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ABSTRACT. This paper analyses the application of learning classifier systems on a mar-
ket selection game. The prime objective of an agent in this game is to strive for a better
profit on its products when sold in the market. A judicious vision is required on the part
of agents while choosing a market to keep in view transportation cost as well as the profit
margins on the sale of their products in that market. If a large number of similar prod-
ucts are brought to that market, these will naturally yield low price. In the same way,
high transportation cost will also result in decrease of profit margin. Hence, a balance
between the two is to be maintained in order to gain high profits for an agent’s products.
We have proposed a new Michigan-Style algorithm for solving this problem. The pro-
posed algorithm is then compared with Pittsburg classifier system approach to solve the
same problem. The former works without a central coordinator, whereas the later works
with the help of a central coordinator. Our experiments show that even though Michigan
approach works with limited localized information, yet it produces high quality results
quickly, consistently and at the same time all this is achieved by using less computational
resources. We have also compared Michigan approach with the approach of unplanned
coordination as proposed by Ishibuchi et al. in 2001. It also shows that the idea of using
Michigan classifier system better suits the agents to solve this problem.

Keywords: Michigan classifier systems, Pittsburg classifier systems, Evolution of game
strategies, Evolutionary algorithm, Agent market selection

1. Introduction. In the field of computer science, researchers often face computational
problems having multiple possible solutions. It sometimes becomes computationally non-
feasible to find the optimal or near optimal solution. Computer scientists have come up
with various approaches and techniques for investigating such problems in depth with a
view to find a solution to the problem within the constraints of computational resources
as well as within feasible amount of time. One set of these approaches draws its inspi-
ration from the principles of natural evolution. Such approaches are grouped together
by scientific community as Evolutionary Computation (EC) which is in fact treated as
a subfield of artificial intelligence. Over a period of time, EC based techniques have
been successfully applied in solving the real-world problems. These evolutionary algo-
rithms perform quite well in solving multi-objective optimization problems. In contrast
to mathematical programming technique, a single run of these algorithms provides a col-
lection of possible members of Pareto optimal set. The concept of population in these
algorithms corresponds with the possible solutions of a problem. Mathematical program-
ming techniques, on the other hand, require a series of executions to get a set of possible
solutions [1]. Evolutionary algorithms have been applied to various fields such as data
mining, combinatorial optimization, fault diagnosis, classification, clustering, scheduling,
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routing, transportation and time series approximation [2-5,30]. In addition, it has also
been applied in the field of Game development for solving various gaming problems [6-11].

Evolutionary Computing paradigm consists of many evolutionary algorithms including
Genetic Algorithm (GA). GA has been applied to complex function optimization problems
where the target objective function does not exhibit nice properties such as continuity,
differentiability, satisfaction of the Lipschitz Condition [14-17]. These algorithms are bi-
ologically inspired and follow the Natural law “The Survival of the Fittest”. The fittest
individual of a population is given a better chance to reproduce and survive to the next
generation which results in improved solutions with the evolution of successive genera-
tions. This helps the algorithm in exploiting the promising areas of solution space. In
order to keep the algorithm’s exploring capabilities intact, the inferior individuals are also
given some chance of survival and reproduction. This ensures that the algorithm is not
trapped into local optima. Since these algorithms maintain several possible solutions in
parallel, they exploit the solution space, in search of promising areas, in a better way.
Genetic algorithms have been used in the implementation of Learning Classifier algo-
rithms successfully [18]. These algorithms have also been applied in linear and nonlinear
optimization problems to find out an exact or at least an approximate solution to these
problems.

Learning classifier systems provide algorithms, which are capable of autonomously ex-
tracting useful rules about a problem space using evolutionary computation and reinforce-
ment learning techniques. It is a well-established method that breaks down into two main
branches.

The first one is the Michigan-approach that operates at the level of individual rules
[19,20]. In this approach, an individual is coded as a string of if-then rule and its per-
formance is considered as the fitness value. Instead of the fitness value of a rule-set as
a whole, an individual’s fitness value is used in a genetic search for finding high quality
rules regarding a chosen problem domain. This approach uses both less memory storage
and less computation time, in comparison to its counterpart, as it maintains a population
of single rule-set only. The generation update only replaces bad rules of the current pop-
ulation with newly generated rules. Due to elitism, good rules of current population are
inherited by next generation without any modification. In this way, performance of the
algorithm keeps improving with each new generation, as good rules are retained and bad
rules are replaced [21]. Some good examples of this approach can be found in [20,22].

