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Abstract. Learning classifier system is a machine learning technique which combines
genetic algorithm with the power of the reinforcement learning paradigm. This rule based
system has been inspired by the general principle of Darwinian evolution and cognitive
learning. XCS, eXtended Classifier System, is currently considered as state-of-the-art
learning classifier systems due to its effectiveness in data analysis and its success in ap-
plying to varieties of learning problems. It tries to evolve a rule set as a solution, which
can cover the whole problem space effectively. Since XCS does not discriminate between
class boundary and non-class boundary regions of input space, learning non-class bound-
aries with more samples might prevent XCS to learn the class boundary regions precisely.
This paper explores XCS from this perspective and provides an elegant approach based
on rough set theory to deal with this issue. Here, rough set is a mathematical formalism
adapted for XCS, which offers our model, i.e., RSXCS, the ability to analyze the problem
space and differentiate certain regions from vague ones. The certain regions are first
explored by PSU, as an important component of RSXCS, and the rests are directed to
other learning components for further rule discovery. To investigate the advantages of
RSXCS, quite a lot of experiments across different UCI data sets are conducted. The
results show that our approach presents statistically significant improvement in term of
classification accuracy compared with its state-of-the-art rival algorithm, i.e., XCS.
Keywords: Learning classifier systems, XCS, Rough set theory

1. Introduction. The basic framework of Learning Classifier System (LCS) was intro-
duced more than 30 years ago by J. Holland in [1]. The LCS framework was reformed
to use reinforcement learning techniques such as Q-learning in order to ensure appropri-
ate reward estimation and propagation. LCSs are also known as rule-based evolutionary
online learning systems. Each rule based system such as LCS tries to learn a rule set
which is able to cover the whole problem space in order to model the environment regu-
larities in classification tasks whose main aim is to predicate the class of incoming samples
accurately. In classification tasks, there are three main objectives: high accuracy, com-
prehensibility and compactness. It is obvious that, in rule based classifiers, achievement
of these goals directly depends on defining not only the structures of rules but also the
main mechanism which generates and improves rules.

The year 1995 marked as a milestone in LCS researches due to Wilson’s flavor of
Holland’s recipe, the most popular Michigan system called XCS [2]. In Lanzi’s view, the
effectiveness of XCS as a machine learning paradigm is that “XCS was the first classifier
system to be both general enough to allow applications to several domains and simple
enough to allow duplication of the presented results” [3]. Since 1995, the applicability of
XCS has been extended to a wide range of applications, such as computational economics,
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classification and data mining, autonomous robotics, power distribution network, traffic
light control, function approximation/regression tasks and many more [4-7].
Although XCS is a reliable system in realm of data mining (DM) especially in classi-

fication tasks, there are still some challenging issues that must be solved. For example,
since XCS tries to cover the whole input space for modeling the environment regularities,
it needs large population size and learning iterations in dealing with problems that have
vast input space with a large number of samples. On the other hand, since XCS does
not discriminate between class boundary and non-class boundary regions of input space,
learning non-class boundaries with more samples might prevent XCS to learn the class
boundary regions more precisely. So, it seems that bounding the search space of XCS to
the portion of input space which only contains class boundaries may lead to better predic-
tion of these boundaries. Here, to overcome the mentioned shortcoming and achieve such
objective, a rough set based approach is proposed, which manages to bound the search
space of XCS in order to have more accurate classifier system.
There are a host of efforts to reduce data sets size by selecting significant features or

reducing redundant instances in data mining problems. For example, several researches
have been focused on using rough set theory to refine the data set [8,9]. It is worth
mentioning that the success of this notion is due to the two main reasons. First, it is able
to reveal the underlying information captured inside a data set. Second, rough set data
analysis does not need to use information outside the target data set [10]. However, in LCS
realm, the only methods which are examined to reduce the size of data sets are feature
selection and feature extraction methods [11,12]. Also, to the best of our knowledge, there
is no effort to bound the search space of an LCS, like XSC, to the portion of problem
space which has efficient information about how to model the decision boundaries.
The goal of this paper is proposing a novel approach to boost the performance of XCS in

classification tasks by refining the train data sets of XCS and bounding its search space to
the class boundary regions that have more knowledge about the regularities of problems.
This new extension of XCS is called RSXCS which has a new component named Prototype
Selection Unit (PSU). In PSU, genetic algorithm is used to prepare the basic element of
rough set theory, i.e., the indiscernibility relation. When such relation is defined, the
fundamentals of classic rough set theory are used to differentiate certain regions from
vague ones. Then, the search space of XCS would be bounded to the class boundary
regions containing classes’ boundaries to model the problem regularities precisely.
The rest of this paper is organized as follows: Section 2 reviews some important work on

applying XCS on DM problems and discusses the related researches for using rough set in
purpose of instance selection; Section 3 describes the proposed method; the experimental
results are given in Section 4; Section 5 provides some concluding remarks.

