
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2012 ISSN 1349-4198
Volume 8, Number 1(A), January 2012 pp. 233–242

GPSO: A FRAMEWORK FOR OPTIMIZATION OF GENETIC
PROGRAMMING CLASSIFIER EXPRESSIONS FOR BINARY

CLASSIFICATION USING PARTICLE SWARM OPTIMIZATION

Hajira Jabeen1 and Abdul Rauf Baig2

1Iqra University
5, Khayaban e Johar, H-9/1, Islamabad, Pakistan

hajirajabeen@hotmail.com

2National University of Computer and Emerging Sciences, NU-FAST
A.K. Brohi Road, H-11/4, Islamabad, Pakistan

rauf.baig@nu.edu.pk

Received June 2010; revised January 2011

Abstract. Genetic Programming (GP) is an emerging classification tool known for its
flexibility, robustness and lucidity. However, GP suffers from a few limitations like long
training time, bloat and lack of convergence. In this paper, we have proposed a hybrid
technique that overcomes these drawbacks by improving the performance of GP evolved
classifiers using Particle Swarm Optimization (PSO). This hybrid classification technique
is a two-step process. In the first phase, we have used GP for evolution of arithmetic
classifier expressions (ACE). In the second phase, we add weights to these expressions
and optimize them using PSO. We have compared the performance of proposed frame-
work (GPSO) with the GP classification technique over twelve benchmark data sets. The
results conclude that the proposed optimization strategy outperforms GP with respect to
classification accuracy and less computation.
Keywords: Genetic programming, Classification, Particle swarm optimization, Opti-
mization, Expressions

1. Introduction. The ideal classifiers help in future decision making and reveal hidden
relationships in the data. However, finding the ideal classifier is a difficult task. The global
search mechanisms like evolutionary algorithms have been found efficient for classification
problems. Genetic Programming (GP) is one of the evolutionary algorithms found suc-
cessful for classification. GP can autonomously search for classifiers with flexible structure
and size. These classifiers can learn the data relationships during evolution. The resulting
classifiers are comprehensive and portable to tools like spread sheets. GP is considered
a powerful classification tool owing to its characteristics like flexibility, representation of
variable length solutions, ability to model the data relationships, comprehensiveness and
portability. However, GP suffers from a few well known limitations like long training time
(every member of the population is a classifier), code bloat (the size of classifier population
starts growing) and lack of convergence (one may not always get the optimal classifier).
In this paper, we present a novel method for optimization of GP evolved classifiers using
Particle Swarm Optimization (PSO). In this hybrid approach, (GP+PSO = GPSO), we
have overcome a few limitations of GP in the following way.

1. Reduced bloat by using a specialized depth limited crossover operator (and early
stopping).

2. Reduced training time by stopping the evolution process early (and reducing bloat
and computation).

233



234 H. JABEEN AND A. R. BAIG

3. Reduced the computation (function evaluation) by optimizing the premature classi-
fier using PSO.

We have tested the performance of our proposed GPSO hybrid framework over several
binary classification data sets from UCI and found it efficient on all the classification
problems.

2. Related Work. Although introduced earlier [1,2], GP was popularized in 1992 after
Koza’s work [3]. GP allows variable and flexible representations of solutions, making it
applicable for a wide variety of problems. GP can perform the data classification in several
ways. One of the methods is to evolve classification algorithms through GP [4,5]. These
methods involve defining a grammar to initialize genetic programs for evolution. The
resultant algorithms include neural networks, decision trees, fuzzy rule based systems
and fuzzy Petri nets. GP has been commonly used for evolution of classification rules
by evolving logical rules of the form if-then-else [6,7]. A novel GP based classification
technique is evolution of arithmetic classifier expressions (ACE) that serve as a discrimi-
nating function between classes. These expressions have real value as their output. Static
threshold [8], dynamic threshold [9] or slotted threshold [10] is applied to this output for
classification decision. Another scheme is binary decomposition method [11,12]. We have
used ACE based classification due to efficient results and transparency.
Some researchers have performed a simplification step on GP expressions [13] or tree

complexity penalty in fitness evaluation (parsimony pressure) [14], offspring size limits in
crossover [15] or limits on maximum tree size [12]. A unique method [16,17] performs gra-
dient search for optimization of terminals, in GP trees, for symbolic regression. However,
these methods have not been introduced for classification tasks.
In this paper, our emphasis is to optimize ACE in less computation. For this purpose, we

