of the exponential
quadratic cost function (2) will be taken over the jointly Gaussian random variables
{xk−N ,Wk−1, Vk−1}. Since xk−N , Wk−1 and Vk−1 are independent Gaussian random vari-
ables, their joint probability density function (pdf) p(xk−N ,Wk−1, Vk−1) can be written
as:

p(xk−N ,Wk−1, Vk−1) =
1√

(2π)n+pN+qND
e−

1
2
Jk , (15)
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where D
△
= detP detQN detRN and Jk is given by

Jk
△
= (xk−N − m̄)T P̄−1(xk−N − m̄) +Wk−1Q

−1
N W T

k−1

+Vk−1R
−1
N V T

k−1, (16)

with the mean m̄ and the variance P̄ of the random variable xk−N . m̄ and P̄ can be
computed from measured inputs and outputs on the recent horizon according to the least
mean square criterion. More details can be seen in [23] where m̄ and P̄ are written as:

m̄ =
(
C̃T

NΠ
−1
N C̃N

)−1

C̃T
NΠ

−1
N

(
Yk−1 − B̃NUk−1

)
,

P̄ =
(
C̃T

NΠ
−1
N C̃N

)−1

,

where P̄ always exists because of the observability condition. If Vk in (16) is replaced with
Yk−1− C̃Nxk−N − B̃NUk−1− G̃NWk−1, the joint pdf of the {xk−N ,Wk−1, Yk−1} is obtained
and Jk in (16) can be written as:

Jk = (xk−N − m̄)T P̄−1(xk−N − m̄) +W T
k−1Q

−1
N Wk−1

+(Ȳk−1 − C̃Nxk−N − G̃NWk−1)
TR−1

N

×(Ȳk−1 − C̃Nxk−N − G̃NWk−1),

where Ȳk−1 = Yk−1 − B̃Uk−1. By using the joint pdf (15) of {xk−N ,Wk−1, Yk−1}, the
exponential quadratic cost functions (2) can be computed as:

E
[
e−

α
2
(x̂k−xk)

T (x̂k−xk)
]

= K1

∫
exp

[
−1

2
J̄k

]
dxk−NdWk−1

= K2 exp

[
−1

2
min

xk−N ,Wk−1

J̄k

]
, (17)

for some constants K1 and K2, where J̄k
△
= Jk + α(x̂k − xk)

T (x̂k − xk) and the second
equality comes from the fact that Jk is quadratic with respect to all integration variables
and the integral of an exponential quadratic function from negative infinity to positive
infinity is easily computed using the formula:∫ ∞

−∞
e−

1
2
xTΣ−1xdx =

√
(2π)N det(Σ), Σ ∈ ℜN×N . (18)

By using (5) and (14), J̄k in (17) can be written as:

J̄k =
(
xk−N − T Ỹk−1

)T

P̄−1
(
xk−N − T Ỹk−1

)
+W T

k−1Q
−1
N Wk−1

+
(
Ỹk−1 − C̃Nxk−N − G̃NWk−1

)T

R−1
N

×
(
Ỹk−1 − C̃Nxk−N − G̃NWk−1

)
+α

(
x̂k − ANxk−N −MBUk−1 −MGWk−1

)T
×
(
x̂k − ANxk−N −MBUk−1 −MGWk−1

)
, (19)
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where T =
(
C̃T

NΠ
−1
N C̃N

)−1

C̃T
NΠ

−1
N and Ỹk−1 = Yk−1 − B̃Uk−1. Note that J̄k in (19) is

quadratic with respect to variables xk−N , Wk−1, x̂k, Ỹk−1 and Uk−1. J̄k in (19) can be
written in a compact form as:

J̄k = ΛT
kΞΛk, (20)

where Λk and Ξ are given by

Ξ =


(1, 1) (1, 2) αANT (1, 4) −αANTMB

∗ (2, 2) −αMT GT αMT
GMB

∗ ∗ αI 0 −αMB

∗ ∗ ∗ (4, 4) 0
∗ ∗ ∗ ∗ αMT

BMB

 ,

(1, 1) = P̄−1 + C̃T
NR

−1
N C̃N + αANTAN ,

(1, 2) = C̃T
NG̃N − αANTMG,

(1, 4) = −C̃T
N − P̄−1T,

(2, 2) = Q−1
N + G̃T

NG̃N + αMT
GMG,

(4, 4) = R−1
N + T T P̄−1T,

Λk =


xk−N

Wk−1

x̂k

Ȳk−1

Uk−1

 .