2. Related Work. XCS was firstly proposed by Wilson in 1995 [2] and soon after re-
searchers in XCS realm had tried to demonstrate the capabilities of XCS for DM problems.
As an early attempt, XCSR and XCSI with interval based representation were applied
to real valued problems [13,14]. Bernado et al. [15] described an experimental compar-
ison of XCS with seven well-known learning algorithms. The obtained results showed
the effectiveness of XCS in classification tasks. Also, a bit later, Bacardit and Butz [16]
investigated and compared the performance of XCS and GAssist, a Pittsburgh-style LCS,
on several interesting data sets. The reported results and discussion showed that both
systems are suitable for DM applications. From then on, most researchers who intend to
apply XCS on DM problems use the same parameter settings suggested in [16]. Conse-
quently, it can be claimed that XCS have a significant impact on DM field [5,17]. However,
there are some issues which must be handled. One of these issues is dealing with large data
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sets. There are two main approaches for purpose of data reduction: (1) Dimensionality
reduction while preserving as much of the class discriminatory information as possible. In
this approach, the size of data set decreased by reducing the number of columns in a data
set and (2) prototype selection and/or instance selection [18,19] which mean reducing the
number of rows in a data set.

There are many researches in order to dimensionality reduction with different measures
[20]. In [11], to solve this problem, a combination of feature selection technique based on
the rough set and XCS was proposed. There, the purpose of using rough set theory is to
identify the most significant attributes and eliminate the irrelevant ones. The experiments
denoted positive results. The developed approach was tested only on nominal problems
because its rough set based feature selection method is designed for symbolic data.

One of the main problems faced in DM realm is how to deal with huge amount of
information. To tackle this problem, many current researches focus on scaling down DM
algorithms using various instance selection and prototype selection algorithms [21-25].
Cano et al. [23] addressed the analysis of some representative EA models for data reduc-
tion. Since rough set theory is a mathematical tool for data analysis, several approaches
have been developed based on this theory [24-29]. In [25], a rough set based method is
proposed to reduce the scale of SVM training set to the non boundary instances.

In this paper, a new approach is proposed to incorporate the idea of rough set into XCS.
By this mechanism, XCS just focus on subspaces of problems which contain class bound-
aries. As there is a certain amount of risk in classifying the instances of such subspaces,
precisely modeling these subspaces are more important to achieve higher performance in
classification problems.

3. Proposed Approach. In spite of the fact that XCS is a reliable system to handle
data set with large amount of samples, it seems that bounding the XCS search space to
class boundary regions that consist of more than one class instances, may lead better per-
formance in classification problems. In other words, XCS does not discriminate between
class boundary and non-class boundary regions. So, if there is an algorithm to detect this
discrimination and model the non-class boundary regions, XCS can make its main effort
to model classes’ boundaries more precisely. In the literature, there exist many invaluable
efforts to select instances for classification task [24,25,27]. A possible approach to address
this problem is using a mathematical formalism such as rough set theory. In this paper,
a new model named RSXCS is proposed. RSXCS tries to reduce the training data set of
XCS and bound its search space to the boundary region instances by using a rough set
based technique.

The first step is to extract the boundary regions for each class. As mentioned be-
fore, rough set has an ability to divide the search space into the boundary regions and
non-boundary regions which are known as positive region. It is worth mentioning that
instances which are located in the positive region have same label. Since the rough set
theory requires indiscernibility relation to define an approximation space, as a first step a
mechanism is needed to define such a relation. Here, partitioning the search space plays
the role of indiscernibility relation and genetic algorithm is used as a search technique to
find the best way of partitioning the input space. The partitioning of concern favors the
larger positive regions with more certain instances. Once the partitioning has been found,
it is used as an indiscernibility relation, what in turn gives the rough set reducer block
the opportunity to distinguish between the positive regions and boundary regions. After
finding these positive regions, their characteristics are encapsulated in certain rule forms
and the instances matched with these rules are going to be eliminated from the training
data set. These rules are stored to determine whether an incoming unseen data is located
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in the positive or boundary regions. After this reduction process, the data set comprise
only the boundary data. Thus, it is possible to say that the obtained refined data set
shows some portion of the problem space where only classes’ boundaries are located and
consequently the decision about samples’ label is relatively hard. Finally, XCS is applied
to the reduced data set to model the classes’ boundaries with its evolved rule set. XCS
generates a set of if-then rules which are used to predict the label of boundary data. As a
result of this approach, two separate rule sets are obtained, one contains the certain rules
for positive regions and the other is produced by XCS for boundary regions.
Obviously, applying such method enforces XCS to focus only on the boundary regions,