The second one is Pittsburgh-approach that operates at the level of whole rule-sets
[23,24]. In this approach, a rule-set is treated as an individual and the performance of the
rule-set is used as a fitness value. An individual, in this case, corresponds to a number
of if-then rules coded as strings. Thus, an evolutionary search is performed for finding
rule-sets with high fitness values. Some of the good rule-sets are treated as elite and
are inherited by the next generation without any modification. As the performance of
each rule is not explicitly evaluated, good rules in a poor rule-set may get eliminated
as a result of generation updates. Due to the involvement of a number of rule-sets in
a population, this approach requires a large memory storage and a long computation
time, as compared with Michigan approach [21]. For further details and good examples
of Pittsburgh approach, one may refer to [25-28].

In this paper, we have proposed a novel evolutionary algorithm for Market Selection
game and have presented its comparison with other techniques. The market selection
game was formulated in [12] and was further investigated in [8,13]. It is a multi-agent
game, in which each agent has to sell its products at a market yielding maximum profit.
Many products brought to the same market result in low profits. Hence, each agent has
to pick the market having least number of products. Previously, the attempts have been
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made to propose Fuzzy Q-Learning [12] and Genetic Algorithm inspired approaches [8]
to solve this problem. To the best of our knowledge, no attempt has been made to apply
the concept of Michigan style learning classifier system to address this problem. In the
light of above facts, we intend to make the following major contribution in this paper.

e Propose an efficient and effective Michigan-style novel technique for solving this
problem that has its inspiration from Ishibuchi method.

e Prove that even by providing very limited local information and a memory function
to each agent results in better solutions.

e Compare the effectiveness of our technique with that of Ishibuchi [§].

e Compare Michigan and Pittsburg Style learning classifier system for their applica-
bility and suitability to a multi-agent system such as market selection game.

The rest of this paper is structured as follows: In Section 2, we are explaining Mar-
ket Selection game and its constraints whereas its subsections describe how the various
genetic operators are applied to this game. In the next section, we are describing our
proposed Michigan-Style algorithm for this problem and in Section 4, we have shown how
this problem can be solved by using Pittsburg approach. Section 5 gives the details of
experiments conducted in order to compare these two approaches with each other as well
as the Ishibuchi Method [8]. Section 6 provides future directions while the last section
provides the conclusion of our investigations.

2. Market Selection Problem. Market Selection problem was for the first time formu-
lated for games in the study titled “Fuzzy Q-learning for a multi-player non-cooperative
repeated game” [12]. In this problem, the game strategies of various agents are simulta-
neously evolved on the basis of the reward the agent receives by selling its products in
the market. In this optimization problem, each of the n agents has to choose one market
out of m markets to sell its p products so that the maximum profit is made. The problem
constraints the decision of all the agents to be made simultaneously. Thus, no agent will
know other agent’s market selection choice in advance. Figure 1 shows an instance of the
problem in which n = 50 and m = 7.

SN '

FiGUurRE 2. Market selection
by agents

FIGURE 1. Market selection environment

There are various types of products which can be sold in markets. Each agent may
or may not have limited quantities of each type of the products to sell. The products
and their quantities may be different for each agent. Each agent can only choose a single
market for selling its products.

In Figure 2, we show an example of the market selection where the line from each agent
indicates the selected market (i.e., the line corresponds to the flow of the product). The
profit received by an agent by selling its product in the market is inversely proportional to
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the distance of the agent from the selected market and the number of products brought to
the same market by all other agents. In case, the agent is located at a long distance from
the market, the higher cost of transport to bring the product to the market will obviously
decrease its profit margin. Similarly, if a market receives large quantities of similar type
of products, the price of the product at that market will also fall. Hence, the choice of
the market for each agent has to be optimized, keeping in mind the product price at that
market and the transportation cost involved to bring that product to the market.

2.1. Chromosome encoding. Individuals of a population are represented by a chro-
mosome. FEach chromosome consists of genes. Each gene is encoded with the help of
alphabets which may include binary, numeric, real valued or symbols. Genetic operators
such as selection, mutation and cross over are applied to the population of chromosomes to
create future generations. In our market selection game numeric encoding is used. Since
we will be using 5 markets in our experiments, in our case, each chromosome consists of
a single gene with the values ranging from 1 to 5 corresponding to 1%, 274, 374 4% and
5" market respectively.

2.2. Fitness function. There are n agents and m markets. There are p types of products
which can be sold in the markets. Each agent ¢ has quantities ¢, of the products to sell.
The products and their quantities may be different for each agent. Each agent can choose
a single market for selling its products.

The quantity of a product p available in a market j is

Qui = > Tijlip (1)
i=1

where z;; = 1 if agent i has selected the j™ market, otherwise it is zero and ¢, is the
quantities of product p brought to the market by agent 7. The market price MP of the
product p at each market in each round is inversely proportional to the quantity of that
product (),; available at that market.

