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Abstract. Bagging is one of the older, simpler and better known ensemble methods.
However, the bootstrap sampling strategy in bagging appears to lead to ensembles of low
diversity and accuracy compared with other ensemble methods. In this paper, a new vari-
ant of bagging, named IGF-Bagging, is proposed. Firstly, this method obtains bootstrap
instances. Then, it employs Information Gain (IG) based feature selection technique to
identify and remove irrelevant or redundant features. Finally, base learners trained from
the new sub data sets are combined via majority voting. Twelve datasets from the UCI
Machine Learning Repository are selected to demonstrate the effectiveness and feasibility
of the proposed method. Experimental results reveal that IGF-Bagging gets significant
improvement of the classification accuracy compared with other six methods.
Keywords: Ensemble learning, Bagging, Feature selection, Information gain

1. Introduction. Research in the area of machine learning and data mining has achieved
significant progress in the concept of learning from labeled instances. Although many effi-
cient methods have been proposed, they have been limited to simple concepts or problems.
Furthermore, numerous results suggest that learning more difficult concepts tends to be
extremely difficult. Among the research directions, they have evolved to address these
difficulties, which is ensemble learning [1,2]. A good understanding of how to build more
sophisticated ensemble methods and exploit various possibilities of extracting information
from the environment will move us to be closer to achieving the original intent of machine
learning and data mining [2].

Ensemble learning is a machine learning paradigm where multiple learners are trained
to solve the same problem. In contrast to ordinary machine learning methods which try
to learn one hypothesis from training data, ensemble learning tries to construct a set of
hypotheses and combine them to use [3]. Learners composing an ensemble are usually
called base learners. Ensemble methods have been approved theoretically and empirically
to demonstrate the advantages over the individual base learner. Bagging [4] and boosting
[5,6] are two popular ensemble methods to enforce weak base learners. The effectiveness
of such methods comes primarily from the diversity caused by re-sampling the training
set.

In practice, there are two basic requirements on the base learners for ensemble creation:
diversity, i.e., the candidate base learners should be as diverse as possible, and accuracy,
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i.e., the base learners should more or less perform well [2,4]. However, to assess and control
diversity of base learners and to find the trade-off between the accuracy and diversity is
not a trivial task [1,2]. In bagging, for example, the only factor encouraging diversity
between these base learners is the proportion of different instances in the training data
sets. Although the base learners used in bagging are sensitive to small changes in data,
the bootstrap sampling appears to lead to ensembles of low diversity compared with other
ensemble methods. And lots of comparative studies have been done and can be found in
[7-10]. It appears that, on average, AdaBoost, the most prominent member of boosting,
is the best method although bagging and other ensemble methods have their application
niches as well.
In order to enhance the performance of bagging, some studies have been investigated.

However, these studies usually introduced diversity through different training data sets
or different initial conditions. The use of different features has been relatively ignored.
Recently, ensemble method using randomly selected subsets of features has been shown
to improve the performance considerably [11]. Although a great deal of diversity is in-
troduced, the accuracy is reduced. For this reason, the performance of these ensemble
methods is rather unstable. In this study, we balance the degree of diversity and accuracy
and propose a new ensemble construction method, called IGF-Bagging, which aims at
building accurate and diverse base learners and enhancing the performance of bagging.
The main heuristic consists in applying feature selection technique and reconstructing a
feature set for each base learner. A general issue in machine learning and data mining
is that using too many features in the learning task can be problematic, particularly if
there are irrelevant or redundant features [12,13]. This can lead to over fitting, in which
irrelevant or redundant features may exert undue influence on the classification decisions
because of the finite size of training instances. In feature selection, there are two general
strategies, namely the filter model and the wrapper model [14,15]. The former selects
features by being guided by some significance measures, and the latter employs a learn-
ing algorithm to evaluate the selected feature subsets. As wrapper model has higher
computational complexity than filter model and bagging has also large computational
burden, we select filter model as feature selection technique in this study. In detailed
procedures, IGF-Bagging obtains bootstrap instances firstly. Then, it employs feature
selection technique to identify and remove irrelevant or redundant features. Finally, base
learners trained from the new sub data sets are combined via majority voting. Twelve
datasets from the UCI Machine Learning Repository are selected to demonstrate the ef-
fectiveness and feasibility of proposed methods. Empirical results show that IGF-Bagging
is effective in building ensembles, whose performance is better than that of many other
ensemble methods, e.g., bagging, boosting and random subspace.
The remainder of the paper is organized as follows. In Section 2, the background of

