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Abstract. Many real-world systems (such as cellular telephones and transportation)
are acyclic multi-state information networks (AMIN). These networks are composed of
multi-state nodes, with different states determined by a set of nodes that receive a signal
directly from these multi-state nodes, without satisfying the conservation law. Evaluating
the AMIN reliability arises at the design and exploitation stage of many types of technical
systems. However, existing analytical methods fail to estimate AMIN reliability in a real-
istic time frame, even for smaller-sized AMINs. Hence, the main purpose of this article
is to present a cellular automata hybrid quasi-Monte Carlo simulation (CA-HMC) by
combining cellular automata (CA, to rapidly determine network states), pseudo-random
sequences (PRS, to obtain the flexibility of the network) and quasi-random sequences
(QRS, to improve the accuracy) to obtain a high-quality estimation of AMIN reliabil-
ity in order to improve the calculation efficiency. We use one benchmark example from
well-known algorithms in literature to show the utility and performance of the proposed
CA-HMC simulation when evaluating the one-to-all AMIN reliability.
Keywords: Network reliability, Multi-state node acyclic network (AMIN), Hybrid quasi
monte carlo method, Minimal tree/cut

1. Introduction. Many real-world systems, such as computer and communication sys-
tems, power transmission and distribution systems, transportation systems and produc-
tion systems [1-13], can be modeled as networks, such that each component in these
networks refers to an object or operation. The recommended approach is to first measure
and evaluate the performance of the systems that can be modeled as stochastic networks
or into fault trees. Thus, system reliability plays an important role in modern society.

Depending on whether the flow (or information) transferred within systems conforms to
the flow conservation law, there are two possible network structures [14,15]: the (multi/bin-
ary-state) flow network (MFN/BFN) [1-7], and the multi-state information network (MIN),
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first investigated by Malinowski and Preuss [14]. The former obeys the flow conservation
law, whereas the latter does not. In flow networks, the capacity of each element is a
non-negative integer. However, in a MIN, each node has different states determined by
a set of nodes that receive the signal directly from the multi-state nodes [14-19]. Both
network structures have their own applications. However, MIN is more practical and rea-
sonable than MFN/BFN in many real-life systems such as computer networks and cellular
telephone networks [8-21]. Therefore, MIN analysis has become a new subject in system
reliability.
The acyclic multi-state information network (AMIN) is an extension of MIN. It has a

source node, which can only emit and send a signal to other nodes, a number of sink nodes,
which can only receive information, and a number of intermediate nodes (neither source
nor sink nodes) that retransmit the received information to other non-source nodes. The
information is transmitted from a non-sink node to a number of non-source nodes along
the edges between these nodes, in other words, multi-states. Information leaving a node
cannot return to this node through any sequence of nodes, and therefore, the network is
acyclic. The probability that a node (state) will transmit to the next nodes is assumed
to be known and statistically independent for each non-sink node.
Most current methods for evaluating AMIN reliability are all derived from the universal

generating function methods (UGFMs), which were proposed by Levitin [22], and have
recently been improved by Yeh using some simple techniques [30,31]. Yeh used a special
Branch-and-Bound algorithm to calculate the one-to-all reliability between the source
node and the subset of sink nodes [19]. Yeh also proved that traditional algorithms
(for example, the minimal cuts) for BFN reliability can easily be revised to solve the
AMIN reliability problem [20]. However, these existing analytical methods [18-21] are
still difficult to use to evaluate the exact AMIN reliability in a reasonable time, even for
a smaller-sized AMIN. Therefore, there is a need for an efficient and intuitive method to
evaluate the AMIN reliability.
To overcome the above obstacles completely and reduce the computational burdens, we

introduce the Monte Carlo simulation (MCS) here to estimate AMIN reliability. MCS has
now become one of the more efficient, effective and convenient approaches for estimat-
ing the reliability of MFN/BFN, under various kinds of network structures (e.g., series,
parallel and complex networks) with numerous distribution components. However, as far
as the author is aware, the development of MCS has received less attention in literature
than other methods for evaluating AMIN/MIN reliability.
The main purpose of this study is to develop a cellular automata hybrid quasi-random

