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ABSTRACT. This paper investigates control design for the general bilateral tele-operation
system with communication time delay. The time delay over the communication channel
s assumed to be unknown and stochastically time varying. Then, an impedance controller
is designed for the master side and an open-loop controller is designed for the slave side.
In order to design the slave side controller, the control system is reformulated such that
the slave side controller is converted to an equivalent dynamic output feedback controller
in a standard control system representation. A Lyapunov-Krasovskii functional is defined
for stability analysis. By choosing Lyapunov-Krasovskii functional. It is shown that the
master-slave tele-operation system is stochastically stable under specific LMI conditions.
Finally, simulations are performed to show the effectiveness of the proposed method.

1. Introduction. During the last two decades, kinds of tele-operation systems have been
developed to allow human operators to execute tasks in remote or hazardous environments,
with a variety of applications ranging from space to underwater, nuclear plants, and so on.
A typical tele-operation system is composed of the human operator, the master robot, the
communication networks, the slave robot and the environment. Tele-operation consists of
unilateral and bilateral. The front only transmits the master motion and/or force to the
slave site and the later includes the motion and/or force information transmissions from
the slave site to the master site. Bilateral tele-operation is a challenging area of control
technology with a number of traditional and potential applications ranging from space
and undersea exploration to tele-surgery.

Due to information transmitted between master and slave via a communication channel,
for example, Internet is of the most common communication channels used in this field.
The induced time delay by Internet is stochastically time varying and it is well known
that the time delays can destabilize the whole system if they are not well dealt with
[3, 4]. Stability analysis and control design problems of time-delay systems have drawn
increasing attention during the last few decades [1, 2].

Most of dynamic systems with time delays have been addressed in the context of func-
tional differential equations, which leads to state space descriptions allowing recovering
the time-domain stability analysis as introduced by Lyapunov approach [1, 28, 29]. A
number of different control schemes have been proposed for tele-operation systems to
provide a reliable and satisfactory control system, which includes passivity theory [5],
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wave variables [6], adaptive control [7], robust control [8], Smith predictor [10] and also
non-time based reference for controller design [11].

Some work has considered time-delays to be random governed by a finite states homoge-
neous Markov process. For example, in [21], stochastic optimal control is investigated for
a class of nonlinear systems governed by Markovian jump parameters. In [22], the control
algorithm of an output feedback control scheme for robust optimal stabilizing control of
a decentralized stochastic singularly-perturbed computer controlled system with multiple
time-varying delays was designed. In [24], delay-dependent robust exponential stabil-
ity was investigated for uncertain singular systems with state delay. In [23], the delay-
dependent, robust stochastic stabilization problem of stochastic TS-fuzzy delay systems
with both norm bounded uncertainty and convex polyhedral uncertainty was considered.

Recently, the LMI-based approaches have been employed to deal with stability and
stabilization problems [13, 14]. To the best of our knowledge, tele-operation control
systems design has not been addressed by LMIs and strong features of this approach
motivate the present study.

For most tele-operation approaches, time delay is assumed to be constant or varying
with an upper boundary [25, 26]. Actually, the delay of Internet is characterized as
random, unbounded and different for both branches in the control loop [27]. The Internet
delay can be modeled as random delay with probability distributions governed by an
underlying Markov chain [18], which is also called Markov jumping parameters. To the
best of our knowledge, there is no such research about bilateral tele-operation systems
with Markov jumping parameters. Therefore, in the paper, a new control strategy based
on linear matrix inequalities and Markov jumping linear systems is designed for the tele-
operation systems with Markov jumping parameters.