Now, we are in a position to find out x̂k to optimize J̄k in (20) according to the criterion
(2). First, we consider the case of α < 0, which is related to the risk averse criterion.

2.1. Risk averse criterion. For the case of α < 0, the optimization problem (2) reduces
to the following one:

min
x̂k

E
[
e−

α
2
(x̂k−xk)

T (x̂k−xk)
]
. (21)

According to the relation (17), we can change the problem (21) to one of finding the
optimal values optimizing a quadratic cost function. The final problem to solve can be
thus formulated as follows:

max
x̂k

min
xk−N ,Wk−1

J̄k, (22)

where J̄k is given by (20). Note that minimization problems are changed to maximized
ones if the sign in front of a cost function is switched. In order to obtain the solution to
minimize J̄k in (22) with respect to xk−N and Wk−1, and maximize it with respect to x̂k,
we introduce a useful result.

Lemma 2.1. [24] Consider a cost function J(a, b, y) given by

J(a, b, y) =

 a
b
y

T  M11 M12 M13

MT
12 M22 M23

MT
13 MT

23 M33

 a
b
y

 , (23)

where a and b are vector variables and y is a given vector constant. When the following
conditions are satisfied:

M11 > 0, M22 −MT
12M

−1
11 M12 < 0, (24)
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the optimal values a and b minimizing J(a, b, y) with respect to a and maximizing J(a, b, y)
with respect to b exist and are given by[

a∗

b∗

]
= −

[
M11 M12

MT
12 M22

]−1 [
M13

M23

]
y. (25)

Besides, a∗ and b∗ have the property that

J(a, b∗, y) ≥ J(a∗, b∗, y) ≥ J(a∗, b, y), (26)

for any a and b.

If a, b, y, M11, M12, M13, M22, M23 and M33 in Lemma 2.1 are given by the following
matrices and vectors:

M11 =

[
(1, 1) (1, 2)
(1, 2)T (2, 2)

]
, M12 =

[
αANT

−αMT
G

]
, (27)

M13 =

[
(1, 4) −αANTMB

GT αMT
GMB

]
, M22 = αI, (28)

M23 =
[
0 αMB

]
, M33 =

[
(4, 4) 0
0 αMT

BMB

]
, (29)

a =

[
xk−N

Wk−1

]
, b = x̂k, y =

[
Ȳk−1

Uk−1

]
, (30)

the solution (25) gives us the optimal one with respect to the cost function (22), which
minimize J̄k in (22) with respect to xk−N , and Wk−1, and maximize it with respect to x̂k.
Now, we check the existence of the solution according to the condition (24).[

P̄−1 + C̃T
N C̃N C̃T

NG̃N

C̃T
NG̃N Q−1

N + G̃T
NG̃N

]
+ α

[
ANT

MT
G

] [
AN MG

]
> 0. (31)

For a given value α, it is easy to check whether the condition (31) is met. We have only
to compute the eigenvalues of the left side of the inequality (31). If all eigenvalues are
positive, the inequality (31) is guaranteed to be satisfied. If α = 0, the inequality (31)
always holds.
What we have done until now is summarized in the following theorem.

Theorem 2.1. Suppose that α satisfies the inequality (31). For the risk averse criterion
(2) in case of α < 0, the risk sensitive FIR filter of the form (1) is given by (25), where
M11, M12, M22, M13 and M23 are defined in (27)-(30).

Next, we consider the case of α > 0, which is related to the risk seeking criterion.

2.2. Risk seeking criterion. For the case of α > 0, we shall solve the following opti-
mization problem:

max
x̂k

E
[
e−

α
2
(x̂k−xk)

T (x̂k−xk)
]
. (32)

According to the relation (17), we can change the problem (32) to one of finding the
minimum value of a quadratic cost function. The problem to solve can be thus formulated
as follows:

min
x̂k,xk−N ,Wk−1

J̄k (33)

where J̄k is given by (20). In case of α > 0, the problem is much easier since only
minimization is required, not mixing with maximization as in the risk averse criterion.
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In order to obtain the solution to minimize J̄k with respect to x̂k, xk−N and Wk−1, we
introduce a useful result.