Monte Carlo simulation (CA-HMC) by combining cellular automata (CA, to rapidly de-
termine network states), pseudo-random sequences (PRS, to obtain the flexibility of the
network) and quasi-random sequences (QRS, to improve the accuracy of the network) to
obtain a high-quality estimation of the one-to-all AMIN reliability in order to improve the
calculation efficiency. The paper is organized as follows. Section 2 describes the acronyms,
notations and assumptions required. Section 3 describes the crude Monte Carlo method
and its statistical properties. Section 4 discusses the proposed cellular automata. Section
5 gives an introduction to quasi-random sequences. Section 6 introduces the proposed
CA-HMC, and computational experiments are provided in Section 7 using a benchmark
AMIN to show the performance of the proposed CA-HMC. Section 8 contains concluding
remarks.

2. Notation, Nomenclature and Assumption.
Acronym
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MFN Multi-state flow network
BFN Binary-state flow network
MIN Multi-state information network
AMIN Acyclic MIN
MCS Monte Carlo simulation
CMC Crude MCS
CA Cellular Automata
PRS Pseudo-Random Sequence
QRS Quasi-Random Sequences
pCMC CMC based on PRS
qCMC CMC based on QRS
CA-HMC The proposed CA Hybrid Quasi-random CMC
UGFM Universal Generating Function Method

Notation
E[•] the expected value of •.
Var[•] the variance of •.
Pr{•} the probability of event •.
G(V,E) an AMIN with the set of nodes V = {1, 2, . . ., n} and the set of edges E,

where node 1 is the source node, e.g., the network in Figure 1 is an AMIN.
The nodes are numbered in such a way that for any edge euv ∈ E with
u < v [19].

Figure 1. An example AMIN

|•| the number of elements in •.
T the target node set (⊆ V − {1}) of an AMIN.
si the number of states of node i, where i = 1, 2, . . ., |V − T |.
sij the jth state of node i, where i = 1, 2, . . ., |V − T | and j = 1, 2, . . ., si.

Sij

j∑
k=1

Pr{sik}, where i = 1, 2, . . ., |V − T | and j = 1, 2, . . ., si.

pij the probability of all nodes in Sij receive a signal directly from node i,
where

∑
j

pij(t) = 1 for j = 1, 2, . . ., si.

R1J the probability of all nodes in J(⊆ T ) receiving a signal directly from
node 1, i.e., the node 1 to target subset J reliability.

M the total number of independent trials.
Nomenclature

Acyclic network: a network containing no directed cycle.
Target set/node: a non-empty subset of sink node set and its element is called the

target node.
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States: it is a subset of nodes that one node can transmit signal
to, e.g., ∅, {4}, {5} and {4, 5} are all states of node 3 in
Figure 1.

AMIN Reliability: the reliability of an AMIN at time t, R(t), is defined as
the probability that a signal can be transmitted from the
source node to the target set which operates successfully
throughout the time interval (0, t]. It can be denoted by
R(t) = P {there exists at least one path from node 1 to
any target node in G(V,E) during (0, t)} = P{ϕ(t) = 1}.

the flow conservation law: the total flow (signal) through into and from a node (not
a source node, target nodes or a target node) are all equal.

One-to-one: between the source node and only one target subset.
One-to-all: between the source node and all target subsets, i.e., all

one-to-one.
Assumptions
The AMIN satisfies the following assumptions [19]:

1. All of nodes and arcs are perfectly reliable.
2. The signal can be retransmitted without following the flow conservation law.
3. All of the probabilities of states of each non-sink node are random variables according

to a given distribution and assumed to be statistically independent.
4. No maintenance is considered.