In this paper, stability analysis problem for a class of tele-operation systems is ad-
dresses. The forward and the backward transmission time delays are assumed to be both
stochastic and time-varying, and then the tele-operation system is casted into the frame-
work of Markov jumping systems. An impedance controller is designed for the master side
and an open-loop controller is designed for the slave side. In order to design the slave side
controller, the control system is reformulated such that the slave side controller is con-
verted to an equivalent dynamic output feedback controller in a standard control system
representation. A Lyapunov-Krasovskii functional is defined for stability analysis. By
choosing Lyapunov-Krasovskii functional, we show that the master-slave tele-operation
system is stochastically stable under specific LMI conditions. Finally, the simulations are
performed to show the effectiveness of the proposed method.

2. System Description. A bilateral tele-operation system is presented in Figure 1.
The overall master dynamic includes the master robot and its controller is denoted by
Py, while the slave side controller and the robot dynamics are represented by K and
P; respectively. The forwarding and returning communication channels time delays are
labeled as d;(t) and dy(t) respectively. fj, and fs are the force applied by the operator
on the master and the force applied on the slave respectively. Besides, f’y represents the
slave force signal sent to the master through the communication channel. The dynamics
of the master and slave are expressed as a 1DOF mass-damper system as follows:

mmvm + UV = Tm + fh (1)
MsVs + [UsVs = fs - fe (2)

where v,,,, v5 and 7,,, denote velocity and input torque, m,, and p,, denote the mass and the
viscous coefficients of the master respectively while my and ps denote the corresponding
parameters of the slave respectively. Meanwhile, f, represents the applied force by the
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FIGURE 1. A bilateral teleoperation system

slave to the environment. Assume the desired impedance for the master is given by
MZ&,, + Biy + K2, = fro — s (3)

where M, B and K are the inertia, damping and stiffness of the desired impedance
respectively. Yet, as far as we are concerned, it is very hard to measure the acceleration

I, in the presence of noise. Thus, by combining (3) and (1), we can obtain the control
law of the master as follows:

mMm B mMm

Tm:(ﬂm_M )Um‘i‘(W_l)fh_%(fls—FKZUm) (4)

which is for the slave manipulator to track the position of the master.

Y=V N /_\‘ 4 w=f,
& Ps d,
d1 PM
ym:V,m u:fS
Ks

FIGURE 2. The standard representation of control system

In Figure 2, w denotes the exogenous input (human operator force) and ys represents
the controlled output which is the slave side velocity or displacement. Moreover, y,,
and u are the equivalent measured output (delayed master side velocity command) and
control inputs respectively. Assume z, = [xgl,ng,xg3,xg4]T = [m%,i%,xf,:&f]T, then
the overall state space representation of the equivalent plant P is as follows:

Bp(t) = Apzy(t) + Bifu(t — di(t)) + Bou(t) + Bsu(t — di(t) — da(t)) (5)
Ym(t) = Cpuap(1) (6)
Ys(t) = Chap(t) (7)
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where
[0 1 0 O 0 [0
_KE _B o L 0
_ M M — |
LY=L 0 0 0 1 |» BElo | Bl
[ 00 0 —f 0 |
[0 01" 000 0]
—L 1 00 00
— M — —
Ba=1 g" |+ Gn=|g| O 0010
| 0 0 000 1
Consider a dynamic output controller in the following state space:
I,I,’k(t) = Akl’k(t) + Bkuk(t), uk(t) = y(t)
Yk(t) = Crxp(t) + Drug(t), yr(t) = u(t) (8)
Define the tracking error e as:
e(t) = w(t —di(t)) — Swz(t) 9)

where S, determines the output required to track. Now, adding the dynamic output
feedback controller to this system model, we can obtain the following equations:

Fa(t) = Aaa(t) + Barw(t — dy () + Baou(t) + Basu(t — dy () — do(t))

Yam (t) = Coamaa(t) (10)
Yas(t) = Cosa() (11)
where the augmented state vector is defined as xl (t) = [, 2l]" with z.(t) = [T e(r)dr,
[0 —S,Ch [ To [o o]
Aa—|:0 Ap :|7Ba1—|:B1:|7Ba2—|:B2:|;Ba3—|:B3:|;Cas—|:Cg“1:|7
0 17
Caom =
]