MPy; = aj —b;(Qp;) (2)

where a; and b; are positive constants that influence the market price. The total price
that an agent i (AP;) gets for its products, is calculated according to the summation of
the market prices of the products at that market weighted by the quantity of that product
available with the agent (Equation (3)).

p
AP; =) " quMPy (3)

t=1

The transportation cost of the product from the agent’s location to the selected market
has a negative effect on the agent’s payoff. The transportation cost for an agent i to its
selected market j is defined as:

where d;; is the Euclidean distance between the agent and the market location and can
be calculated as following:

diy = \J(X; = X,)? + (¥ = Y;)? 5)

where X;Y; and XY} are coordinates of an agent and market respectively.
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For the purpose of simplicity, we assume that the transportation cost per unit distance
is the same for all agents. Hence, transportation cost (7'C') is directly proportional to the
distance of agent from the selected market. The payoff/reward (r) of an agent i is

= AP; — TC}; (6)

Even though each agent is trying to maximize its own payoff in each round, still the
payoff depends upon the market price, which, consequently, depends upon the market
selection made by other agents, and hence, the payoff of an agent is dependent on the
action of other agents.

Our aim in the market selection game is to look for the optimum collective payoff in
minimum rounds of game.

R= Zr (7)

In other words, we have to maximize R.
Even though each agent is trying to maximize its own payoff in each round and does so
on the basis of local information, yet as a whole the system reaches a sort of equilibrium.

2.3. Selection probability. Selection in GA is performed on the basis of the fitness of
an individual in order to produce successive generations. The selection is made probabilis-
tically so that the better individuals have an increased chance of being selected and the
possibility of selection of weak individuals is also not ruled out. Possibility of selection of
weak individuals provides exploration capabilities to the GA. There are several schemes
for the selection process, e.g., roulette wheel selection and its variations, tournament,
Ranking and linear scaling [15,17].

In our approach, we have used Roulette wheel selection [16] in which each neighbor of
an individual is assigned a selection probability using the following formula as used in [8],
ie.,

ot ot N (i
P(SZ) — Tk (Sk) "min ( (Z)) : (8)
> Ark(sk) = i (N ()}
kEN(i)
where N (i) represents all the neighbors of agent i and s; is the strategy of neighbor &
(k€ N(i)). rmin(N(4)) represents the minimum payoff among the neighbors N (i).

2.4. Replacement probability. Each agent’s strategy is replaced with the help of the
user defined replacement probability parameter. For replacing the strategy of an agent, the
new strategy is selected, from one of its neighbors, based upon the selection probability as
explained in the previous section. While selecting the new strategy from the neighbors, the
current strategy of the agent is also given a chance for reselection. In our implementation,
each agent is considered to be its own neighbor; for example, if we keep neighborhood
size (NS(i)) = 4, it means the i'® agent and its three neighboring agents based upon the
minimum Euclidian distance from the i*" agent. Thus, in some situations, an agent may
retain its previous strategy.

2.5. Mutation. Mutation operator is applied after applying Replacement procedure to
the strategy of each agent. It is applied to the fired rule with a user defined mutation
probability P,,. This operator changes the existing strategy of an agent with a different
strategy at random (i.e., out of 5 markets values). Both these operations are independent
of each other. Thus, both or none of them may be applied to an agent.
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2.6. Stopping criteria. The genetic algorithm keeps on selecting and reproducing par-
ents for a generation until the termination criteria is met. In our approach, we have used
the specific number of generations as stopping criteria for the algorithm. Other possibil-
ities could be to terminate the algorithm when improvement in the best solution is not
seen for a specific number of generations or the algorithm achieves an acceptable target
value of the evaluation measure.

3. Application of Michigan Approach. In Michigan approach, each agent is au-
tonomous in deciding its own strategy based on the localized information available to
it. It maintains its own Rule-Set consisting of the history of its past decisions and the
eventual reward received. The structure of a single rule is shown in Figure 3. Neighbors
of an agent are selected during initialization of the algorithm. Since agents in our scenario
are not mobile, the neighbors selected initially for an agent remain the same throughout
the execution of the algorithm. For selecting neighbors of an agent a method of minimum
Euclidean Distance is used. Rule (or chromosome) for each agent is created using the
following structure.

N1 | N2 | N3 | Action Strength
Sni | Sna | Sns | Sagent | Y PayOff/No. of times this rule is selected

FiGURE 3. Structure of a rule with 3 neighbors

The figure above shows the structure of a rule with three neighbors. In this structure,
N1 to N3 are three nearest neighbors of the agent (excluding the agent). Syi is the
strategy of neighbor 1 (i.e., market selected by neighbor 1), Sy is the strategy of neighbor
2 and Syg is the strategy of neighbor 3. S4gent represents the strategy used by the agent
(action taken) if the first three conditions are fulfilled. Each chromosome (or rule) has an
associated reward/payoff. Initially the Strength is set equal to the payoff. The possible
values of all genes are integers between 1 and 5 (because there are 5 markets).