3. The Crude Monte Carlo Method. MCS is a straightforward and efficient approach
for obtaining a good quality estimation of the reliability of a relatively large and complex
network, because the exact reliability is computationally intractable. The literature on
MCS of BSN reliability is quite large. A brief survey of the previously published studies
involving MCSs used to estimate network/system reliability are presented in chronological
order as follows [6,7]. A more comprehensive review of recent literature of MCSs can be
found in [7] and the references therein. It is worth noting that researchers have only
focused on applying the MCS approach to estimating MFN/BFN reliability, without
extending MCS to evaluate MIN/AMIN reliability.
As mentioned in [6], each proposed MCS should be compared with the most basic

simulation, called the crude MCS (CMC), to determine its effectiveness (solution quality).
In CMC, no enhancement is implemented when selecting and using random numbers [8-
28]. The CMC for estimating the system reliability of a stochastic activity-of-arc BFN is
as follows:
Procedure Crude-MCS()
Input: A BFN G(V,E) with a source node 1, a sink node n, and the total number

of replications equal to M .
Output: The estimator RCMC of the system reliability.
STEP 0. Set the current replication number, i, to 1 and the current successful sim-

ulation number, SUCCESS, to 0.
STEP 1. Let j = 1 and S0 = ∅.
STEP 2. If ρ < (the reliability of arc j), then S0 ← S0 ∪ {j}, where ρ is a random

number generated from U(0, l).
STEP 3. If j < |E| (the arc number), then let j = j + 1 and go to STEP 2.
STEP 4. If nodes 1 and n are connected in G(V,E − S0), then SUCCESS =

SUCCESS + 1.
STEP 5. If i < M , then i = i+1 and go to STEP 1. Otherwise, let RCMC = SUCCESS

M
and halt.
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The above CMC is suitable for BFNs, and can be extended easily to MFNs that satisfy
the flow conservation law and MINs/AMINs that do not. Hence, all MCSs related to
network reliability are based on the above CMC.

The fact that the CMC provides an unbiased estimator of the reliability of a system is
well known to the technical community. Hence, we have the following statements, proofs
of which can be found in any basic probability or simulation book:

Theorem 3.1. The estimator RCMC is an unbiased and consistency estimator with vari-

ance value R(1−R)
M

, where R is the exact reliability and M is the replication number.

Proof:

a. Unbiased estimator of R: Let RCMC
i be the the expected reliability of in G(V,E−E0),

where i = 1, 2, . . .,M . Then,

E
[
RCMC

i

]
=1× Pr{nodes 1 and n are connected}

+ 0× Pr{nodes 1 and n are disconnected} = R.
(1)

Thus,

E

[
M∑
i=1

RCMC
i

M

]
=

M∑
i=1

E
[
RCMC

i

]
M

= R. (2)

b. Variance of RCMC: Since

V ar
[
RCMC

i

]
= E

[
(RCMC

i )2
]
− E

[
RCMC

i

]2
= R[1−R], where i = 1, 2, . . .,M. (3)

Thus,

V ar
[
RCMC

]
= V ar

[
M∑
i=1

RCMC
i

M

]
=

R(1−R)

M
. (4)

c. Consistency estimator of RCMC: From the above two parts, E
[
RCMC

]
= R and

limM→∞ V ar
[
RCMC

]
= 0. This means that if any constant ε is given then limM→∞

Pr{|RCMC −R| < ε} = 0. That is, if the replication number m is large enough, any
precision requirement ε can be accomplished.
Thus, this theorem is true.

If the precision relative error, ε and the confidence interval (1− α)% are given for the
n components, then the total number of trials (M) needed in the proposed method can
be determined by the following theorem.

Theorem 3.2. If the relative error, ε, and the confidence interval (1 − α)% for the
simulation are required, then the total number of trials for the simulation, M , must be at

least M ≥ Z2
α

4ε2
, where

Zα =
RCMC −R√
V ar[RCMC]

. (5)

Proof: From the Central Limit Theorem, the limiting distribution of Zα has a standard
normal distribution. And by assumption:

P
{
|RCMC −R| < ε

}
= (1− α)% (6)

we have

(1− α)% = P

{
RCMC −R√
V ar[RCMC]

<
ε√

V ar[RCMC]

}
= P

{
|Zα| <

ε√
R[1−R]/M

}
(7)
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Thus,

M =
Z2

αR[1−R]

ε2
. (8)

According to √
R[1−R] ≤ R + [1−R]

2
=

1

2
, (9)

it follows that

M ≥ Z2
α

4ε2
. (10)