=| 2p(t) |=[2T(0) 2 () ap(t) ap() @) ah() 0] (12)

Finally, the augmented system is given by the following state space equations:

(t) = Ajxz(t) + Asx(t — di(t) — da(t)) — Ew(t — dy(t)) (13)
_ Aa + Ba2DkCam Ba2Ck: _ B3Dk0p1 0 _ Bal
where A; = B.C, A, ], Ay = [ 0 B,C, | E = Ak

Thus, the control problem is changed into designing a robust stabilizer controller making
the slave robot track the master side commands.

Remark 2.1. As was mentioned above, we should introduced the stochastic model in
analyzing the stability of the systems, because the communication delay over the Internet
18 both stochastic and time-varying.

Remark 2.2. For the imprecision of modeling, the introduced mathematical model should
consider the uncertainty to ensure the performance of the real systems.
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3. Problem Statement. Since the system dynamics parameters are uncertain, and it
is not easy to obtain the precise values beforehand. Moreover, for most tele-operation
approaches, time delay is assumed constant or varying with an upper boundary in the
previous works [20, 26]. Actually, the delay of Internet is characterized as random, un-
bounded and different for both branches in the control loop [27]. The Internet delay can
be modeled as random delay with probability distributions governed by an underlying
Markov chain [18], which is also called Markov jumping parameters. In this section, we
introduce the following Markovian jump systems with two additive time-delays and the
operator’s force to the master.

(t) = (A1 + AA ) z(t) + (A + AAg)z(t — dyy, () — doy, (t) + (B + AE) (w(t — dyy, (1))
z(s) =@(s), ry=ry, s€ [=2(di+ds),0]

(14)

where x(t) € R" is the system state defined in (12), w € R™ is the operator force, r;

is a right-continuous, discrete-state, homogeneous Markov process, taking values in the
infinite set S = {1,2,..., N}, with the mode transition probability matrix

ﬂ'z'jAt + O(At) 1 7£ ]

1
L+ 7mAt+o(At) = (15)

P(ryac=jlr =1) = {
where At > 0, Al%tm0 o(At)/At = 0, and 7;; > 0 (4,5 € S,i # j) denotes the transition
_)

N

rate from mode ¢ to j. m; = — >, my, foralli € S. Ay, Ay, B and E are all known
=L

constant matrices with appropriate dimensions; dy,,(t) and ds,,(t) are mode-dependent

time-varying delay functionals satisfying

0 <dy <di,(t) < dildi, ()] < b
0 < dy < doy,(t) < daldoy, ()| < hy Vr €S8 (16)
where dy, d,, dy, dy, hi, hy are all known positive scalars.

Assumption 3.1. AA;, AA,, AFE are all real-valued time-varying matrices representing
the norm bounded parameters uncertainties satisfying

[AA, AA, AE] = HF(t)[Dy D, Dy]

F(t) is a real-valued matriz functional representing the uncertainty satisfying FT (t)F(t) <
I and H, D1 D,, D3 are all constant matrices known as a prior.

Definition 3.1. (Boukas et al. [15]) System (14) is said to be stochastically stable if there
exist a positive constant I such that

E {/OOO la(re, 1)t 6(s), s € [—2d, 0],7“0} <T (17)

Note that {(z(t,7;),7:),t > 0} is non-Markovian because of the existence of d,, (t) and
dar,(t). In order to cast the model into the framework of Markovian systems, we define a
new process {(Xt, rt),t > 0} taking values in Cy as follows:

Xtéx(t+s), s € [—2(81 +Eg),0]

where

Co 2| JCl-2(dy + do), 0] x {i}

1€S
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and C[—2(d; +ds), 0] denotes the continuous functions defined on [~2(d; +ds), 0]. Specif-
ically, ((Xt,rt),t > O) can be verified as a strong Markov process with state space C
similarly to [12].