feature selection is discussed firstly. Following above analyses, we propose a new ensemble
construction approach, IGF-Bagging, based on the bagging and information gain based
feature selection. In Section 3, we present the details of experimental design. Section 4
reports the experimental results. Based on the observations and results of these experi-
ments, Section 5 draws conclusions and future research directions.

2. Information Gain Based Feature Selection for Bagging.

2.1. Feature selection. Feature selection has been an active research area in machine
learning and data mining communities [12]. The main idea of feature selection is to choose
a subset of input variables by eliminating features with little or no predictive informa-
tion. Feature selection reduces the dimensionality of feature space, removes redundant,
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irrelevant or noisy data. It brings the immediate effects for application: speeding up an
algorithm, improving the data quality and thereof the performance of classifier [13].

Diverse feature selection techniques have been proposed in the machine learning and
data mining literature. Feature selection techniques broadly falls into two categories based
on their approach: wrapper model and filter model [14,15]. The wrapper model requires
one predetermined learning algorithm in feature selection process. Features are selected
based on their effect on the performance of learning algorithm. For each new subset of
features, the wrapper model needs to train the classifier. It tends to find features better
suited to the predetermined learning algorithm resulting in superior learning performance.
However, the wrapper model is computationally more expensive [12,16]. The filter model
relies on general characteristics of the training data to select a feature set without in-
volvement of a learning algorithm. In the filter model, the feature set estimators evaluate
features individually. A typical feature selection algorithm computes some relevance mea-
sure for each feature, mostly derived from statistical analysis of the data samples in the
training data set, and then assigns it a score. Once the features are ranked, in the sec-
ond phase of learning system, one is often interested in achieving maximum classification
accuracy with minimum number of features [12,17].

Considering the computational complexity of bagging and the higher computational
burden of wrapper model, Information Gain (IG) based feature selection, one of popular
filter models, is adopted in our research [18,19]. The definition of IG is based on entropy.
Entropy is a commonly used in the information theory measure, which characterizes the
purity of an arbitrary collection of examples. It is in the foundation of the IG based feature
selection. The entropy measure is considered as a measure of system’s unpredictability.
The entropy of Y is:

H(Y ) = −
∑
y∈Y

p(y) log2(p(y)) (1)

where p(y) is the marginal probability density function for the random variable Y . If the
observed values of Y in the training data set S are partitioned according to the values of
a second feature X, and the entropy of Y with respect to the partitions induced by X
is less than the entropy of Y prior to partitioning, then there is a relationship between
features Y and X. Then, the entropy of Y after observing X is:

H(Y/X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y/x) log2(p(y/x)) (2)

Given the entropy as a criterion of impurity in a training data set S, we can define
a measure reflecting additional information about Y provide by X that represents the
amount by which the entropy of Y decreases. This measure is known as IG. It is given
by:

IG = H(Y )−H(Y/X) = H(X)−H(X/Y ) (3)

IG is a symmetrical measure (refer to Equation (3)). The information gained about Y
after observing X is equal to the information gained about X after observing Y .