Algorithm
Step 0: Each agent selects a market (strategy) at random.
Iterate the following steps until a termination criterion is fulfilled:

Step 1: The market selection information is used to construct a new rule in the Rule-Set
of each agent.
Step 2: The payoff (reward) of each agent is calculated as per (6). The reward is used to
update the strength associated with the rule.
Step 3: An Evolutionary Algorithm comprising the following steps is run in each agent’s
Rule-Set.
(a) Make three copies of the rule just executed.
(b) Mutate the consequent (action) part of the first copy by replacing the current
strategy of the agent with the strategy of its neighbor 1.
(c) Similarly mutate the consequent (action) part of the second and third copies
by replacing the current strategies with the strategy of neighbor 2 and 3,
respectively.
(d) The rewards of these three rules will be the rewards obtained by the neighbors
N1, N2 and N3, respectively.
(e) If any two (or all three) of the new rules are the copies of each other, they are
merged into one rule. In such cases, the reward of the rule created by merging
is the average of the merged rules.
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(f) Check to see if any of the remaining (after merging) newly created rules is an
exact copy of the parent rule. In such cases, the new rule is discarded and
the strength of the matching rule of Rule-Set is updated. In case, it does not
match with existing rule(s) of Rule-Set, it is added to Rule-Set as it is.

(g) If the size of Rule-Set exceeds the total number of permissible rules, the rules
with the worst rewards are culled. In rule pruning, the rules added in the
Rule-Set during the current iteration are exempted from pruning with a view
to give them a chance to evolve themselves.

Step 4: Depending upon the replacement probability, a rule is fired from each Rule-Set
using the roulette wheel selection. The probability of a rule being fired is propor-
tional to its reward. The consequent part of the rule becomes the new strategy
of the agent.

Step 5: The strategy of the agent obtained in Step 4 is mutated in the light of user defined
mutation probability parameter.

A new iteration starts.
After the first iteration, we may face the following situations.

(a) In Step 1, it may happen that the rule created from the current market selections does
already exist in the Rule-Set. In such cases, the strength of the old rule is updated
according to the new reward received.

(b) In Step 3(f), the check for avoiding duplicates is not only limited to the parent rules
but it also applies to all other old rules contained in an agent’s Rule-Set.

In Step 3(e)-3(f), the rule similarity is checked by comparing the markets selected by
one agent & its neighbors with the corresponding markets selected by other agent & its
neighbors; for example,

S[iagent = S[jlagent AND  S[i]x1 = S[j]y1  AND
Slilxz = S[jlve AND  S[ilns = S[jlns 9)

where 7 and j represent ith and jth agent respectively.
In Step 3(f), the Strength of existing rule is updated by taking average of the two
matching rules’ strengths, i.e.,

(Existing Rule’s Strength %« X') + Strength of Newly Created Rule

X +1 10)

where X = No. of times the rule has been selected in the past.

4. Application of Pittsburg Approach. In this approach, we have to assume that
there is a central coordinator which is trying to maximize the overall payoff of the system
(i.e., summation of individual agent payoffs). Information from all the markets has to be
made available with this central coordinator after each round.

There is a population of competing chromosomes and each chromosome is a complete
list of agent-market allocations encoded as a string of length n as s = s15953 ... s,, where
s; denotes the market selected by the ith agent. Since there are 100 agents, we have a
chromosome of 100 genes and each gene’s value is an integer number in the range of 1 to
5 because there are 5 markets (the value of a gene is the market selection made by the
corresponding agent).

The fitness of a chromosome is the summation of the payoffs of the agents according to
the allocations defined in the chromosome. The higher the collective payoff, the better is
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the chromosome. The fitness (objective) function is:
n
f(chromosome) = Z T (11)
i=1

where r; is the payoff of the ith agent (as given in Equation (6)) according to the market
allocations defined in the chromosome. A search is conducted by means of genetic algo-
rithm to find out the optimum chromosome (which has the maximum summed payoff).

In this approach, we have used the roulette wheel selection mechanism with the linear
scaling as mentioned in Equation (8). Previously the scaling mechanism was applied to
a single agent but, for Pittsburgh approach, it has been adapted to chromosomes as a
whole. Standard uniform crossover and the mutation mechanism, as mentioned in Section
2, are applied.

Algorithm

Step 0: Generate the initial population of chromosomes by executing the following steps:
a. Fach agent randomly selects a market.
b. A chromosome, of length equal to the total number of agents, is created based
upon the market selected by each agent.
¢. The chromosome is added to the current population.
d. If the population size is less than the user’s specified parameter, return to Step
a.

Execute the following steps to generate next generation.

Step 1: Calculate fitness of each chromosome by using Equation (11).

Step 2: Select two parents using roulette wheel selection with the linear scaling as in (8).

Step 3: Perform uniform cross over based upon the crossover probability.

Step 4: Mutate the newly generated chromosome based upon the mutation probability.