Now, it is converted into a stochastic stability analysis problem which will be investi-
gated in the following section.

4. Main Results. First, we will consider the nominal systems for (14), which implies
that the uncertainty parameters AA; = AAy, = AE = 0. The following theorem presents
a sufficient condition to check the stochastic stability of the nominal systems for the
investigated tele-operation systems (14).

Theorem 4.1. Consider system (14) with AA; = AAy = AE =0, then we conclude that
the system is stochastically stable if there exist n X n matrices P;, Qr, Zr, Ry, Su, Ty,
U, Yy, 1 € S, k=1,2,3,4,1=1,2,...,6, such that (18) holds for all i € S.

U, diR; AU AT daS,

x —diZ; 0 0 0
M;=| =« x  —d\Zy 0 0 <0 (18)
* * * —dyZs 0
* * * * —dyZy
where Qu, < Zp (m=1,2,3,4) and
Rii Ui Th
\I]i — [\I];k]ﬁnxﬁna RZ = ) UZ = ) 1—11, = )
Riﬁ Uiﬁ 7—;6
Si1 Yi
Si Yie

N
‘I’Zﬁ:A{HWLPiAl+Z7Tz'jpj+Q1+Q3+Ri1+R£+Ti1+TZ~T—Yi Ay

j=1
— ATY;Indy Zy + n(dy + dy — dy) Zo + nda Zs + n(dy + dy — dy) Z4

Uiy = —Rj + Riy + Su + T, — A]Yy, Wiy =RL+ T — T +Un — AYj

Ui, =Rl — Su+ Ty — Uy — YnAy — ATY; + PiA,

Uis = Ris + Tis + Yo — AJY;5, Wig=PE;i+ Rig + Tig — A]Y;g — YaE

Why = —(1 = h)Q1 + (1 +h)Qs — Rig — R}y + Sio + S}y

U = —RL + Sk — T+ U, Vb =—Rl+S]—Sip— Uy — YisAy

Ul = —RE+ Sk + Y, Uhe=—Rl+ Sk —YnE

Wiy = —(1 = hg)Qs + (1 + ho)Qy — Tis — Ty + Uiy + Uy

Uy = —Sip — Ty + Uiy — Ui — Yigdy, Wiy = —Tip + Us + Vi

Wy = —Tig + Ui — Yis B, Wig =Yig — Vs B, Wy =—YisE — E'Yyg

Wiy = —(1—hy = ho)(Q2 + Qu) — Sia — Sjy — Uia — Ujjy — YisAy — AJYy4

Wis = =Sis — U — A3 Vi + Yia, Wi = =S5 — U — A3 Y5 — YuFE

Ul =d Zy + (dy +dy — dy) Zo + doZs + (dy +dy — d)) Zs + Yis + Vi
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Proof: Consider the following Lyapunov-Krasovskii functional:

V=Vi+ Vit Va+ Vit Vst V5 + V5 (19)
where
t t—dlrt(t)
Vi=a ' (t)P(r)x(t), Vo= / 2" (5)Qiz(s)ds +/ 27 (5)Quz(s)ds
t—dip, (t) t—dir, (t)—dar, (1)
t t*dQTt(t)
Vi :/ xT(s)Q3x(s)ds+/ 27 (5)Qa(s)ds
t—dar, (t) t—dir, (t)—dar, (t)

0 st

Vllz/ / " (5)Z13(s dsd9+/ / $)Z42(s)dsdf
—dy Jt+0 —da Jt+0
0 st

Vs :/ i () Zsi(s dsd9+/ / $)Zyd(s)dsdf
—dy J 40 dz t+0

0 t
%zn/ /qx()&ﬂ)@w+n/‘ L/ s) Zyx(s)dsdf
—dy Jt+0 —do Jt+6

0 st
Vi :77/ o7 (8) Zox (s )dsd9+77/ / s) Zsx(s)dsdf
0 —dz Jt+0

2 J i+

We define £(t) as follows:
E(t) = [a7 (1), 2" (t = dys(t)), 2" (t — dai(t)), 2" (t — dyi(t) — da(t)), &7 (£), w(t — dy;(t))]