2.2. IGF-Bagging. The main objective of ensemble methods is to improve classification
accuracy by aggregating the classifications of a diverse of base learners [1,2]. Previous
researches have shown that an ensemble of base learners is often more accurate than any of
the individual base learners in the ensemble. Two popular ensemble methods are bagging
and boosting. They both employ re-sampling techniques to obtain different training data
sets for each of base learners. Bagging (bootstrap aggregating) [4] generates different
training data sets by randomly drawing replacements from the original data set. The
base learners’ outputs are then combined by using the majority voting with equal weight.
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AdaBoost [5,6], short for Adaptive Boosting, is the most common implementation of the
boosting algorithm. It performs several learning iterations based on the same training data
set. The decisions of the base learners in the ensemble are combined by using weighted
voting, where each weight depends on the error of the base learner on the training data
set.
Recently, bias-variance decomposition of error has been used as a tool to study the

behavior of ensemble methods and to develop new ensemble methods well suited to the
bias-variance characteristics of base learners [20]. It has been shows that bagging can be
expected to reduce the variance of a base learner. This is because bagging can be viewed
as a method for developing a base learner that classifies using an estimate of the central
tendency for the learner. In contrast, AdaBoost can reduce both bias and variance. And
empirical studies showed that AdaBoost outperforms Bagging on average [7,10]. Although
the bias-variance decomposition is able to explain the property of the ensemble learning,
it is also a trick at present to construct an ensemble method. In practice, diversity and
accuracy are two factors that should be taken care of while designing ensembles in order
for them to generalize better. The success of AdaBoost has been explained, among others,
with its diversity creating ability. Margineantu and Dietterich [21] devise the so-called
“kappa-error” diagrams to show the effect of making the classifiers diverse at the expense
of reduced individual accuracy. Plotting a diagram for an ensemble designed by Bagging
and another designed by AdaBoost made the differences between the two approaches very
clear. AdaBoost was creating inaccurate base learners by forcing them to concentrate on
difficult objects and ignore the rest of the data. This, however, led to large diversity which
boosted the ensemble performance, often beyond that of bagging.
Roughly speaking, ensemble methods can be divided into two classes: instance parti-

tioning methods and feature partitioning methods. Bagging and boosting are all belongs
to the former. Feature partitioning methods mainly include random subspace [11]. Ran-
dom subspace perturbs the feature space to get diversity. In random subspace, a set
of low dimensional subspaces is generated by randomly sampling from the original high
dimensional feature vector and multiple classifiers constructed in random subspaces are
combined in the final decision. In order to enforce the diversity of base learners in bagging,
some explorations have been done from the perspective of integrating instance partition-
ing and feature partitioning [22,23]. Among them, a version of bagging called Random
Forest was proposed by Breiman [22]. The ensemble consists of decision trees built again
on bootstrap samples. The difference lies in the construction of the decision tree. The
feature to split a node is selected as the best feature among a set of M randomly chosen
features, where M is a parameter of the algorithm. This small alteration appeared to
be a winning heuristic in that diversity was introduced without much compromising the
accuracy of the individual base learners. Conversely, Random Forest is prone to over
fitting in noisy classification tasks and it is ineffective when handling a large number of
irrelevant features [24]. Next to this study, Rodriguez and Kuncheva proposed a rotation
approach, named Rotation Forest [23], to encourage simultaneously individual accuracy
and diversity within the ensemble. Diversity is promoted through the feature extraction
for each base learner. To create the training data for base learners, the feature set is ran-
domly split into K subsets and Principal Component Analysis is applied to each subset.
All principal components are retained in order to preserve the variability information in
the data. Decision trees were also chosen as base learners because they are sensitive to
rotation of the feature axes. Experimental results revealed that Rotation Forest construct
individual base learners which are more accurate than these in AdaBoost and Random
Forest, and more diverse than these in Bagging, sometimes more accurate as well. Like
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Random Forest, Rotation Forest is also ineffective when encountering a large number of
irrelevant features [24].

Through injecting feature partitioning strategy into bagging, base learners in bagging
can get more diversity. The performance of ensemble methods is also enhanced. However,
feature selection, anther form of feature partitioning, is seldom paid attention to. Feature
selection has been a fertile field of research and development since 1970’s in machine
learning, pattern recognition and data mining [12]. Features that are irrelevant to learning
tasks may deteriorate the performance of learning algorithms. Therefore, the omission of
some features could not only be tolerable but even desirable relatively to the costs involved.
And it can influence the quality of ensemble method in several ways, e.g., reducing learner
complexity, promoting diversity of base learners, and affecting the trade-off between the
accuracy and diversity of base learners [25]. In order to tackle the problem of irrelevant
or redundant features, we introduce one of feature selection methods into bagging and
propose a new version of bagging: IGF-Bagging.