4. The Proposed Cellular Automata. Before introducing the proposed MCS, we give
a brief introduction to the CA, including some of its useful properties. CA concepts were
first devised by John von Neumann and Stanislaw Ulam in the 1940s while they studied
self-replicating systems and lattice network models. Generally, the CA is a deterministic
computation process that generates identical outputs for a given number of initial states.
CA have been applied to studies of cryptography, complex system behaviors, and general
phenomenological aspects.
Rocco and Moreno first introduced BFN reliability evaluation using a CA. Other CAs

and MCSs can be found in [26-28]. Yeh also developed an algorithm similar to the CA
in [21], but did not call it CA. Yeh et al. revised Yeh’s algorithm in the CA format [31].
Although Yeh’s CA is only based on the fundamental concept of graph scanning in graph
theory, it is the more easily understood and implemented than existing CAs. Hence, Yeh’s
CA is revised and integrated into our proposed MCS to verify the connection between
two given specified nodes in an AMIN, with the following three important elements [31]:

1) Cells and their states: A cell is a node, and its state is coded in integer digits: 0, 1,
. . . , (the number of states). If a cell’s state is unknown, it is in a quiescent state. If
a cell receives output from at least one of its connected nodes, it is in an activated
state.

2) Neighborhoods: The neighborhood of node i is the set of all of its adjacent nodes.
3) Transition rules: In CA, a transition rule is the evolution strategy that delineates

the next generation. A transition rule introduces dynamics between discrete time
steps and the lattice.

Below is the proposed CA that we use to verify the state of the network.
Procedure Cellular-Automata()
Input: An AMIN G(V0, E0) with the source node 1 and the target set T0.
Output: The connectedness between nodes 1 and all subsets of T.
STEP 0. Let N = {1}, V ∗ = V0 − {1}, T ∗ = T0 and T# = ∅.
STEP 1. Let node i be one of the element in N and N∗ = {j ∈ V ∗|eij ∈ E0}.
STEP 2. If (N∗∩T ∗) ̸= ∅, let T# = T#∪(N∗∩T ∗), N∗ = N∗−T ∗ and T ∗ = T ∗−N∗.
STEP 3. Let N = (N ∪N∗)− {i}.
STEP 4. If N ̸= ∅, let V ∗ = V ∗ − N∗ and go to STEP 1. Otherwise, nodes 1 and

any proper subset of T# are connected and halt.
As mentioned, Yeh’s CA [31] is founded on scanning a graph, which is used to search

for a path with a time complexity of O(|V |). Hence, the running time of the above CA is
O(|V |) in the worst case, and its correctness can easily be assessed.

Lemma 4.1. The above CA procedure is able to find a network state in O(|V |).

Figure 1, taken from Levitin [29], is a famous benchmark AMIN, and used here to
show the procedure of the above CA. Figure 1 contains 10 perfectly reliable nodes and 9
unreliable arcs. The component (arc and node) label is listed either in a circle (node) or
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link (arc). Suppose that the state reliability of each of the nodes, at some time (t), is as
shown in Table 1. The values of Pr{sij} are assumed by the user, and the accumulated
final value of Sij should be 1.

Table 1. Probability distributions of the states of nodes in Figure 1

i j State sij Pr{sij} Sij =
j∑

k=1

Pr{sik} i j State sij Pr{sij} Sij =
j∑

k=1

Pr{sik}

1 6 {2,3,4} .75 1.00 4 8 {6,7,10} .62 1.00
5 {2,3} .10 .25 7 {6,7} .08 .38
4 {3,4} .08 .15 6 {6,10} .06 .30
3 {2} .02 .07 5 {7,10} .02 .24
2 {3} .01 .05 4 {6} .05 .22
1 ∅ .04 .04 3 {7} .05 .17

2 8 {4,6,8} .65 1.00 2 {10} .07 .12
7 {4,6} .08 .35 1 ∅ .05 .05
6 {4,8} .05 .27 5 4 {6,7} .83 1.00
5 {6,8} .08 .22 3 {6} .04 .17
4 {4} .05 .14 2 {7} .07 .13
3 {6} .02 .09 1 ∅ .06 .06
2 {8} .05 .07 6 4 {8,9} .80 1.00
1 ∅ .02 .02 3 {8} .06 .20