and hence, to provide better performance in classification tasks. The overall architecture
of our model, i.e., RSXCS, is illustrated in Figure 1. RSXCS consists of two main units
as follows: 1) Prototype selection unit (PSU): The whole process of reducing training
data set instances and bounding the search space of XCS is done by this component.
Therefore, it consists of a genetic algorithm and a rough set data reducer block. It is
worth mentioning that the output of this unit would be a certain rule set and a refined
training data set. 2) XCS: XCS is applied to the boundary region data supported by the
previous block and the class boundaries are modeled by its rule set.
During the test phase, to predict the class label of an unseen data, first the certain rules

in PSU are examined. If one of them can match this data, it means that it pertains to
the positive region represented by matching rule. So, the corresponding rule suggests the
label of this unseen data. Otherwise, it can be concluded that this unseen data is located
in boundary regions so the rule set extracted by XCS has an ability to predict its class
label. According to the type of given problem (real valued problem or nominal problem);
there are different possible mechanisms to define PSU components. In the following, we
will describe the proposed approach for dealing with real valued problems in the next
subsection and nominal problems in Subsection 3.2. After that, in Subsection 3.3, the
rule representation technique used for XCS classifier is described.

3.1. Real valued problem. For the sake of partitioning the input space of real valued
problems, the most used method is discretization. Genetic algorithm searches among all
possible candidate discretization points and finds the best of all that discriminates large
positive regions with more certain instances. So, each chromosome consists of genes which
hold a real number showing the distance between two consecutive discretization points.
In evolutionary algorithms, fitness function has a critical role since it directs the search

process to find the best solution by assigning quality measure to genotypes. Here, fitness
function is defined based on classical rough set theory. The fitness function of concern
favors the larger positive regions with more certain instances. The quality of each chro-
mosome is evaluated as follows:

Objective model: max

(
n∑

i=1

̸= pi ∗ isPR(pi)

)
(1)

Subject to: min

(
n∑

i=1

isPR(pi)

)
(2)

where P is the number of partitions produced by candidate chromosome and consisting
of more than T instances. ̸= pi indicates the number of instances located in i’th partition
(pi), and isPR(pi) returns ‘1’ if all instances in ̸= pi is in the same class. Otherwise, it
returns ‘0’. In other words, isPR(pi) determines whether ̸= pi is a positive region or not.
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Figure 1. The overall architecture of RSXCS. In typical learning itera-
tion, PSU uses genetic algorithm and fundamentals of rough set theory
to bound the search space of XCS by reducing the instances of positive re-
gions. Certain rules produced to model these certain regions. The instances
of boundary regions are directed to XCS to model the classes’ boundaries
precisely. In the test phase, firstly the unseen data is examined by certain
rules. Then, if there is no rule to match it, the concept of this data would
be predicted by XCS’s rule set.

The objective model consists of two conflicted parts and the genetic algorithm must
optimize these two terms simultaneously. There have been many approaches to multi-
objective optimization using evolutionary algorithms. Here, the method suggested by
Goldberg in [30] is used. He suggested the use of fitness based on dominance rather than
on absolute objective scores, coupled with niching methods to preserve diversity.

For ranking a solution based on dominance, the number of solutions which are able to
dominate corresponding solution is counted. One solution is said to dominate the other
if it has higher score for all objectives. A solution is called non-dominated if it is not
dominated by any other. The set of all non-dominated solution is known as Pareto set
or Pareto front. Usually, for multi-objective problem with conflicting objectives, there
exists no single solution that dominates all others. In such problems, the goal is to find a
non-dominated solution which lies in Pareto front. Here, the genetic algorithm is applied
to find such Pareto front, after that, the best chromosome is the one that can reduce the
size of train data set more than the others.

The types of crossover and mutation operators play a major role in performance of the
GA optimization. Here, whole arithmetic recombination which is the most commonly
used operator for real valued representation and uniform mutation are used.

In the following, there is an example to understand how the evolved solution obtained
from applying GA can be used as an indiscernibility relation in rough set data reducer
block and which certain rules would be generated in before eliminating positive regions
instances. This example is about applying PSU on “Tao” [31] problem with 1800 samples.
Figure 2 shows the process of PSU in order to find boundary and positive regions.
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Figure 2. The process of PSU to find reduced training data set for XCS in
“Tao” problem. At first, the positive (with 1076 instances) and boundary
regions (with 724 instances) are differentiated by Rough Set Data Reducer
block, then three certain rules are produced to present the positive regions
and XCS is applying to the boundary regions to model them.