From the Newton-Leibniz formula and the system Equation (14), we have the following
equalities:

%qﬂé[ﬂ@—x@—duw)—llm)ﬂ$@}:o (20)

T

t—dy; (t)

267 (0T, [at) — (¢ — o) - [ ( | i(s)is] =0 (22)

t—ds; (t)

267 (1) U;

x@—@ﬁ»—x@—dmn—dmwyildﬁ)wmﬂ@@]:o (23)

26T (t ) T — Ajx(t) — Aga(t — dyi(t) — doi(t)) — Ew(t — dy;(t))] =0 (24)
Noticing that

N . t t
;mj /tdlj(t) 7 ()@ (s)ds < ;ﬂ” /tdlj z"(5)Qa(s)ds < 77/“11 2" (s)Qix(s)ds
(25)
N t—dy;(t)
l SST 26
]Z;ﬂ-] Zdlf(t)dZJ(t) ( Q‘L‘T /td1 d> Q4l‘( ) ( )
N ; t
Zmy/ 2" (s)Qsx(s)ds <n [ z7(s)Qsz(s) (27)
j=1 t=da; (1) t—ds
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S f

t—dyj(t)—da; (1)

t—d,

27 (5)Qax(s)ds < 77/ 2T (s)Qex(s)ds (28)

t—di1—d>

Then, applying the Markovian infinitesimal operator to V; ~ V7, we have the following
inequality

N
2V <a'(t) {A?Pi + PA + ) miPi+ Q4 Qs + Ry + RE + T + T — YAy

j=1
— ATY;| 4+ ndi Zy 4+ n(di + dy — dy) Zo + ndoZs + n(dy + do — dy) Zs | 2(t)

xT(t) [—2R;1 + 2R}, + 28 + 2T, — 2ATY, D] o(t — dui(t))
o (1) [2R) + 2T — 2Ty + 2U;y; — 2ATY X |x(t — dys(t))
T(t) [2RL, — 2S; + 2T — 2Uyy — 2V Ay — 24TV 4+ 2P Ag] a(t — dui(t)
— doi(t)) + 27 () [2Rj5 + 2Tj5 + 2Yin — 247 Vg | (t)
T(t) [2PE + 2R + 2T — 2ATY;{ — 2V E] w(t — du;(t))
2T (t —

dii(t))[ — (1 = h)Q1 + (1 + h1)Q4 — Rio — Rl + Sio + Sh]x(t
- dh(t)) 2Tt — d, ( N[=2R% + 2S% — 2Thy + 2Usn]a(t — dui(t))

T(t — dy; (1)) [ 2R}, 4+ 28} — 28 — 2Usp — 2Yip Al (t — dys(t) — das(t))
2T (t — dy (1)) [~ 2RZ; + 25K + 2Y;o)i(t)
ol (t — dii(t))[ 2R} + 28 — 2V Elw(t — du( ) (29)
w(t = doi(t)) [ = (1= h2) Qs + (1 + o) Qo — Tiy — Ty + Up + U Ja(t — day(1))
o (t — doi(t))[~2Si3 — 2T + 22U — 2U;5 — 2YZ-3Ag]x(t — dy;(t) — dy(t))
2T (t — do(t))[ 2T + 2U% + 2Yi3)i(t)
ol (t — doy(1))[ 2T + 2Uss — 2V Blw (t — dui(t))