have investigated the use of Paricle Swarm Optimization Algorithm (PSO). It is computa-
tionally efficient and effective for a wide variety of applications like function optimization
[18] or neural network training [19]. PSO solves optimization problems by simulating
bird flock flying together in search of some ideal place. Considerable research is done for
optimization and efficient working of PSO. Several parameters are introduced to improve
the performance of PSO. Clerc and Kennedy [20] analyzed the convergence behavior of
the PSO and introduced the constriction factor,which improves the exploration ability of
swarm. Shi and Eberhart [21] introduced the concept of linearly decreasing inertia weight
which determines the step size and direction for movement. Shi [22] proposed a fuzzy,
nonlinear inertia updating strategy. Optimal values of constriction coefficients and inertia
weights proposed by Clerc, reported by Poli in [23] are 0.7298 and C0 = C1 = 1.49618.
To improve the performance of PSO, another research focus has been variations in PSO
topology. Keneddy [24] proposed that PSO with smaller neighborhood performs better
on complex problems and larger neighborhood would perform better on simpler prob-
lems. Suganthan [25] suggests a dynamically increasing neighborhood, until it includes
all the particles of the swarm. Parsopoulos and Vrahatis used a combination of the global
version and localised version to make a unified particle swarm optimizer (UPSO) [26].
Mendes and Kennedy introduce a fully informed PSO [27], in which all the neighbors of
the particle are used to update the velocity. The influence of each particle on its neighbors
is weighted based on its fitness value and the neighborhood size. Various modifications
to the PSO include, attractive-repulsive PSO (ARPSO), [28] predator-prey approach to
PSO (PPO) [29] species based PSO (SPSO) [30] and charged swarm [31].
Despite proposition of various GP and PSO hybrid algorithms [32], we have not been

able to find any optimization performed on GP evolved expressions using PSO.



GPSO: OPTIMIZATION OF GP USING PSO 235

3. Proposed GPSO Framework. The binary classifier is a many-to-one mapping that
maps the input data to a class. It takes a feature vector as input and assigns a class label
to it. In this paper, we are interested in finding an optimal arithmetic classifier expression.
Such an expression outputs a real value which is translated into class label. A GP-ACE
is evaluated for an input data, and if the output of the GP-ACE is = 0, the input data
is assigned to one class; otherwise, it is assigned to the other class. The best classifier
can classify the maximum of training samples, correctly. In this work, we optimize the
performance of the GP evolved ACE by addition and tuning of weights assigned to all
terminal values in the classifier. This optimization is performed using PSO. Figure 1 gives
an overview of the proposed GPSO algorithm.

Figure 1. GPSO algorithm

The first step of proposed algorithm is to evolve ACE using GP. The best ACE is
prepared for optimization by the addition of weights along each terminal. These weights
form a PSO particle and optimized using PSO. The description of GPSO is given in the
Algorithm GPSO.

Algorithm GPSO

1. BEGIN
2. Apply GP to evolve ACE (Algorithm GP Classification).
3. Add weights to ACE.
4. Initialize all weight particles.
5. Optimize these weights, for classification, using PSO.
6. Output Best GPSO-ACE.
7. END

The proposed framework involves three phases:

1. GP phase for the evolution of ACE.
2. Preparation for optimization phase by adding weights to ACE.
3. PSO phase for the optimization of newly added weights.

3.1. GP phase. The GP creates a program with the help of a function set and terminal
set. The function set used for ACE evolution is +, −, ∗, /. The terminal set contains
attributes of the data and random constant. The initialization method used for ACE, is
the well known ramped half and half method [3].

Three operators, mutation, reproduction and crossover are used for ACE evolution.
For mutation, a random candidate is selected, if it is a function node, it is replaced by
a random function node; else, it is replaced by an arbitrary terminal node [11]. The
reproduction operator selects a tree based on proportionate selection and copies that



236 H. JABEEN AND A. R. BAIG

tree into the next generation. The parents for crossover are selected by the tournament
selection. The DepthLimited [33] crossover has been used in our approach, where two
sub-trees (from parents) of same depths are swapped.
The classifier is trained to output a positive response (accept) for one class and negative

response (reject) for the instances belonging to the other class. The training data is fed
to a classifier and its classification accuracy is measured. We have used the two layered
fitness as proposed by Frietas [12]. The classifier with better accuracy is always preferred,
and if the accuracy of two classifiers is equal, then the simpler classifier is selected.