3.2. Nominal problems. Recall that the first step in applying the proposed approach
is determining the indiscernibility relation which is needed to utilize rough set theory.
In nominal problems, such relation can be defined by selecting subset of features and
considering the possible value of these selected features in order to partition the input
space. Like real valued problems, here a genetic algorithm is used to find subset of features
while preserving as much of the class discriminatory information as possible.
In nominal problems, the used genetic algorithm has binary representation, two-point

crossover, bit flip mutation, tournament selection and elitism survival selection. Chromo-
somes are represented by binary bit strings with length n, where n is the total number
of input attribute of the problem. Every gene indicates an attribute; the value ‘1’ shows
the corresponding attribute is selected while ‘0’ not selected. Here, the objective model
to measure the quality of chromosomes is defined as follows:

Objective model: max

(
|POSP (Q)|

|U |

)
(3)

Subject to: min

(
|C| − |B|

|C|

)
(4)

where B is a feature subset suggested by the candidate chromosome so in rough set

point of view the indiscernibility relation is P = (U, IND(B)). So, |POSP (Q)|
|U | shows the

classification quality of the selected feature subset (B) relative to decision Q (Q indicates
the class of instances). It must be mentioned that to calculate |POSP (Q)|, only the
equivalence classes having more than T instances are attended. As |.| is the cardinality
of a set, |C| is the total number of features and |B| is the number of selected features in
corresponding chromosome. In sum, this objective model consists of two conflicted terms:

(1) |POSP (Q)|
|U | shows the classification quality by considering B as available information.

This term forces GA to find a subset of features which can maximize the number of
instances located in positive regions. (2) |C|−|B|

|C| indicates the length of selected subset,

which prevent GA to select all features. Genetic algorithm tries to find a solution that
optimizes these two terms simultaneously. So, as it is described in the previous subsection,
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the common technique for solving such multiobjective problem by GA is finding Parento
Front by ranking solutions according to the number of their dominating solutions.

After the best feature subset is founded by GA and positive regions are detected, the
certain rule is extracted and the instances that can be classified certainly with them are
eliminated. The rests are directed to XCS as training set in order to model the class
boundaries located in boundary regions. All these processes are shown in Figure 3 for the
“Car” data set [32].

Figure 3. The process of PSU to find reduced training data set for XCS in
“Car” problem. At first, the positive (with 1012 instances) and boundary
regions (with 716 instances) are differentiated by Rough Set Data Reducer
block, then certain rule set is produced to present the positive regions and
XCS is applying to boundary regions to model them.

3.3. XCS representation. Here, XCS with interval based representation [13,14] is used.
For each dimension, an interval is presented in the condition part of classifiers. We use
Lower-Upper Bound Representation [14] which is the most common method in literatures
for dealing with real valued inputs. In this method, an interval predicate [pi, qi)p is encoded
as a tuple (li, ui)g where li, ui ∈ R. A rule forms as if x1 ∈ [l1, u1]Λ . . .Λxn ∈ [ln, un] then
class where n indicates the number of input features of the problem. An input instance
x = (x1, x2, . . . , xn) is matched by a rule if and only if ∀li < xi < ui. In nominal
problems, the condition part of XCS classifiers consists of n genes. Each gene is related
to each problem dimension and can have an allele between 0 to m or ̸=; where m is the
number of possible values for the corresponding dimension and ̸= is do not care symbol
which indicates the value of related dimension can be ignored.

4. Experimental Results.

4.1. Experiments design. To assess the proposed method, several standard data sets
including Tao, Car, Sign, Shuttle, Solar flare, Monk’s problem 3, Pima, King+ Rook
versus King+ Pawn (kr vs. kp), page blocks and Nursery are selected. Nine of these
data sets are derived from UCI Repository database [32] and one of them named Tao is
a synthetic data set that was introduced in [31]. Table 1 summarizes the most important
properties of selected data sets.

As it is clear in Table 1, a wide spectrum of data sets is selected in order to find the
advantages and disadvantages of the proposed method. For instance, “Tao” is a low
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Table 1. Important properties of selected data sets. The columns de-
scribe: the name of the data set, the number of instances, the total number
of features, the number of real-valued features, the number of nominal fea-
tures and the number of classes.

Data Set ̸= Instances ̸= Attribute ̸= Real-valued attr. ̸= Nominal attr. ̸= Classes

Tao 2000 2 2 0 2

Car 1728 6 0 6 4

Sign 12546 8 8 0 3

Shuttle 43500+14500 9 9 0 7

Solar-flare 2 1066 12 0 12 6

Monk’s problem 3 122+432 6 0 6 2

Pima 768 8 8 0 2

kr vs. kp 3196 36 0 36 2

Page-blocks 5473 10 10 0 5

Nursery 12960 8 0 8 5

dimensional data set while “kr vs. kp” is high dimensional ones. “Shuttle” consists of
several classes whereas “Pima”, “Tao”, “Monk’s problem 3” and “kr vs. kp” include
just two classes. “Monk’s problem 3” is small data set with low number of samples;
in contrast, “Shuttle” is a large data set with 43500 instances as the training samples
and 14500 instances as the test samples. “Tao” is a balanced data set whereas “Car” is
imbalanced.