3 4 {4,5} .85 1.00 2 {9} .10 .14
3 {4} .06 .15 1 ∅ .04 .04
2 {5} .04 .09 7 4 {9,10} .60 1.00
1 ∅ .05 .05 3 {9} .35 .40

2 {10} .02 .05
1 ∅ .03 .03

Table 2. The random number, ρi, generated for node i for i = 1, 2, . . ., 7

i ρi Remark
1 .2073 Pr{Si4} < ρi < Pr{Si5 = {3, 4}}
2 .7005 Pr{Si7} < ρi < Pr{Si8 = {4, 6, 8}}
3 .7932 Pr{Si3} < ρi < Pr{Si4 = {4, 5}}
4 .3140 Pr{Si6} < ρi < Pr{Si7 = {6, 7}}
5 .0066 Pr{Si0} < ρi < Pr{Si1 = ∅}
6 .1289 Pr{Si1} < ρi < Pr{Si2 = {9}}
7 .9915 Pr{Si3} < ρi < Pr{Si4 = {9, 10}}

Assume that a random number, ρi, is generated for each node, as shown in Table 2.
If Pr{Si,j−1} < ρI < Pr{Sij}, then eik needs to be removed for all k /∈ sij (i.e., e12, e56,

e57, e4,10 and e68), as shown by the dashed arcs in Figure 2. After that, there is a direct
path from node 1 to each proper subset of {9, 10} in the residual network by using the
proposed CA to scan Figure 3.

The summarized result for each iteration using the above CA, referred to as Procedure
Cellular-Automata(), is listed as shown in Figure 3.

5. Introduction to Quasi-Random Sequences. Most traditional CMCs are all based
on pseudo-random sequences (PRS), or pCMC, which are generated by a uniform distri-
bution. In other words, each pseudo-random number has the same probability of being
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Figure 2. These dashed lines are the corresponding arcs in Table 2

Figure 3. The residual connected network after removing {e12, e56, e57,
e4,10, e68} and the corresponding nodes 2 and 8

Table 3. The summary of each iteration when applying the above CA to
Figure 3

iteration
node

N
N∗ N∗

V ∗ T ∗ T#

i in STEP 1 in STEP 2
0 {1} {3,4,5,6,7,9,10} {9,10} ∅
1 1 {3,4} {3,4} {3,4} {5,6,7,9,10} {9,10} ∅
2 3 {4,5} {5} {5} {6,7,9,10} {9,10} ∅
3 4 {5,6,7} {6,7} {6,7} {9,10} {9,10} ∅
4 5 {6,7} ∅ ∅ {9,10} {9,10} ∅
5 6 {7} {9} ∅ {10} {10} {9}
6 7 ∅ {10} ∅ ∅ ∅ {9,10}

generated. Hence, pseudo-random numbers have the same relevant statistical properties
[27], and may exhibit crowding in some ranges, and no pseudo-random numbers in other
ranges [28]. Note also that, in many situations, pCMCs exhibit a rate of convergence that
is too slow for the main problem of a CMC. Thus, various quasi-random sequences (QRS)
have been constructed for the CMC [27,28], or qCMC.
QRSs are also called low discrepancy sequences, and the quasi-random numbers that are

generated are totally deterministic. In most cases, QRSs can simulate more efficiently than
pseudo-random sequences with a smaller estimated error by sacrificing some statistical
properties such as independence [27,28]. Furthermore, a higher number of simulations
always improves the accuracy of the simulation based on quasi-random sequences [27,28].
The hybrid QRS (HRS) integrated into the proposed CA-HMC is adapted from the van

der Corput sequence. It combines the quasi-random numbers with the pseudo-random
numbers. Consider the following radical inverse function:

ρb(k) =
i∑

j=0

aj(k)b
−j−1 when k =

i∑
j=0

aj(k)b
j, (11)
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where k is the corresponding van der Corput sequence (in base b for the required decimal
number k), aj(k) is the sequence of digits (e.g., for base b = 2, a sequence of 0s and 1s;
for base 3 a sequence of 0s, 1s and 2s, etc.), the natural number b > 1 is the base, and i
is the lowest positive integer that makes aj(k) = 0 for all j > i. The values of ρb(k) are
always in the unit interval [0,1).