Step 5: For elitism, add the best individual of previous generation to the current genera-
tion.

Step 6: If population size is less than the user’s specified parameter, return to Step 2.

Step 7: If the total number of generations is less than the user specified allowed number
of generations, return to Step 1.

5. Experiments. For our experiments, we have assumed that the agents and the markets
are located on the intersections of a 100 x 100 grid. There cannot be more than one agent
or market on an intersection.

In order to analyze the difference between Michigan and Pittsburg approach various
experiments were performed. Pittsburgh approach is based upon central coordinator
hence the best results should be obtained using that approach. We applied both these
approaches to Market Selection Game as explained in Section 2. For both of these ap-
proaches, the algorithms were executed for 10000 generations. Though the algorithm may
reach effective fitness value in much less number of generations, yet we allowed the exe-
cution till 10000 generations in order to ensure that both the approaches are given a fair
chance of improvement. No further improvements were observed after 10000 generations.
It is important to note that the 10000 generations of our algorithms are analogous to
10000 rounds of market selection game. In each round, each agent is given a chance to
select a market, for selling its products, based upon the price (i.e., reward) it will get for
those products from the market. An agent’s payoff is based upon the market price and
distance of the agent from that market. This section is divided into two main portions.
In the first portion, we have presented the results obtained by applying our proposed
Michigan-style algorithm to the market selection game whereas in the second, we have
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compared this approach with Ishibuchi method [8] as well as the Pittsburgh-style learning
classifying system.

5.1. Michigan approach. For our experimentation, we used the value for a; = 200
and b; = 3 in market price equation (Equation (2)). The purpose of specifying these
values is the ease of comparison. We would like the Michigan approach to be compared
with the approach given by Ishibuchi. In his paper, Ishibuchi has used the same values
for a; and b;. Our proposed approach is mainly based on four user defined parameters.
These parameters are Rule Set Size, Neighborhood Size, Mutation Rate and Replacement
Probability. In our computer simulations, we performed experiments using various com-
binations of these parameters. Though the algorithm proved to be robust against a wide
range of combinations but the best results were obtained using the following parameters:

Neighborhood Size = NS = 4

Probability of Mutation = P,, = 0.0

Rule Set Size = RS =5

Replacement Probability = Pr = 0.2

All the results presented in this section are based upon these parameter settings unless

stated otherwise. For the purpose of comparison, we have picked up the same environment
as mentioned in [8] (see Figure 4). The only difference is that, in [8], the author has
specified the coordinates in floating points whereas we have rounded off those values to
the nearest integers.
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FiGURE 4. Layout of the environment showing 5 markets and 100 agents

The evolution of game strategies using best parameter specification is presented in
Figure 5. The figure shows how agents evolve their strategies, gradually, to get higher
rewards for selling their products to the nearest less congested market.

Our algorithm uses random initialization and probabilistic approach in search of good
solutions. This creates doubt that an experimental run for a particular specification will
give different results for each execution. In order to prove the robustness of our approach
we executed 10 independent trials for the same experimental setup. The results of each
trial averaged over 100 agents are shown in Table 1. From the table, it is evident that the
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FiGure 5. Evolutions of market selection during various rounds of game:
(a) after 1st round; (b) after 10th round and (c) after 50th round (d) after
500th round

algorithm produces good results consistently. We obtained a payoff of 118.7 or greater
in 8 out of the 10 trails performed. This indicates, no matter how agents are initiated
with different strategies, during the course of execution they tend to learn from their
experience and are able to identify markets that provide higher profits in return to their
products.

TABLE 1. Trial-wise average fitness of an agent after 10000 rounds of the game

Trial # 1 2 3 4 5 6 7 8 9 10
Avg. Fitness | 118.6 | 118.7 | 118.2 | 118.7 | 118.7 | 118.7 | 118.9 | 118.8 | 118.8 | 119.0

In order to monitor the evolution of game strategy, we recorded average payoff obtained
by an agent in each round of 10 trials. Table 2 summarizes the average fitness obtained
by an agent, averaged over 10 independent trials, during various rounds of the game.
From this table, it can be seen that the game strategy evolved rapidly during the first 50
rounds and after that minor but steady improvement was observed till the 10000 rounds
of the game. Since an agent makes its move depending upon the information received
from a limited number of its neighbors, the decision made by an agent in a particular
round, based on partial information, sometimes results in a poor payoff as compared with
a previous round. This fact can be observed by looking into Table 2 for 1000*" and 5000
round where a drop in average payoff is visible.



MICHIGAN VERSUS PITTSBURG APPROACH: A COMPARISON 23

TABLE 2. Round wise avg. fitness values

Round No. | Avg. Fitness
5 99.86
10 107.17
20 113.38
30 116.39
40 117.75
50 118.27
100 118.48
500 118.50
700 118.51
1000 118.36
3000 118.53
5000 118.46
7000 118.62
9000 118.66
10000 118.73
120
110
|3
H
100 +—
90 7
30 - . ~ . § . .
0 10 20 30 40 50
Round No.