Algorithm Fitness

1. Begin
2. int count-correct = 0
3. For all instances in the training data N
4. Evaluate the classifier expression using the attribute values from the given instance

(Value)
5. If Value >= 0 and class = desired class
6. count-correct++
7. if Value < 0 and class = not desired class
8. count-correct++
9. End if
10. End for
11. Fitness = (count-correct/N)∗100
12. End

The output of this phase is an ACE that is trained to differentiate between two classes.

3.2. Preparation for optimization of classifiers. An ACE has two types of terminals,
attribute values [A1, . . . , An] and ephemeral constant [0-10]. We assign unique weights to
all the terminals present in ACE by the addition of a ‘∗’ node and a weight node. Let A0

be an ACE and t be the number of terminals in the classifier then the weight vector will
be:

[Wj], where j = 1 : t (1)

This process increases the complexity of the ACE and its depth by ‘1’. If the number
of terminals present in the tree is equal to ‘t’, then the increase in number of nodes in
tuned tree is ‘2 ∗ t’ where ‘t’ nodes are function nodes having value ‘∗’ and ‘t’ nodes are
terminal nodes having weights as their values. This affects the input of each terminal
according to its weight. Let old terminal be To and new terminal be Tn, then the value
of new terminal would be interpreted as:

Tnj = Wj ∗ Toj, where j = 1 : t (2)

An important point to note here is that the ACE remains intact if the values of all the
added weights are set to ‘1’. Let A0 be the original ACE and An be the weight added
ACE, then

A0 = An, if [Wj] = 1 where j = 1 : t (3)

Figure 2 illustrates an example, the ACE (A1/A3) + 3 becomes (A1 ∗W1)/(A3 ∗W2) +
(3 ∗ W3) after addition of weights. These weights combine to form a weight vector =
[W1,W2,W3]. Similar weight vectors are formed for the best ACE evolved in the previous
phase for the optimization.



GPSO: OPTIMIZATION OF GP USING PSO 237

Figure 2. Addition of weights

3.3. PSO phase for optimization of classifiers. The important step in PSO is ini-
tialization of position and velocities of particles for optimization. The empirical analysis
of our problem revealed that random weight initialization may not lead to optimal re-
sults. Whereas, we are interested in increasing the efficiency of classifiers. Therefore, we
have incorporated a special initialization mechanism that favors better particles. It has
been seen that efficient initialization leads towards better solutions and tends to find the
optimum solutions in less effort.

We have used random weight initialization coupled with a fitness checking measure. The
fitness of each randomly initialized particle Fitp, is calculated. A particle with fitness, less
than the original classifier Fitprev, is not accepted. We iterate this random initialization
process certain number of times (Pcount). After that, the best of Pcount is returned as
the swarm particle. The iteration process is stopped earlier if the solution with better
or equal fitness is found. The velocities of particles are initialized randomly. After the
initialization, the PSO algorithm is proceeded in the traditional way. The movement of
the swarm particles is controlled by their velocity and position update equations. We
have used the full model of PSO that uses social and cognitive components for movement.
The velocity of particles is updated by the following equation:

Vi+1 = wVi + C0 rand (0, 1)(Xpbest −Xi) + C1 rand (0, 1)(Xgbest −Xi) (4)

where w is the inertia weight, C0 and C1 are the constriction coefficients, Xpbest and
Xgbest are the personal and global best of a particle. The constriction coefficients control
the convergence of the particles. We have used the Clerc’s constriction method which
recommends following values:

C1 = 1.49618, C2 = 1.49618 and w = 0.7298 (5)

We have used the neighborhood model where a particle follows its neighboring best
position, as opposed to global best particle, where all particles in the swarm follow same
particle. This helps in exploring the search space effectively. Kennedy [36] suggested
that the neighborhood of smaller size works better for complex problems. After velocity
update, the particles update their positions using the following equation:

Xi+1 = Xi + Vi (6)

All the particles in the swarm update their positions and velocities using above equa-
tions, moving in the multidimensional hyperspace of solutions in search of optimal position
until the termination condition is met. The condition is either a number of iterations, or
certain threshold on fitness achieved by best particle. The optimization algorithm is ex-
plained in Algorithm PSO. This is last of the three phases that form the proposed hybrid
combination of GP and PSO (GPSO) technique.