4.2. Experimental setting. To show the effectiveness of PSU, the proposed model
namely RSXCS is compared with XCS. To obtain reliable performance for both clas-
sifiers (RSXCS and XCS), 10-folded cross-validation method is used. The average and
standard deviation of the classification accuracy over 30 independent runs of 10-folded
cross-validation are calculated. To compare the differences in the performances of both
classifiers, one-tailed pairwise t-test is used to check whether the difference between two
classifiers’ results over the selected data sets is statistically significant or not. The null
hypothesis of this test is that the average performances of XCS and RSXCS over 30 inde-
pendent runs are same against the alternative hypothesis that the average performances
are not equal.
For nominal problems, XCS was configured as follows (see [2] for notation details): N

= 6400, P̸= = 0.6, β = 0.2, α = 0.1, ϵ0 = 1, µ = 5, θGA = 25, χ = 0.8, two point
crossover, τ = 0.4, µ = 0.04, δ = 0.1, θdel = 20, θsub = 200 (like XCS parameter settings
in [11]). And for real valued problems, the parameter settings for XCS are the same and
m0 = 0.2 (as used in the literature, [16]). The genetic algorithm in PSU is run with
following parameter settings: maximum number of iterations = 1000, population size =
1000, T = 10, intermediate crossover and two-point crossover with χ = 0.8 is used in real
valued and nominal problems respectively, uniform mutation with µ = 0.2, tournament
selection with τ = 0.6 and survival selection (µ+ χ) where χ = 100.
As the PSU component of RSXCS analyzes the input space before applying XCS, it

is worth mentioning that some learning iterations have been done in PSU to find the
positive regions and encapsulate their characteristics in certain rules. How many learning
iterations are done in PSU directly depends on the two main parameters of the GA,
namely the maximum number of iterations and the population size. Since the population
size in PSU is set to 1000 which is so less than N in XCS, it can counteract the effect
of the amount of this parameter in comparing RSXCS with XCS. Consequently, the only
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parameter that affects the comparison of both learning classifier systems is the number
of learning iterations. To make a fair comparison, the number of learning iterations for
both XCS and RSXCS is set to 101,000. Please note that 1000 out of RSXCS’s iterations
are devoted to PSU to discriminate the boundary and positive regions. By using such
parameter settings for both RSXCS and XCS, we expect that they have nearly same
computation power. Of course, RSXCS might have lower elapsed time to achieve the
better solution because extracting certain rules by PSU has lower computation power and
takes less time in contrast with XCS which is made to model this kind of regions.

4.3. Results. The results of applying RSXCS and XCS on the introduced different data
sets are presented in Table 2. This table highlights the difference of RSXCS and XCS
in terms of their average performance with the standard deviation in both train and test
phases.

Table 2. The results show the average performance (with its standard
deviation) of train and test phases of RSXCS and XCS using 10-folded
cross-validation. Moreover, the results of applying pairwise t-test are also
provided.

Data Set
RSXCS XCS Pairwise t-test p-value

train test train test train test

Tao 93.58%(5.12) 92.84%(5.32) 81.72%(13.24) 81.32%(13.62) 5.28 ∗ 10−23 9.68 ∗ 10−23

Car 99.43%(0.22) 96.70%(1.45) 95.87%(0.89) 93.08%(2.18) 1.62 ∗ 10−57 6.12 ∗ 10−41

Sign 76.43%(1.11) 75.53%(1.46) 75.63%(1.01) 74.84%(1.49) 6.02 ∗ 10−15 1.03 ∗ 10−09

Shuttle 99.76%(0.08) 99.77%(0.07) 99.56%(0.18) 99.59% 0.18) 6.79 ∗ 10−07 3.03 ∗ 10−06

Solar-flare 2 80.50%(1.44) 73.42%(4.51) 78.90%(1.01) 73.68%(4.27) 4.69 ∗ 10−22 9.06 ∗ 10−01

Monk’s problem 3 100.0%(0.00) 93.84%(0.39) 100.0%(0.00) 93.39%(0.62) – 6.99 ∗ 10−04

Pima 98.38%(0.65) 71.99%(5.06) 97.27%(0.78) 71.70%(5.34) 4.25 ∗ 10−12 2.83 ∗ 10−01

kr vs. kp 99.97%(0.01) 99.49%(0.10) 99.86%(0.02) 99.50%(0.09) 1.28 ∗ 10−25 6.18 ∗ 10−01

Page-blocks 96.43%(0.39) 95.67%(0.96) 95.50%(0.48) 94.94%(1.08) 7.83 ∗ 10−33 7.54 ∗ 10−20