Lemma 2.2. If the cost function J(a, y) is given by

J(a, y) =

[
a
y

]T [
N11 N12

NT
12 N22

] [
a
y

]
, (34)

where N11 > 0, a is a vector variable, and y is a given vector constant, then the optimal
value minimizing J(a, y) is given by

aopt = −N−1
11 N12y. (35)

If a, y, N11 and N12 are given by the following matrices or vectors:

a =

 xk−N

Wk−1

x̂k

 , y =

[
Ȳk−1

Uk−1

]
, (36)

N11 =

 (1, 1) (1, 2) αANT

∗ (2, 2) −αMT
G

∗ ∗ αI

 , (37)

N12 =

 (1, 4) −αANTMB

GT αMT
GMB

0 0

 , (38)

N22 =

[
(4, 4) 0
0 αMT

BMB

]
, (39)

then the solution (35) gives us the optimal one with respect to the cost function (33),
which minimizes J̄k in (33) with respect to x̂k, xk−N and Wk−1. It is noted that N11 in
(37) is nonsingular since it is positive definite.

What we have done in this section can be summarized in the following theorem.

Theorem 2.2. For the risk seeking criterion (2) in case of α > 0, the RSFF of the form
(1) is given by (35), where a, y, N11, N12 and N22 are defined in (36)-(39).

3. Simulation Results. To demonstrate the validity of the proposed RSFF, the numer-
ical example on the model of an F -404 engine is presented via simulation studies. This
model is a discrete-time version sampled by 0.05 sec from a continuous one.

As mentioned in Introduction, IIR filters can have drawbacks such as a slow convergence
and divergence. In this section, it is shown via simulation that the RSFF can overcome
these problems due to FIR structure. The uncertain model is represented as:

xi+1 =

 0.931 + δk 0 0.111
0.008 + 0.05δk 0.98 + 1.11δk −0.017

0.014 0 0.895 + δk

xi +

 0.051
0.049
0.048

wi,

yi =

[
1 0 0
0 1 0

]
xi + vi,

where E[w2
i ] = 0.002, E[viv

T
i ] = 0.002I2, and the parameter δk is given by

δk =

{
1, 50 ≤ k ≤ 100,
0, otherwise.

(40)

α is taken as −1. To begin with, we check the impulse responses of the RSFF and the
robust Kalman IIR filter. Figure 3 shows that the proposed RSFF has the finite duration
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of impulse responses while the robust Kalman filter has the infinite duration. This implies
that the RSFF guarantees a fast convergence to a normal state within a finite time when
temporary uncertainties happen.
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Figure 3. Impulse responses of robust Kalman filter and RSFF

Figure 4 compares how the Kalman filter and RSFF respond to temporarily modeling
uncertainties. The horizon size N of the RSFF is set to 10. The figure shows that the
estimation errors of the RSFF are remarkably smaller than that of the robust Kalman
filter on the interval where modeling uncertainties exist. Actually, poles of the robust
Kalman filter is close to a unit circle. 0.8893 ± 0.0225i and 0.9712. Due to these poles
and uncertainties, the estimation error blows up between 50 and 100 while only a little
deviation is shown in the RSFF. In addition, it is shown that the convergence of estimation
errors of the RSFF is much faster than that of the Kalman filter after temporary modeling
uncertainties disappear. Therefore, it can be seen that the suggested RSFF are more
robust than the robust Kalman filter when applied to systems with model parameter
uncertainties. Actually, the good performance of the proposed RSFF is significant when
the optimal IIR filter is slow.

4. Conclusions. In this paper, we introduced a risk averse or seeking performance cri-
terion for state estimation, which is represented as the expectation of an exponential
quadratic cost function. Based on this performance criterion, a risk sensitive FIR filter
(RSFF) was proposed for a general stochastic discrete-time state space model. The pro-
posed RSFF is linear with the most recent finite measurements and inputs. The RSFF
was obtained to optimize the risk averse or seeking performance criterion, together with
prior constraints such as linearity and FIR structure. Nonsingularity of the system matrix
and the unbiased condition are not required. System and measurement noises are con-
sidered simultaneously. It is shown via simulation that, due to FIR structure, the RSFF
has a better estimation ability for temporary modelling uncertainties compared with a
conventional robust IIR filter, i.e., robust Kalman filter.
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Figure 4. Comparison between robust Kalman filter and RSFF

When the IIR filter has a slow response, the proposed RSFF could be a good substitute
to achieve a fast response with robustness.
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