FiGURE 6. Evolution of average payoff during first 50 rounds of 10 trials

The evolution of game strategies during 10 independent trials is shown in Figure 6.
The results show that good solutions are evolved in a very similar fashion during each
trial. All the trials start to produce higher average payoffs at the 50" round. Each agent
makes its move depending upon the local information available to it. In the absence of
global information, agents may make moves which result in sub-optimal solutions. This
can result in un-predictable behavior if algorithm is allowed to execute beyond 50 rounds.
To analyze this, we have plotted the average payoff for the 10 trials in the next 50 rounds
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in Figure 7. As shown in this figure, once agents are able to figure out best strategies for
themselves, they continue to exercise these strategies. The probability of an agent making
a drastically bad move is avoided by the Rule Set memory provided to each agent. The
rule set contains the good decisions taken by the agent in the past in order to get high
payoff.

120
e —— '!!J e - gw ==
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100
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FIGURE 7. Evolution of average payoff (for the 10 trials) from 50" to 100*" round

In this section, we have seen how our proposed algorithm solves the market selection
problem effectively. In the next section, we would like to investigate its performance in
comparison to other alternatives for solving the same problem.

5.2. Comparison of different approaches. In this section, we compare Michigan ap-
proach with two other methods. The first is based on unplanned coordination mentioned
in [8]. We will refer to it as Ishibuchi Method (Migpipuchi)- The second is based on Pitts-
burg approach that uses Genetic Algorithm with a concept of central coordinator. We
will refer to it as Pittsburg Method (Mpigsburg). Throughout this section, Michigan based
methodology is being referred to as Muichigan-

5.2.1. Ishibuchi method (Mighibuchi). This method uses unplanned coordination for the
evolution of agent’s game strategy using Genetic Algorithm based approach. Agents
share their strategy with the neighboring agents through localized selection based upon
replacement probability [8]. For the purpose of comparison, we performed 10 independent
trials of the algorithm based upon the best parameter specifications (i.e., Neighborhood
Size = 4, Replacement Probability = 0.5 and Mutation Probability = 0). In each trial,
agents were randomly initialized with different strategies. The results of the 10 trials are
given in Table 3 below.

By comparing Table 3 (Mighibuchi) with Table 1 (Mysichigan), it is evident that the
Mitichigan Performs well as compared with Migpibuchi- Mishibuchi has achieved an average
of 118.2 for the 10 trials in comparison with an average of 118.7 using Michigan approach.
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TABLE 3. Trial-wise average fitness of an agent after 10000 rounds of the
game using Ishibuchi method

Trial # 1 2 3 4 5 6 7 8 9 10
Avg. Fitness | 118.0 | 118.2 | 118.7 | 118.5 | 118.6 | 118.3 | 117.9 | 118.6 | 117.8 | 117.8

The results of Ishibuchi method range from 117.8 to 118.7 whereas that of Michigan ap-
proach range from 118.2 to 119.01. This shows that our proposed Michigan approach
consistently provides better outcome as compared with Mighipueni- Michigan approach
provided an average payoff 118.7 or greater in 8 out of 10 trials whereas Ishibuchi method
reached an average payoff of 118.7 only once during the 10 independent trials.

It is not just the final outcome of the algorithm that matters. How quickly it starts
producing good results, is also an important factor. In order to analyze the behavior
of algorithm in early rounds of the game, we noted the round of the game in which
the particular approach started producing good results, i.e., higher payoffs. For making
these comparisons, we considered the average payoff value of 118 or greater as the high
payoff. It revealed that Ishibuchi approach was producing good results a little earlier
than the Michigan approach (using best parameters). On further investigation, it turned
out that the major contributor in Ishibuchi method for this was replacement probability.
Consequently, we used the same value of replacement probability (i.e., Pr = 0.5 ) for both
the approaches. The results for the 10 trials of each method are presented in Table 4. It
shows the round number of the game in which each trial reached an average payoff of 118
or greater.

TABLE 4. Trial wise round number in which results entered into good range

Trial # |1 2|3 |4 |5 |6 |7 |8|9]|10|Avg.
Mishibuchi | 17 [ 1027 |11 13|11 | 1542|1420 | 18
Mhaichigan | 9 |16 | 10| 15| 11| 19| 17|21 | 17| 12| 15

By looking at this table, it can be concluded that the Michigan approach converges
to better results earlier than the Ishibuchi method. Besides this, Michigan approach is
pretty much consistent in its behavior as compared to the Mighipucni- It varies from 9 to
21 rounds of game as compared to Ishibuchi’s 11 to 42.