Nursery 98.85%(0.15) 97.86%(0.48) 93.80%(0.35) 93.45 %(0.74) 2.94 ∗ 10−87 2.80 ∗ 10−74

In Table 2, the average performance and the standard deviation over 10-folded cross-
validation on 30 independent runs are shown. As the results show, the proposed model
may have more or equal performance in comparison with XCS. So, to test whether our
results are statistically significant better or not, the one-tailed pairwise t-test with 5%
significance level (α = 0.05) is performed. According to the p-values obtained by applying
t-test, RSXCS can achieve better performance over almost all data sets in both train
and test phases. On average, RSXCS has 2.5% performance improvement in the train
phase and 2.2% performance improvement in the test phase. In addition, according to
the obtained variances, it can be concluded that a more stable and higher performance is
acquired by RSXCS. In the cases that pairwise t-test is rejected (Pima, kr vs. kp and Solar
flare), three pairwise t-test with three different alternative hypotheses are performed; (1)
‘right-tail test’ which indicates average performances of RSXCS is greater than average
performances of applying XCS, (2) ‘two-tailed test’ that average performances of RSXCS
and XCS are not equal and (3) ‘left-tail test’ that average performances of RSXCS is less
than average performances of XCS. These t-tests are performed to verify that RSXCS and
XCS perform the same or RSXCS has significantly lower performance and consequently
PSU cannot help to boost XCS performance by bounding its search space. The results of
applying these pairwise t-tests are shown in Table 3.
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Table 3. The Results of applying pairwise t-test with three different al-
ternative hypotheses on average performances of both systems where ‘right-
tail’, ‘two-tailed’ and ‘left-tailed’ hypotheses indicate that average perfor-
mance of RSXCS is greater than, equal to, less than XCS’s performance,
alternatively.

Pairwise t-test p-value

Data Set right-tail test two-tailed test left-tail test

train test train test train test

Pima 4.252 ∗ 10−12 2.830 ∗ 10−01 8.504 ∗ 10−12 5.662 ∗ 10−01 ≈ 1 7.169 ∗ 10−01

kr vs. kp 1.277 ∗ 10−25 6.180 ∗ 10−01 2.555 ∗ 10−25 7.638 ∗ 10−01 ≈ 1 3.819 ∗ 10−01

Solar-flare 2 4.694 ∗ 10−22 9.065 ∗ 10−01 9.839 ∗ 10−22 1.869 ∗ 10−01 ≈ 1 9.437 ∗ 10−02

As the p-values presented in Table 3 are not greater than confidence level of applied
pairwise t-tests (0.05) and also according to the results presented in Table 2; it is possible
to say that RSXCS can reach the same as or even better performance than XCS over the
95% confidence level in all introduced data sets. So, the results given in Tables 2 and 3
confirm the hypothesis that applying PSU before XCS to distinct positive and boundary
regions in RSXCS is useful to solve a given classification problem with better performance.
As mentioned before, the proposed model is going to discriminate between positive and

boundary regions and make XCS focus just on boundary regions which contain classes’
boundaries. It seems that the proposed approach helps XCS to make its main efforts to
cover the boundary regions and predict the classes’ boundaries more precisely. To this
hypothesis, Table 4 presents the train and test performance of applying RSXCS and XCS
on boundary data. Like Table 3, Table 5 shows the results of applying three pairwise
t-tests in the cases that their p-values of this test in Table 4 are not less than 0.05.

Table 4. The average and standard deviation of train and test perfor-
mances of RSXCS and XCS on boundary data. Additionally, results of
applying pairwise t-test are provided.

Data Set
RSXCS XCS Pairwise t-test p-value

train test train test train test

Tao 84.14%(12.57) 82.47%(12.99) 70.52%(12.58) 69.97%(13.32) 1.47 ∗ 10−18 9.17 ∗ 10−16

Car 98.62%(0.54) 92.06%(3.43) 89.90%(2.18) 83.37%(5.03) 1.29 ∗ 10−57 3.08 ∗ 10−40

Sign 72.46%(1.36) 71.69%(1.72) 71.98%(1.22) 71.31%(1.78) 1.79 ∗ 10−06 1.37 ∗ 10−03

Shuttle 99.25%(0.19) 99.28%(0.20) 98.73%(0.67) 98.83%(0.68) 7.45 ∗ 10−05 4.34 ∗ 10−04

Solar-flare 2 65.25%(2.54) 52.71%(6.92) 62.39 %(1.75) 53.16%(6.52) 4.34 ∗ 10−22 8.90 ∗ 10−01

Monk’s problem 3 100.0%(0.00) 92.08%(0.49) 100.0%(0.00) 91.68%(0.76) – 8.81 ∗ 10−03