+ 27 (t — dii(t) — doi(1))[— (1 — by — ho)(Q2 + Qu) — Sia — Sty — U — U}y
— YiAy — ATV Jx(t — dyi(t) — dai(1))
+ 2T (t — dy;(t) — do; (1)) [-2SE — 2UL — 2ATY.D 4 27, (1)
Tt — dy(t) — dos(1))[-2S5 — 2UL — 245 Y, — 2V Elw(t — dy;(t))
+ 2T (W)[d1 Zy + (dy + dy — dy) Zy + doZs + (dy + dy — d}) Z4 + Yis + YL |2(t)
T(1)[2Yis — 2Yis Elw(t — dyi(t))
+w' (t = dy(1)[-YieE — ETYglw(t — dyi(t))
AT () [Eizﬁz“%;f n (72-2;1(7?] £(t) + do€7 (1) [ﬁz;lff + §iZ;1§Z.T] £(t)
Using the Schur-complement lemma, we could show that
2V < OWEW) + " (1) Rz B+ 02, U7 | €()
+ @& () | 125 T7 + 5,257 | &) < 0

which is equivalent to inequality (18).
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We choose
B = max A [\Ifl +d, (EZZ;IEZ.T + ﬁiZ;lﬁiT) +dy (ﬁzglﬁT + §Z~Z4‘1§iT>]
Obviously, # < 0. Then, we have
LV (Xprt) < B @) P B [ 2(t) |1 (30)
From the Dynkin’s Formula [16],

BV (0, = Voo 0) < 9] [ ln(o)ds

Let ¢ — 400, then we have:

im 2 { [ b6} < 07 V00

t—+4o00

It is noted that the stochastic stability is obtained from Definition 3.1. Therefore, the
proof is completed.

Theorem 4.2. Consider the investigated systems (14) with norm bounded uncertainties,
then it follows that the systems will be stochastically stable irrespective of the modeling
uncertainties if the following LMIS hold.

k —d121 0 0 0 0
* * —d\ Z, 0 0 0
= — <0 31
M * * * —dy 73 _0 0 (1)
* * * * —dsZy 0
* * * * * —

where
Q; = [(I);k]GnXGRv (I)Zﬁ = \I’Zﬁ + ETEla q)zﬁ = \1134 + ElTE% q)ziﬁ = \I]iﬁ + ElTE?n
Oy =V, + By By, g =i+ B, By, g5 = Vi + B B,
For the other terms of [P} ]snxen
‘I’;k = ‘I’;k
and
No= ([ v - YE]T+[PT 0 - 0]")H,

Proof: Replacing A;, A, F'in (18) with A;+AA;, As+AAy, E+AFE, and considering
Assumption 3.1, we have that inequality (18) gives

\Ifi Elﬁz Elﬁz Egi 8252 L
x  —di1 7, 0 0 0 0
* «  —diZy 0 0 +1 0 [F'(NI' 000 0)<0 (33)
* * * —Eng 0 0
* * * * —32Z4 0

where Lg,x6n = [ E, 00 FEFy 0 Ej ]T, and N; is defined in (32).
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Owing to Lemma 2.4 in [9], (33) holds if and only if there exist a positive constant A,
such that

\Iji Eléz Elﬁz Egﬁ Eggz L
x  —d1 7, 0 0 0 0
« % —d1Zy 0 0 +A" 0 | (LT 0000 0)
* * * —Eng 0 0
* * * * —EQZ4 0

+A[NT 0000 0] [N 00O O0]<0 (34)

‘Multiplying the both sides with A, and letting AP; = P, A\Qp = Qk, ANy = Zy,
AR; = Ri, AS; = S;, XTI, =T;, \U; = U;, \Y; =Y, i€ Sand k =1,2,3,4. we could
obtain (31) without any difficulty owing to the Schur-complement lemma.

Remark 4.1. From Theorems /.1 and 4.2, the tele-operation system under consideration
of human force and system uncertainty using the control (8), the forces exerted by human
can be transferred to the environments by the slave robot, moreover, the positions of master
robot can be tracked by the slave robot, even if there exists uncertain time delay through
the network.