238 H. JABEEN AND A. R. BAIG

Algorithm PSO

1. Begin
2. Initialize particles using algorithm in Figure 3
3. While termination criteria not met

(a) Calculate fitness of particles
(b) For each particle

(i) Update particle gbest
(ii) Update particle velocity using Equation (4) and values from 5
(iii) Update Particle Position using Equation (6)

(c) End particles
4. End while
5. Return new population
6. End

4. Experimental Settings. The classification accuracy of GPSO has been compared
with the simple GP based classification approach. We have used 12 benchmark binary
classification problems from UCI ML repository. All the data used for classification is real
valued except the BUPA data set which has a categorical attribute with numerical values.
We have treated this attribute as a numerical attribute [24]. Similarly, Statlog (Heart)
data set has few binary and nominal values, which were treated like numeric values. In
case of WBC data, there are some missing values, which have been deleted.
The parameters used for classifier evolution using GP are mentioned in Table 1. These

parameters have been carefully selected for classification after empirical analysis in our
previous work [33].

Table 1. GP parameters

Parameters Values
Population 600
Crossover rate 0.50
Mutation rate 0.25
Reproduction rate 0.25
Selection for cross over Tournament selection with size 7
Selection for mutation Random
Selection for reproduction Fitness Proportionate selection
Mutation type Point Mutation
Initialization method Ramped half and half method with Max depth 6
Function set +, −, ∗, / (protected division,division by zero is zero)
Terminals Data attributes A1, A2, . . . , An, Ephemeral constant [0, 10]
Termination criteria User specified generations or 100% training accuracy of classifier

Table 2 presents the PSO parameters used for GP classifier tuning in GPSO approach.
We have used neighborhood model suggested by Kennedy [24]. Other parameters like
constriction coefficients and inertia weight have been adopted from Clerc’s analysis [23].
These parameters have been widely used and found efficient for optimization tasks.

5. Results. The GP results have been generated using 10 fold cross validation, twice,
with different initial populations. This process is repeated five times with a different
tenfold partitioning and random sampling of the data. In this way, we have performed
10 GP runs (each involving tenfold cross validation). All the parameters in GP are kept
same except the new initialization in each run [12,15]. In every single GP execution (total
100), we extracted a classifier after every 10 generations, after that, we performed PSO



GPSO: OPTIMIZATION OF GP USING PSO 239

Table 2. PSO parameters

Paramaeter Values
Particles 100
Initial values [−1, 1]
Dimensions Number of leaves
Iterations 30
C0 1.49 [23]
C1 1.49 [23]
W 0.7 [23]
Model Lbest model [23]
Neighborhood size 2
Pcount 10

optimization ten times for every classifier. The classification accuracy and number of
function evaluations are observed for every classifier for GP and PSO. These results are
averaged for all the GP executions (100) and PSO executions (1000). These averages for
the test data have been reported in the result. We have used classification accuracy and the
number of function evaluations (NFE) performed to achieve that accuracy, as performance
metrics. These measures represent better performance and less computation. Figure 3
presents a graphical representation of the increase in accuracy achieved after optimization
process for WBC data after every ten generations. Where GP represents the accuracy of
classifier obtained by GP only and GPSO is the classifier obtained after the optimization
process. This can be seen that the optimization process has successfully increased the
accuracy of a classifier from 95.5% to 97.2% after ten generations while the accuracy
achieved by GP remained less than 97% until 120 generations. On the other hand, the
GPSO improved the classification accuracy up to 99%.