IGF-Bagging combines one of the popular feature selection methods, IG based feature
selection, with the standard bagging procedure. We want to utilize the feature selection,
e.g., IG based feature selection, to enhance the accuracy and diversity of base learners.
The proposed IGF-Bagging proceeds in a parallel of T rounds. In every round, a sub data
set is bootstrap sampled with replacement firstly. Subsequently, the IG based feature
selection method is employed to delete irrelevant or redundant features. Lastly, base
learners trained with new sub data sets are combined by majority voting. The pseudo-
code for the IGF-Bagging algorithm is given in Figure 1.

Figure 1. The IGF-Bagging algorithm

3. Experimental Design.

3.1. Data sets and evaluation criteria. To demonstrate the effectiveness and feasibil-
ity of the proposed method, we selected twelve data sets from the University of California
at Irvine (UCI) Machine Learning Repository [26]. A summary of these data sets is shown
in Table 1.

The evaluation criteria of our experiments are adopted from the established standard
measures in the fields of machine learning and data mining [4,5,11,22,23]. The definition
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Table 1. Experimental data sets

Data set Size
Attribute

Class
Categorical Continuous

Audiology 226 0 69 24
Auto-mpg 398 2 5 4
Bridges2 108 10 1 6
Credit-a 653 6 9 2
Credit-g 100 7 13 2

Hayers-roth 132 4 0 3
Ionosphere 351 34 0 2
Machine 209 0 7 8
Mushroom 8124 0 22 2
Page-blocks 5473 0 10 5

Sonar 208 60 0 2
Splice 3177 0 60 3

of classification accuracy can be explained with respect to a confusion matrix as shown
in Table 2.

Table 2. Confusion matrix

Actual Condition
Positive Negative

Test Result
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Formally speaking, classification accuracy is defined as follows:

Classification Accuracy =
TP + TN

TP + FP + FN + TN
(4)

3.2. Experimental settings. The experiments described in this section were performed
on a PC with a 1.83 GHz Intel Core Duo CPU and 2GB RAM, using Windows XP
operating system. Data mining toolkit WEKA (Waikato Environment for Knowledge
Analysis) version 3.6.0 is used for experiment. WEKA is an open source toolkit, and it
consists of a collection of machine learning algorithms for solving data mining problems
[31].
In this study, two popular methods are chosen as the base learners, i.e., Decision Tree

(DT) and Näıve Bayes (NB). Consequently, the evaluated methods are divided into two
groups. The first group includes the standard DT, DT (Filtered), Bagging DT, Bagging
(Filtered) DT, Boosting DT, Random Subspace DT and IGF-Bagging DT. The second
group includes the standard NB, NB (Filtered), Bagging NB, Bagging (Filtered) NB,
Boosting NB, Random Subspace NB and IGF-Bagging NB. The DT (Filtered) and NB
(Filtered) mean that DT and NB are trained by filtered data sets with IG based feature
selection. The Bagging (Filtered) DT and Bagging (Filtered) NB mean that Bagging DT
and Bagging NB are also trained by filtered data sets with IG based feature selection.
For implementation of DT and NB, we chose J48 (WEKA’s own version of C4.5) mod-

ule and NaiveBayes module. And for implementation of ensemble learning, i.e., Bag-
ging, Boosting and Random Subspace, we chose Bagging module, ADBoostM1 module
and RandomSubSpace module. Besides above modules, the other modules were imple-
mented in Eclipse using WEKA Package, i.e., WEKA.JAR. Following previous research
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[4,5,11,22,23], ensembles of size 50 were used as a compromise between greater compute
times required by larger ensembles and the ever-decreasing average-case marginal im-
provement in error that can be excepted from larger ensemble sizes. The feature selection
ratio K = 0.6. Except when stated otherwise, all the default parameters in WEKA were
used.