If the average payoff for the 10 trials is measured at the end of first 50 rounds of
game, both algorithm show very much similar pattern with Michigan approach performing
slightly better. In case of Mighibuchi, the average of 10 trials is 118.2 whereas in case of
Mifichigan it is 118.3. In order to understand how the two algorithms evolve good strategies
beyond these initial rounds, we executed them for 10000 rounds. The 10 trials average
payoffs are plotted in the graph (Figure 8) during various round of the game for Mghibuchi
and MMichigan-

By comparing the results of two approaches in Figure 8, it becomes clear that the
Michigan approach really evolves good strategies if it is allowed to execute 10000 rounds
of the game, whereas, the Mghibuchi does not take real advantage of these extra rounds
beyond the initial 1000. This is why Michigan approach clearly shows trends that are
much higher in terms of agent’s payoffs than the Ishibuchi method.

We made further comparisons by comparing the two approaches in terms of Maximum,
Average and Median payoff obtained over 10000 rounds of each trial. The results given
in Table 5, reveal the fact that Michigan approach provides better results in all the three
categories.
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TABLE 5. Trial-wise max, avg. and median values based on 100 agent’s
avg. payoff calculation of each round

Trial # 1 2 3 4 5 6 7 8 9 10
Mishibuchi — Max | 119.09| 119.19| 119.03| 119.09| 119.13| 119.11| 119.12| 119.07| 119.09| 119.19
Muichigan — Max | 119.17 | 119.15| 119.18 | 119.15| 119.17 | 119.15| 119.20 | 119.18 | 119.16 | 119.17
Mishibuchi — Avg.| 118.20| 118.22| 118.19| 118.21| 118.23| 118.22| 118.22| 118.19| 118.22| 118.20
Michigan — Avg. | 118.40 | 118.40| 118.50 | 118.50 | 118.50 | 118.60 | 118.50 | 118.60 | 118.50 | 118.50
Mishibuchi — Med.| 118.26| 118.28| 118.25| 118.26| 118.28| 118.28| 118.28| 118.26| 118.28| 118.26
Muichigan — Med.| 118.52 | 118.46| 118.62 | 118.52 | 118.61 | 118.67 | 118.55 | 118.62 | 118.59 | 118.59

This fact clearly indicates that the Michigan approach gives us superior results to the
Ishibuchi method. However, it would be interesting to analyze the evolution of game
strategies in initial rounds of the game by using both these methods. Figure 9 shows the
10 trials’ average payoff during first 400 rounds of the game. It is evident from this graph
that the improvement of average payoff in case of Mighipuchi method is a little quicker than
the Mytichigan- However, Michigan approach dominates the Ishibuchi method in terms of
higher average payoff values after initial 50 rounds of the game. All the analyses presented
above also support this argument.

5.2.2. Pittsburg approach (Mpigsburg)- In order to compare the performance of Michigan
approach with a Central Coordinator based Pittsburg algorithm, we performed various
experiments. Since Pittsburg approach based algorithm tries to optimize strategies in
order to get high overall payoff for all agents (instead of each individual agent), it is quite
obvious that it will deliver high quality results. We wanted to analyze Michigan approach
by keeping Pittsburg approach as a benchmark. To perform these experiments, we have
used the following parameter specifications:

(a) Population size = 100

(b) Crossover probability = 0.8

(c) Mutation probability = 0.001

(d) Maximum iterations = 10,000 generations

(e) a; =200 and b; = 3

These parameters were used for the 10 trials performed for Pittsburg approach based
on different initial strategies. The average payoff of an agent, after 10000 generations,
turned out to be 119.265 for all the 10 trials. The evolution of average payoff for these
10 trails is shown in Figure 10. As improvement in average payoff is very similar in 10
trials, it is difficult to distinguish the results from each other. When we compare the trend
of Figure 10 with that of Figure 6, we reach the conclusion that both these approaches
evolve good results in a very similar fashion.

Figure 11(a) shows the final strategies of agents corresponding to the average payoff of
119.265. Tt is interesting to note that Michigan approach was also able to provide near
optimal results as it was able to achieve an average payoff up to 119.011 (as in Table 1
trial 10). The market selection corresponding to this result is given in Figure 11(b). When
one compares Figure 11(a) with Figure 11(b), one can easily conclude that Michigan ap-
proach provided almost identical outcome as did its counterpart. The ability of Michigan
approach to deliver near optimal results is also proved from the Maximum Average Payoff
values given in Table 5. This table shows that each trial of Michigan approach was able
to achieve a maximum payoff of 119.2 approximately. In case of Michigan approach, even
the average payoff 118.7 obtained over all the 10 trial is quite effective considering the less
amount of resources (in terms of CPU and memory) requirement of this approach over
Pittsburg approach.
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FIGURE 11. Market selection after 10000 rounds of the game

Figure 12 shows the comparison of two approaches after first 50 rounds of the game.
It is very clear from this graph that Michigan approach was able to deliver far better
results than Pittsburg approach at the end of 50" round. The highest average payoff was
118.5 in case of Michigan approach, whereas Pittsburg approach only improved as high
as 114.23 at the end of 50" round.