HRSs try to bridge the gap between the flexibility of a PRS and the advantages of a
QRS. The HRS (as given in Equation (1)) listed in the proposed simulation is a revised
version of the pseudo-code presented in Wilmott [23], but uses a random integer, k, instead
of a deterministic integer. The complete HRS is given as follows:
Procedure Hybrid-Quasi-Random()

Input: A positive integer random number k.
Output: A sequence of hybrid quasi-random numbers within [0, 1).
STEP 0: Let b = 2, k be a positive integer random number, Φ = 0 and B = 1.
STEP 1: Let B = B

b
, q = the quotient of k

b
, r = the reminder of k

b
, ρ = ρ+ rB and

k = q.
STEP 2: If k > 0, then go to STEP 1. Otherwise, return ρ.

6. The Proposed CA-HMC. The proposed CA-HMC is a straightforward approach
especially for the large complex system. It is based on CA, CMC but using hybrid quasi-
random sequences instead of PRS and QRS. The complete proposed CA-HMC which
estimates AMIN reliability is given as follows:
Purpose: Estimate the one-to-all reliability of an AMIN.
Input: AN AMIN G(V,E) with the source node 1 and the target set T (⊂ V ), and

the total number of trials M.
Output: The estimator RCA−HMC of the system reliability.
STEP 0: Let i = 1 and RS = 0 for S ⊆ T .
STEP 1: Call Hybrid-Quasi-Random() to generate random numbers to simulate

states of non-target nodes.
STEP 2: Call the proposed Cellular-Automata() to find the target subset, say T#,

that connected to node 1 in the residual network based on STEP 2.
STEP 3: RS = RS + 1 for all S ⊆ T#.
STEP 4: If i < M , then i = i+ 1 and go to STEP 1. Otherwise, RCA-HMC

s = Rs

M
.

Even for a binary-state network with n nodes, it has 2n possible system states. There-
fore, M trials in the proposed CA-HMC can account at most for only a small portion
of states even when n is moderate in size of the AMIN. This limitation introduces sam-
pling error. Hence, the statistical methods are utilized here to analyze output during
the simulation activities by the estimator of R. Hence, the following theorem is true for
CA-HMC.

Theorem 6.1.

a. E
[
RCA-HMC

]
= R. (12)

b. V ar
[
RCA-HMC

]
=

R(1−R)

2M
. (13)

c. RCA-HMC is a consistency estimator. (14)

7. A Numerical Example. In order to introduce the advantages of the proposed CA-
HMC over pCMC and qCMC for the one-to-all AMIN reliability, we implement all three
of these methods. In other words, we implement R1{8}, R1{9}, R1{10}, R1{8,9}, R1{8,10},
R1{9,10} and R1{8,9,10}, as shown in Figure 1. All of the methods are run on the same
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hardware, namely an Intel Pentium 900 MHz CPU and 2 GB memory. In addition, each
method is coded using C++.

Table 4. The average absolute errors between the estimator and the exact
reliability of the information in the target set in Figure 1

State
Exact M = 100 ∼ 10000 M = 100 ∼ 5000 M = 5100 ∼ 10000
Reliability pCMC qCM CA-HMC pCMC qCMC CA-HMC pCMC qCMC CA-HMC

R1{8} .9202 .0009 .0272 .0003∗ .0013 .0269 .0000∗ .0005∗ .0276 .0006
R1{9} .9437 .0004 .0008 .0003∗ .0011 .0009 .0002∗ .0004 .0006 .0003∗

R1{10} .8588 .0008 .0359 .0000∗ .0015 .0361 .0001∗ .0001∗ .0358 .0001
R1{8,9} .9090 .0010∗ .0160 .0021 .0014∗ .0157 .0038 .0006 .0164 .0004∗

R1{8,10} .8253 .0010 .0179 .0001∗ .0006 .0182 .0002∗ .0014 .0176 .0001∗

R1{9,10} .8497 .0010 .0450 .0004∗ .0010∗ .0452 .0012 .0010 .0449 .0004∗

R1{8,9,10} .8185 .0008 .0247 .0005∗ .0014 .0250 .0001∗ .0002∗ .0244 .0009
∗ the smallest absolute error among the corresponding items.