To minimize the influence of the variability of the training set, ten times 10-fold cross
validation is performed on the twelve data sets. In detail, each dataset is partitioned into
ten subsets with similar sizes and distributions. Then, the union of nine subsets is used
as the training set while the remaining subset is used as the test set, which is repeated
for ten times such that every subset has been used as the test set once. The average test
result is regarded as the result of the 10-fold cross validation. The whole above process is
repeated for 10 times with random partitions of the ten subsets, and the average results
of these different partitions are recorded.

Following [27], we carry out as a first step an Iman-Davenport test [28], to ascertain
whether there are significant differences among all the methods. Then, pairwise differences
are measured using a Wilcoxon test. This test is recommended because it was found to
be the best one for comparing pairs of algorithms [27]. The formulation of the test [29]
is the following. Let di be the difference between the error values of the methods in ith
data set. These differences are ranked according to their absolute values; in case of ties,
an average rank is assigned. Let R+ be the sum of ranks for the data sets on which the
second algorithm outperformed the first, and let R− be the sum of ranks where the first
algorithm outperformed the second. Ranks of are split evenly among the sums

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (5)

and

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di). (6)

Let T be the smaller of the two sums and N be the number of data sets. For a small
N , there are tables with the exact critical values for T . For a larger N , the statistics

z =
T − 1

4
N(N + 1)√

1

24
N(N + 1)(2N + 1)

(7)

is distributed approximately according to N(0, 1). We combine these two tests to as-
sess the differences in performance of the different algorithms. When the comparison is
between two algorithms only the Wilcoxon test is used.

Besides the Wilcoxon test, we also employ the statistics used in [30] to compare
two learning algorithms across all data sets, namely the win/draw/loss record. The
win/draw/loss record presents three values, the number of data sets for which algorithm
A obtained better, equal, or worse performance than algorithm B with respect to classifi-
cation accuracy. We also report the statistically significant win/draw/loss record; where
a win or loss is only counted if the difference in values is determined to be significant at
the 0.05 level by a paired t-test.

4. Experimental Results. Our goal in this empirical evaluation is to show that IGF-
Bagging is a plausible method. Stronger statements can only be made after a more
extensive empirical evaluation. Tables 3 and 4 present classification accuracy of base
learners and that of the compared methods, where the values following “±” are standard
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deviations. Generally speaking, the results obtained from the two tables show that the
performance of the proposed IGF-Bagging method is better than the performance of the
other methods.
Subsequently, several findings can be observed from Tables 3 and 4. Firstly, we consider

the results of DT as base learner. As shown in Table 3, IGF-Bagging DT has the highest
classification accuracy of 85.76%. Closely following IGF-Bagging DT is Boosting DT with
a classification accuracy of 85.22%, Random Subspace DT with 85.13%, respectively. As
we have expected, DT gets the lowest classification accuracy of 82.68%. Next, turning
our attention to another base learner, NB, IGF-Bagging NB also gets highest classifica-
tion accuracy of 80.93%. Closely following IGF-Bagging NB is also Boosting NB with a
classification accuracy of 79.91%.

Table 3. Classification accuracy of different methods (DT as base learner)

Tables 3 and 4 verify the effectiveness of the proposed IGF-Bagging method. Based on
the classification accuracy, we can judge which method is the best and which method is
the worst. However, it is unclear what the differences between good and bad method are.
And in order to ensure that the assessment does not happen by chance, we conducted
statistical test to examine whether the proposed IGF-Bagging significantly outperforms
the other six methods listed in this paper. Tables 5 and 6 show the comparison among
the methods. Rows labeled s present the win/draw/loss record, where the first value is
the number of the data sets for which row < col, the second is the number for which
row = col, and the last is number for which row > col. Rows labeled pw present the
results of Wilcoxon test. For all the methods, the Iman-Daveport test has a p-value of
0.000, showing significant differences among them. As shown in Tables 5 and 6, our
proposed IGF-Bagging is significantly better than other six methods.
In the experiments reports previously, we have chosen a value of feature selection ratio

K = 0.6. A sensible question might be: which is the optimal value of K? However, there
is not a value of K that we can consider optimal. Thus, the impact of using different K
values is studied further. We varied K from 0.5 to 0.9 with interval 0.1. Figures 2 and
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Table 4. Classification accuracy of different methods (NB as base learner)

3 display the classification accuracy curve for seven methods when K varies from 0.5 to
0.9. As shown in Figures 2 and 3, we can see clearly that IGF-Bagging gets the highest
values of classification accuracy among seven methods. In addition, IGF-Bagging is less
sensitive to K than DT (Filtered), Bagging (Filtered) and Random Subspace, especially
for the DT as base learner. These results further prove that IGF-Bagging, integrating
feature selection with bagging, can enhance the performance of base learners.