Figure 3. Average increase in testing accuracy after optimization

Table 3 presents the classification results of GPSO and traditional GP classification
in testing phase. We have extracted a classifier after every 10 generations and analyzed
the effect of optimization over various stages of evolution. The results presented in these
tables are average of 100 GP runs and 1000 PSO runs, as discussed previously. The row
GP-NFE tells the number of function evaluations elapsed to achieve given result, these
NFE increase with the increase in generations. The row GPSO-NFE tells the number of
function evaluations performed to achieve the results presented in the given column. This
can be seen that the GPSO has achieved better classification accuracy and outperformed
traditional GP in less number of function evaluations (NFE) (compare the results across
the columns). We have experimented with twelve data sets. This can be seen that the
GPSO results are better than the GP phase alone. Another point worth mentioning is



240 H. JABEEN AND A. R. BAIG

that GPSO improves the accuracy of classifiers many folds in less function evaluations in
most of the cases. On the other hand, GP alone has not achieved compatible accuracy
after many generations.

Table 3. Comparison of accuracies using GP and GPSO

Datasets Generations 10 20 30 40 50 60 70 80 90 100 110 120
GP-NFE∗104 97.2 97.3 97.5 97.6 97.6 98.0 98.1 98.1 98.3 98.4 98.7 99.1

WBC
GP % 95.6 96.1 96.1 96.2 96.3 96.3 96.3 96.3 96.5 96.5 96.6 96.6
GPSO % 97.2 97.9 98.1 98.7 99.0 99.0 99.1 99.1 99.1 99.1 99.1 99.6
GPSO NFE ∗ 10 4 0.9 1.5 2.1 2.8 3.4 4.0 4.5 5.1 5.8 6.4 6.9 7.5

BUPA
GP % 64.7 66.1 68.5 69.3 68.4 69.0 68.2 68.5 68.7 69.1 69.3 69.0
GPSO % 68.7 69.0 69.6 70.7 70.9 70.0 70.5 70.4 70.3 71.0 71.1 70.9
GPSO NFE ∗ 10 4 0.9 1.6 2.2 2.7 3.4 3.9 4.5 5.2 5.7 6.3 6.9 7.6

HABER
GP % 73.2 72.9 72.3 72.5 71.8 72.2 72.0 71.5 71.6 72.5 72.5 72.5
GPSO % 74.8 74.4 73.4 74.1 74.1 73.6 74.1 73.6 73.4 74.4 74.1 74.3
GPSO NFE ∗ 10 4 0.9 1.5 2.1 2.8 3.4 4.0 4.6 5.1 5.7 6.3 7.0 7.6

PARK
GP % 76.6 79.6 79.8 80.4 79.3 81.0 79.8 80.7 80.8 81.2 80.4 80.4
GPSO % 80.4 81.8 83.0 83.5 80.8 83.9 82.7 82.4 82.5 83.9 83.1 85.0
GPSO NFE ∗ 10 4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2 5.8 6.4 7.0 7.5

PIMA
GP % 65.7 65.4 65.3 66.8 66.9 66.1 67.7 67.8 68.2 68.3 68.5 68.6
GPSO % 71.3 71.6 70.9 71.5 70.8 70.7 73.6 73.6 74.0 74.1 74.7 74.4
GPSO NFE ∗ 10 4 1.0 1.5 2.1 2.8 3.4 4.9 4.6 5.2 5.7 6.3 7.0 7.6

TRANS
GP % 75.8 76.4 76.7 76.7 77.1 77.1 77.3 77.2 77.3 77.2 77.2 77.4
GPSO % 76.6 77.4 77.8 77.6 78.0 77.8 77.7 77.8 77.6 77.8 77.5 78.1
GPSO NFE ∗ 10 4 1.0 1.6 2.1 2.7 3.4 4.0 4.6 5.2 5.8 6.4 7.0 7.6

ION
GP % 78.5 83.2 84.8 85.6 86.1 86.3 86.6 86.9 87.2 87.6 88.4 88.5
GPSO % 82.1 84.1 86.4 87.0 87.4 87.6 88.0 88.4 88.8 89.0 89.1 89.3
GPSO NFE ∗ 10 4 1.0 1.6 2.1 2.7 3.4 4.0 4.6 5.1 5.8 6.4 7.0 7.6

SPEC
GP % 79.4 79.0 79.1 78.6 79.1 78.9 78.9 79.0 78.6 78.8 78.8 77.6
GPSO % 80.9 79.7 80.1 79.6 80.1 80.1 80.2 79.5 79.0 79.3 80.1 78.5
GPSO NFE ∗ 10 4 1.0 1.6 2.2 2.7 3.3 4.0 4.6 5.2 5.8 6.4 7.0 7.6