Pima 98.07%(0.77) 67.98%(5.80) 96.74%(0.93) 67.98%(6.02) 6.38 ∗ 10−12 3.98 ∗ 10−01

kr vs. kp 99.91%(0.02) 98.58%(0.32) 99.55%(0.06) 98.60%(0.29) 2.03 ∗ 10−25 5.81 ∗ 10−01

Page-blocks 94.24%(0.70) 93.12%(1.61) 92.74%(1.16) 91.93%(2.03) 3.76 ∗ 10−20 1.97 ∗ 10−13

Nursery 95.54%(0.58) 94.67%(1.59) 81.00 %(1.14) 82.67 %(2.32) 6.65 ∗ 10−85 5.83 ∗ 10−69

As it was shown in Table 4, on average, PSU can help XCS (in RSXCS) to achieve
4.4% performance improvement in the train phase and 3.5% performance improvement
in the test phase. So, the results in Tables 4 and 5 justify that the existence of PSU
can improve performance of XCS. Consequently as results show, eliminating the positive
regions is useful to model the classes’ boundaries precisely since XCS is made to focus
just on the portion of problem space where contain the decision boundaries.
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Table 5. Results of applying pairwise t-test with three different alter-
native hypotheses on average performances of both systems in boundary
regions where ‘right-tail’, ‘two-tailed’ and ‘left-tailed’ hypotheses indicate
that average performance of RSXCS is greater than, equal to, less than
XCS’s performance, alternatively.

Pairwise t-test p-value

Data Set right-tail test two-tailed test left-tail test

train test train test train test

Pima 6.383 ∗ 10−12 3.979 ∗ 10−01 1.277 ∗ 10−11 7.956 ∗ 10−01 ≈ 1 6.002 ∗ 10−01

kr vs. kp 2.029 ∗ 10−25 5.807 ∗ 10−01 4.059 ∗ 10−25 8.384 ∗ 10−01 ≈ 1 4.192 ∗ 10−01

Solar-flare 2 4.340 ∗ 10−22 8.903 ∗ 10−01 8.680 ∗ 10−22 2.193 ∗ 10−01 ≈ 1 1.096 ∗ 10−02

Figure 4. Percentages of selected instances in bounding the search space
of XCS by PSU component on various data sets

Figure 4 depictes the percentages of selected instances for elimination in PSU on the
introduced data sets. As Figure 4 illustrates, PSU can reduce the size of data sets ef-
fectively in particular for the problems which have larger data sets in turn bounding the
search space to the regions which are more important for classification problems. For
example, in Shuttle data set which has larger training data set, the PSU component of
RSXCS reduces 76% of training data set of XCS without any loss of performance.

4.4. Discussions. In order to find why PSU leads better performance in RSXCS, it is
necessary to recall that XCS is designed to evolve a complete, maximally accurate and
maximally general rule set as a solution to the problem. XCS can achieve these goals by
its evolution pressures [33]: (1) set pressure, which quantifies Wilson’s generalization hy-
pothesis [34], (2) mutation pressure, which shows the influence of mutation on specificity,
(3) deletion pressure, which quantifies additional deletion influences, (4) fitness pressure,
which qualifies the exact influence of accuracy based fitness and (5) subsumption pressure,
which qualifies the subsumption deletion mechanism influences. The set pressure pushes
classifier population, [P], toward more general classifiers and fitness pressure pushes [P]
toward more accurate ones. The basic idea behind the set pressure is that XCS repro-
duces classifiers in action sets, [A], whereas it deletes classifiers from [P]. So, it can be said
that the set pressure is a combination of niche based reproduction which is produced by
selection pressure in GA applied in [A] with population wide deletion which is produced
by applying deletion in [P]. The probability of a classifier being selected as a parent to
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reproduce new offspring depends on its fitness also the probability of a classifier being
deleted from [P] depends on its fitness. Recall that the fitness value of each classifier in
[A] is updated with respect to its relative accuracy which is derived from the reward pre-
diction error. So, the classifiers which has larger prediction error would has high chance
to be deleted whereas the classifier with prediction error close to zero would be more
selected as being parent in GA. The reward prediction cl.R of a classifier and prediction
error cl.ϵ can be approximated by the following estimate:

cl.R ≈
∑

s|cl.C matches s p(s)p(cl.A|s)p(s, cl.A)∑
s|cl.C matches s p(s)p(cl.A|s)

(5)

cl.ϵ ≈
∑

s|cl.C matches s p(s)p(cl.A|s)|cl.R− p(s, cl.A)|∑
s|cl.C matches s p(s)p(cl.A|s)

(6)