Figure 13 presents the evolution of average payoff during first 50 rounds of Pittsburg
approach. When we compare Figure 13 with Figure 6, it becomes quite apparent that the
Michigan approach converges to higher payoffs much faster in comparison to the Pittsburg
approach.

We then analyzed two approaches thoroughly in order to identify the exact point where
both of them started to deliver high average payoffs. The results of our investigation are
presented in Table 6 below. The dominance of Michigan approach is clear from this table.
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On an average, Michigan approach only took 42 rounds of games to achieve high average
payoffs whereas Pittsburg approach achieved this in an average of 194 rounds.

TABLE 6. Trial wise round number in which higher average payoffs start
to emerge (i.e., 118 or greater)

Trial # 1 2 3 4 | 5 6 7| 8 9 | 10 | Avg.
Pittsburg Approach | 216 | 197 | 203 | 199 | 222 | 187 | 185 | 137 | 238 | 159 | 194
Michigan Approach | 43 | 32 | 37 | 46 | 52 | 40 | 38 | 47 | 38 | 43 | 42
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The above mentioned facts indicate that although Pittsburg approach achieves higher
payoffs due to the presence of central coordinator, yet good enough results can be achieved
using Michigan approach faster and with less amount of computing resources. In many
cases, it is important to note how quickly an algorithm converges to a near optimal
solution. Furthermore, there is an inherent deficiency in Pittsburgh approach, i.e., the
fitness is evaluated at the rule-set level which means GA only receives high-level feedback
from the fitness function and it is incapable of evaluating the contribution of individual
rules in the overall fitness of the rule-set. This means that it requires additional effort
for generating optimal populations. This extra effort compounded with the additional
computational resources required to operate at the population level is the main hindrance
in the formulation of efficient implementation [29].

6. Future Work. The market selection scenario used in this paper is very simplistic. It
only assumes that each agent has one type of products and it must sell all its products at
one market only. Each product sold at one market has the same price and it is the market
conditions that determine the price of every product. Market price is a fixed decreasing
function and each market has the same mechanism for calculating its price. The location
of market and its surrounding population does not have any impact on the price. If
we modify some of these assumptions, we can create complex scenarios. Application of
Michigan and Pittsburg approach for such scenarios will prove to be an interesting future
research task [8].

In our approach, mutation probability surprisingly did not play an effective role which
is against the normal working of an evolutionary algorithm. In fact, it was observed that
the algorithm performed well in the absence of mutation probability (i.e., P, = 0). In our
future research, we would like to investigate this fact further to see how this parameter
can be effectively utilized to achieve high quality solutions.

We have proposed a new Michigan style algorithm to solve market selection problem.
The concepts presented in our approach can also be adopted and applied to other real
world scenarios such as El-Farol Bar problem [31]. Similarly, the application of prominent
learning classifier systems such as XCS and ZCS can also be looked into as a possibility
of solving Market Selection problem.

Some other real world problems, where concentration of agents leads to a poor reward,
can also be formulated using the same approach. For example, if many students apply for
the same department, the entrance exam will become tough. The same route, chosen by
many drivers at the same time, causes traffic congestion, i.e., poor reward for the drivers

[8]-

7. Conclusion. In this paper, we have proposed a Michigan-style novel algorithm for
the evolution of game strategies among agents with localized selection and coordination.
Contrary to the Pittsburg approach, it operated at an individual agent level to maximize
its payoff. Each agent knew only the strategies of its neighbors and there was no mech-
anism for it to know the strategies of all other agents and make moves accordingly. It
has been proved quite sufficiently with the help of experiments that this greedy approach
(improvement of payoff by each individual agent regardless of others) works well for mar-
ket selection game as the overall average payoff of all the agents achieve higher values.
The results of Michigan approach (without any central coordinator) were then compared
with the Pittsburg approach (having central coordinator) and Ishibuchi method of un-
planned coordination (without any central coordinator). It was proven that the Michigan
approach provide much better overall average payoffs than the Ishibuchi method. In ad-
dition to this, it indicates better utilization of the increasing generations of evolutionary
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algorithm. The strategies evolved by Michigan method were superior to the strategies
evolved by Ishibuchi method.

In its comparison to Pittsburg approach, Michigan approach was able to evolve good
strategies much quicker and with less amount of computing resources. It was also proven
that the localized selection of Michigan approach was not a hindrance in the way of
evolution of good solutions. The Michigan approach was able to evolve almost as good
strategies as evolved in Pittsburg approach. It also has the quality of providing solutions
having higher payoffs in much less time and rounds of games. All the three approaches
mentioned above, evolved the strategies in a very similar fashion.
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