RIPPER
GP % 87.4 87.5 88.3 88.7 88.5 88.6 88.7 88.8 88.6 88.9 89.1 89.1
GPSO % 87.5 88.0 88.6 89.1 88.8 89.6 89.3 89.2 89.1 89.5 89.5 89.5
GPSO NFE ∗ 10 4 1.0 1.6 2.2 2.7 3.3 4.0 4.6 5.2 5.8 6.4 7.0 7.6

SONAR
GP % 70.4 73.8 72.6 73.6 72.7 73.5 73.6 73.2 72.7 73.6 73.5 73.3
GPSO % 70.4 74.0 72.7 74.1 73.4 74.1 74.1 74.0 73.6 74.4 74.0 73.9
GPSO NFE ∗ 10 4 1.0 1.6 2.1 2.7 3.3 4.0 4.6 5.2 5.8 6.4 7.0 7.6

MUSK
GP % 62.3 64.0 64.3 65.6 66.5 66.8 67.3 67.6 67.9 68.2 68.5 69.3
GPSO % 65.1 67.9 68.3 69.2 69.6 70.0 70.3 70.5 70.8 71.2 72.1 73.4
GPSO NFE ∗ 10 4 1.0 1.6 2.1 2.8 3.4 4.0 4.6 5.1 5.7 6.4 6.9 7.5

HEART
GP % 73.4 77.5 78.3 80.4 82.3 82.3 83.4 88.3 88.3 88.3 88.3 88.3
GPSO % 75.6 79.6 81.6 82.7 84.0 84.7 85.4 88.3 90.7 90.8 91.1 91.7
GPSO NFE ∗ 10 4 0.9 1.5 2.1 2.7 3.4 3.9 4.5 5.1 5.7 6.3 6.9 7.5

6. Conclusions. In this paper, we have presented a novel hybrid method for efficient
tuning of GP evolved ACE. This method has proved that the accuracy of arithmetic
classifier can be increased by addition and optimization of weights associated with the
terminals. We can extract an intelligent structure of ACE in a few generations of GP
and increase its performance by addition and optimization of weights. This method has
outperformed other GP based classification approaches. However, the proposed technique
is applicable to real valued data only. Mixed attribute type data or categorical data must
be converted into numerical values for this approach. The optimization process can be
applied to arithmetic expressions only; the use of this technique for rule-based classifier
can be explored. Some other future research directions include extension of proposed



GPSO: OPTIMIZATION OF GP USING PSO 241

algorithm for multi-class classification and use of proposed tuning algorithm in other
variants of GP used for classification.

REFERENCES

[1] N. L. Cramer, A representation for the adaptive generation of simple sequential programs, Proc. of
International Conference on Genetic Algorithms and the Applications, 1985.

[2] R. P. Salustowicz and J. Schmidhuber, Probabilistic incremental program evolution, Evolutionary
Computation, pp.123-141, 1987.

[3] J. R. Koza, Genetic Programming: On the Programming of by Means of Natural Selection, The MIT
Press, Cambridge, 1992.

[4] G. A. Pappa and A. A. Freitas, Evolving rule induction algorithms with multiobjective grammer
based genetic programming, Knowledge and Information Systems, 2008.

[5] A. Tsakonas, A comparison of classification accuracy of four genetic programming-evolved intelligent
structures, Information Sciences, pp.691-724, 2006.

[6] A. P. Engelbrecht, L. Schoeman and S. Rouwhorst, A building block approach to genetic program-
ming for rule discovery, Data Mining: A Heuristic Approach, pp.175-189, 2002.

[7] I. D. Falco, A. D. Cioppa and E Tarantino, Discovering interesting classification rules with GP,
Applied Soft Computing, pp.257-269, 2002.

[8] M. Zhang and V. Ciesielski, Genetic programming for multiple class object detection, Proc. of the
12th Australian Joint Conference on Artificial Intelligence, Australia, pp.180-192, 1999.

[9] W. R. Smart and M. Zhang, Classification strategies for image classification in genetic programming,
Proc. of Image and Vision Computing International Conference, pp.402-407, 2003.

[10] M. Zhang and W. Smart, Multiclass object classification using genetic programming, LNCS, pp.367-
376, 2004.