In two-class classification problem, the reward of 1000 is usually provided if the chosen
class label was correct and 0 otherwise, Consider pc as the probability that a particular
classifier predicts class label correctly. Therefore, the reward prediction cl.R of classifier cl
is 1000pc and its prediction error cl.ϵ is equal to 2000pc(1−pc). To have better elaboration
on the goodness of PSU existence, consider the example presented in Figure 5. In this
figure, two indicated classifiers (cl1, cl2) have the same generality since they have the same
coverage area but their centers are located in different regions; one of them, cl1, is placed
in the positive region which is delineated in gray color and the other, cl2, is located in
boundary region. The class label suggested by cl1 is the first class (◦) and cl2 suggests the
second one (�). As shown, both classifiers can cover 30 instances; cl1 covers 27 instances
of the first class and 3 instances of the second one, so cl1.R ≈ 1000 ∗

(
27
30

)
= 900 and

cl1.ϵ ≈ 2000 ∗
(

27∗3
30∗30

)
= 180. On the other hand, 14 of 30 instances in cl2 belongs to the

first class and 16 of them belongs to the second class, so cl2.R ≈ 1000 ∗ 16
30

= 533.33 and

cl2.ϵ ≈ 2000 ∗ 16∗14
30∗30 = 497.77. Thus, cl1 which its center is located in positive region is

more accurate than cl2 placed in boundary region.

Figure 5. An elaboration on why separating problem space into positive
and boundary regions can boost the performance of XCS. Suppose cl1 is a
classifier that its center is located in the certain region and cl2 is a clas-
sifier with high overlapping coverage area with boundary regions. As cl1
has better accuracy and consequently better fitness, it has more chance to
participate in GA process and be selected as a parent in the selection mech-
anism. On the other hand, cl2 has more chance to be deleted in the deletion
mechanism because of its low accuracy.
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Since the fitness of each classifier in XCS is calculated according to its relative accuracy
which is directly comes from the prediction error of the corresponding classifier, the fitness
of cl1 would be better due to its lower prediction error. Consequently, the classifier with
better fitness value cl1 has higher chance to win in selection competition whereas cl2
has more chance to be deleted from [P] in deletion mechanism due to its lower fitness
value. By and large, it can be concluded that classifiers which their coverage area have
higher overlap with positive regions would participate in GA competition in XCS more
and consequently their genetic material would be more reproduced.

To recapitulate, by elimination of such positive regions, the discovery component in
XCS is stimulated to focus on the boundary regions. Recall that the responsibility of this
component is to produce new rules and evolve existing ones. Therefore, in comparison
to XCS without applying PSU, in RSXCS, the XCS rules which can cover these regions,
would have higher chance to participate in GA competition, and consequently, their ge-
netic material would be more reproduced. So, when the learning phase is terminated,
the boundary regions would be covered with more accurate rule set and also the classes
boundaries would be modeled precisely. In contrast, XCS without PSU tries to cover
whole problem space including positive and boundary regions. So, boundary rules, like
cl2, have lower chance for getting evolve during GA competition. Therefore, using PSU
and reducing the training data set to the boundary regions would result in statistically
significant improvement over XCS; one may note that the results presented in this section
clearly approve this statements.

It must be mentioned that to the best of our knowledge, this is almost the first study
to boost the performance of XCS by bounding its search space using a rough set based
approach. As mentioned before, in RSXCS two separate but similar methods (one for
nominal problems and the other is designed for real valued problems) are proposed to
find the indiscernibility relation used in rough set data redactor block of PSU. To make
further improvement, our approach can be extended to be applicable on problems with
not only real valued or nominal attribute but also mixed attributes.

5. Conclusions and Future Work. In this work, a classifier named RSXCS consisting
of a rough set based preprocessor named PSU and XCS is proposed. PSU is designed
to discriminate between class boundary and non-class boundary regions. It uses genetic
algorithm and rough set theory to determine the boundary regions and find the instances
which can be eliminated from training set of XCS. Genetic algorithm is used to define an
indiscernibility relation. Then, rough set data reducer block uses this relation to partition
the problem space and differentiate boundary regions from non-boundary ones. The main
advantage of proposed model is bounding the search space of XCS and enforces it to focus
only on the boundary regions. As there is a certain amount of risk in classifying the
instances of such regions, doubtless modeling these regions is more important to achieve
higher performance in classification problems. In proposed model, the boundary regions
would be covered with more accurate rule set and also the classes boundaries would be
modeled precisely. As experimental results show, RSXCS presents statistically significant
improvement in term of classification accuracy compared to XCS in both nominal and
real valued problems.

The bottleneck of the introduced method is to deal with noisy data. To overcome
this shortcoming, as the future work, it might be useful to change the mechanism of
determining positive region in PSU in order to consider noise ratio. Another way which
might be suitable is to use fuzzy rough set instead of classical one, which has an institutive
ability to handle noisy data. Moreover, we intend to evaluate the proposed method for
data sets containing both nominal and numeric attributes jointly.
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