According to the above experimental results, we can draw the following conclusions:
(1) The integration of feature selection and bagging has brought significant performance

improvements as shown in Tables 3-6 and Figures 2 and 3. The reason may be that IFG-
Bagging outperforms bagging in generating more diverse and accurate base learners while
outperforming random subspace in generating more accurate base learners. Features that
are irrelevant or redundant to learning tasks may deteriorate the performance of learning
algorithms. Therefore, feature selection can influence the quality of ensemble methods.

(2) From the ensemble learning perspective, in this research, we compare IGF-Bagging
with other three ensemble methods, i.e., bagging, boosting and random subspace. Our
empirical results are in conformity with previous studies [7-10]. It appears that, on
average, boosting is the best method although bagging and random subspace have their
application niches as well.

(3) From the base learner perspective, in this study, we use two different base learners,
i.e., DT and NB. DT related ensemble methods get more impressive results than NB
related ensemble methods. The main reason is that bagging and boosting is not so effective
on stable learners [4,5]. However, NB is a stable learner [32] and the performance of NB
is not able to be improved by ensemble methods as much as the other learners, e.g., DT.

(4) Feature selection is a hot topic in machine learning and data mining. Our empirical
results show that feature selection could enhance the performance of classifiers. For
example, the classification accuracy of DT is enhanced from 82.68% to 83.21% after using
IG based feature selection. For bagging, the classification accuracy is also enhanced from
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Figure 2. Classification accuracy at different K (DT as base learner)

Figure 3. Classification accuracy at different K (NB as base learner)
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Table 5. Significant test results (DT as base learner)

Notes: [1] *P-values significant at alpha=0.05; **P-values significant at

alpha=0.01. [2] Iman-Davenport test: 0.000

84.93% to 85.10% and from 79.55% to79.71% when using DT and NB as base learners,
respectively.

5. Conclusions and Future Directions. Ensemble learning trains multiple base learn-
ers and then combines their outputs. Since the generalization ability of ensemble learning
could be significantly better than that of a base learner, ensemble learning has been a hot
topic during the past years. In this paper, a new ensemble construction method, IGF-
Bagging, is proposed based on bagging and IG based feature selection. After bootstrap
sampling, this method applies IG based feature selection technique to each sub data sets,
then identifies and removes irrelevant or redundant features, and finally combines base
learners trained by new sub data sets via majority voting. Twelve datasets from the UCI
Machine Learning Repository are selected to demonstrate the effectiveness and feasibility
of proposed methods. Empirical results show that although this improvement for bagging
is simple, it can effectively improve the classification accuracy.

Several future research directions also emerge. Firstly, large data sets for experiments
should be collected to further valid the conclusions of this study. Secondly, further anal-
yses are encouraged to explore the reasons why the integration of feature selection and
bagging gets the better results, e.g., bias-variance analysis. Thirdly, since the bagging
algorithm can be implemented in parallel in a straightforward manner, in the future, re-
search parallel computing technique can be introduced to tackle the computational burden
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Table 6. Significant test results (NB as base learner)

Notes: [1] *P-values significant at alpha=0.05; **P-values significant at

alpha=0.01. [2] Iman-Davenport test: 0.000

problem of bagging and feature selection. Fourthly, the role of feature selection in IGF-
Bagging is in fact a specific scheme for perturbing the input features to introduce more
diversity and accuracy. Exploring other feature selection technique and other efficient
and effective schemes for perturbing the input features for bagging is anther interesting
problem for future work.
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