[11] J. K. Kishore, L. M. Patnaik, A. Man and V. K. Agrawal, Application of genetic programming for
multicategory pattern classification, IEEE Transactions on Eolutionary Computation, 2000.

[12] D. P. Muni, N. R. Pa and J. Das, A novel approach to design classifiers using GP, IEEE Transactions
on Evolutionary Computation, 2004.

[13] M. Zhang and P. Wong, Genetic programming for medical classification: A program simplification
approach, Genetic Programming and Evolvable Machines, pp.229-255, 2008.

[14] R. Poli, W. B. Langdo and N. F. McPhee, A Field Guide to Genetic Programming, Lulu.com, 2008.
[15] S. M. Winkler, M. Affenzelle and S. Wagner, Using enhanced genetic programming techniques for

evolving classifiers in the context of medical diagnosis, Genetic Programming and Evolvable Ma-
chines, pp.111-140, 2009.

[16] A. Topchy and W. F. Punch, Faster genetic programming based on local gradient search of numeric
leaf values, Proc. of the Genetic and Evolutionary Computation Conference, pp.155-162, 2001.

[17] M. Zhang and W. Smart, Genetic programming with gradient descent search for multiclass object
classification, The 7th European Conference on Genetic Programming, EuroGP, pp.399-408, 2004.

[18] J. S. Seo et al., Multimodal function optimization based on particle swarm optimization, IEEE
Transactions on Magnetics, 2006.

[19] V. G. Gudise and G. K. Venayagamoorthy, Comparison of particle swarm optimization and back
propagation as training algorithms for neural networks, Swarm Intelligence Symposium, 2003.

[20] M. Clerc and J. Kennedy, The particle swarm explosion, stability, and convergence in a multidimen-
sional complex space, IEEE Transactions on Evolutionary Computation, pp.58-73, 2002.

[21] Y. Shi and R. C. Eberhart, A modified particle swarm optimizer, IEEE Congress on Evolutionary
Computation, pp.69-73, 1998.

[22] Y. Shi and R. C. Eberhart, Particle swarm optimization with fuzzy adaptive inertia weight, Proc.
of the Workshop on Particle Swarm Optimization, Indianapolis, 2001.

[23] R. Poli, J. Kenned and T. Blackwell, Particle swarm optimizati: An overview, Swarm Intelligence,
pp.33-57, 2007.

[24] J. Kennedy, Small worlds and mega-minds: Effects of neighborhood topology on particle swarm
performance, Proc. of Congress on Evolutionary Computation, pp.1931-1938, 1999.

[25] P. N. Suganthan, Particle swarm optimizer with neighborhood operator, Proc. of Congress Evolu-
tionary Computation, Washington, pp.1958-1962, 1999.

[26] K. E. Parsopoulos and M. N. Vrahatis, UPSO: A unified particle swarm optimization scheme, Lecture
Series on Computational Sciences, pp.868-873, 2004.



242 H. JABEEN AND A. R. BAIG

[27] R. Mendes, J. Kennedy and J. Neves, The fully informed particle swarm: Simpler, maybe better,
IEEE Transactions on Evolutionary Computation, pp.204-210, 2004.

[28] J. Riget and J. S. Vesterstrom, A diversity-guided particle swarm optimizer – The ARPSO, Technical
Report 2002-0, University of Aarhus, 2002.

[29] A. Silva, A. Neve and E. Costa, Chasing the swarm: A predator pray approach to function opti-
mization, International Conference on Soft Computing, 2002.

[30] D. Parrot and X. Li, Locating and tracking multiple dynamic optima by a particle swarm model
using speciation, IEEE Transactions on Evolutionary Computation, 2006.

[31] T. M. Blackwell and P. J. Bentley, Dynamic search with charged swarms, Proc. of the Genetic and
Evolutionary Computation Conference, 2002.

[32] M. Rashid and A. R. Baig, PSOGP: A genetic programming based adaptable evolutionary hybrid
particle swarm optimization, International Journal of Innovative Computing, Information and Con-
trol, vol.6, no.1, pp.287-293, 2010.

[33] H. Jabeen and A. R. Baig, DepthLimited crossover in genetic programming for classifier evolution,
Computers in Human Behaviour, 2010.