R —
j:] Controller

Slave robot

Network

HEnn

Controller

Master robot

FI1GURE 3. The tele-opeation robots

5. Illustrative Example. The tracking control performance is evaluated by applying
a force exerted by human operator shown in Figure 3, where human interacts with the
master robot by pushing, the force signal is transferred into the positions by the impedance
approach, then the robots exchange the position information through the network. We
consider equal randomly varying time delay in forwarding and returning communication
path. Assume that the parameters of the bilateral system investigated in (1) ~ (4) is
given as follows. The master parameters: M = 2.0 £ 0.05Kg, B = 2.0 + 0.04Ns/m,
K = 1.0 £ 0.02N/m. The slave parameters: m, = 1.0 + 0.04kg, ps = 1 £ 0.05N/m,
where the small uncertainty is introduced by modeling. The communication time-delay
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bounds in (16) are set as: d; = 0.5, hy = 1.5; dy = 0.8, hy = 1.2, and the compatible
time-varying delays are assumed to be d;; = 0.3 sin?4t, djp = 0.5cos’t; dy; = 0.4sin? 3¢,
doy = 0.8 cos® 0.5t. We assume that the output feedback in (8) controller is given as the
following dynamics:

—27 12 —-19 —50 50
Ak_{ s _66},Bk_[_15],0k_[23 3},Dk_—0.6,n_[ 10 _10}

Correspondingly, the time-varying delays governed by the Markov process are shown
in Figure 4 and Figure 5. Using the LMI toolbox in Matlab, we could solve Theorem

035 ‘ ‘ ‘ 05
045}
03}
0.4}
025} 1 ossl
03
0.2}
= = 0.25
h=} h=}
015}
0.2
oal | oais}
01
0.05}
0.05}
0 ‘ 0
) 1 2 3 4 0 1 4

FIGURE 4. The time-varying delay d;,, (), at mode 1, dy,,(t) = dy1(t); and
at mode 2, dy,,(t) = di2(t)

0.4 T T T 0.8
0.351 1 0.7
0.3F 1 0.6
0.25f 9 0.5
;q 0.2 ;’m 0.4
0.151 1 0.3f
0.1F 1 0.2f
0.051 1 0.1f
0 0
0 1 2 3 4 0 1 2 3 4
time t time t

FIGURE 5. The time-varying delay ds,, (t), at mode 1, doy, (t) = da1(t); and
at mode 2, d?rt (t) = d22(t)

4.1, and get a group of solutions for P;, Qk, Zk, etc. (See the appendix). Without loss
of generality, we choose the initial states

w(t) = o(t) = [e(t), mp1 (), 2p2(t), 2p3(t), wpa(t), Th1 (t), T2 (2)]
=[0.1cos 2t,0.4 cost, —0.4 cos 2t, 0.3 cos 2t — 0.2 cost, 0.2 cos 2t, —0.15 cos ]
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Then, we obtain the trajectories of the system states in Figure 6, which obviously shows
the convergence of the states, and the trajectories of master and slave robot converge to
the desired positions. The figure shows the excellent tracking performance.

0.2
0.15f
0.4r|

0.05h |

-0.05f

The convergence of the states
o

-0.1p

-0.15f

-0.2

25 3 35 4

FIGURE 6. The trajectory of the states

And we could easily see the satisfactory performance of the system under the proposed
control with time-varying and stochastic communication delays.

6. Conclusions. In this paper, stability analysis problem for a class of tele-operation
systems with time-varying and stochastic communication delays is addresses. The forward
and the backward transmission time delays are assumed to be time-varying and the tele-
operation system is reconstructed by a Markov jumping system. An impedance controller
is designed for the master side and an open-loop controller is designed for the slave side. In
order to design the slave side controller, the control system is reformulated such that the
slave side controller is converted to an equivalent dynamic output feedback controller in
a standard control system representation. By choosing Lyapunov-Krasovskii functional,
we show that the master-slave tele-operation system is stochastically stable under specific
LMI conditions.
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