Table 5. ANOVA table of information from the target set in Figure 1 for
M = 100 ∼ 10000

State Source SS DF MS F P

R1{8}

Between 0.04852 2 0.0243 781.7147 0.0000∗

Within 0.00922 297 0.0000
Total 0.05773 299

R1{9}

Between 0.00005 2 0.0000 1.8326 0.1618
Within 0.00438 297 0.0000
Total 0.00443 299

R1{10}

Between 0.23803 2 0.1190 1941.3601 0.0000∗

Within 0.01821 297 0.0001
Total 0.25624 299

R1{8,9}

Between 0.01404 2 0.0070 164.3917 0.0000∗

Within 0.01269 297 0.0000
Total 0.02673 299

R1{8,10}

Between 0.02018 2 0.0101 225.8289 0.0000∗

Within 0.01327 297 0.0000
Total 0.03344 299

R1{9,10}

Between 0.13114 2 0.0656 1335.1661 0.0000∗

Within 0.01459 297 0.0000
Total 0.14573 299

R1{8,9,10}

Between 0.03868 2 0.0193 475.4754 0.0000∗

Within 0.01208 297 0.0000
Total 0.05076 299

∗ the state with a statistically significant difference among the corresponding

items.

Each method is run with M = 100, 200, . . . , 10000. There are 100 test problems in
each problem group. The exact reliabilities and the corresponding estimators obtained
from pCMC, qCMC and CA-HMC for all the different combinations of sink nodes are
displayed in Table 4 and Figures 4 to 10. In order to see the trend of the convergence of
these methods, we not only list the average absolute errors between the exact reliability
and the estimators, but also show the average absolute errors for M = 100, 200 to 5000,
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Figure 4. R1{8} and its estimators

Figure 5. R1{9} and its estimators

and M = 5100, 5200 to 10000 in Table 4. In addition, we provide a statistical study of
the performance of these combinations of algorithms with more observations, and add the
practical applications of the proposed algorithm. Also, understanding the effects of the
various precedence relationship structures may benefit the contribution and improvement
on the performance of proposed algorithm. Table 5 shows the ANOVA results among
pCMC, qCMC, and CA-HMC for all the combinations of sink nodes. The formula for the
absolute error is defined as x0 − x, where x0 is the measured value, and x is the actual
value.

As can be seen from Figures 4 to 10, the estimators obtained from the qCMC clearly
converge more rapidly than the estimators obtained from the pCMC and CA-HMC. How-
ever, there is a bias introduced in the estimate by using a qCMC chain. Hence, the
simulation absolute error with qCMC is much higher than the absolute errors from us-
ing pCMC and CA-HMC, as shown in Table 4. In addition, qCMC seems to be either
underestimating or overestimating the reliability in Figures 4 to 10. It is interesting and
surprising to note that the estimators from qCMC for R1{8} and R1{8,9}, for R1{10} and
R1{9,10}, and for R1{8,10} and R1{8,9,10} are all equal (see Figures 4 to 10).

From Table 4, it seems that CA-HMC clearly outperforms the classical PR for a number
of Monte Carlo trials (M) up to 5000. When the number of trials (M) is increased in the
range from 5100 to 10000, the two methods seem to be equal. This is because a possible
bias effect is responsible for the lower performance of the method at higher number of
Monte Carlo histories. In some cases, the absolute error with pCMC is lower than CA-
HMC, but this occurs by chance in less frequent simulated cases, as shown in Table 4.
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Figure 6. R1{10} and its estimators

Figure 7. R1{8,9} and its estimators

Figure 8. R1{8,10} and its estimators

From Table 5, the one-to-all AMIN reliability almost has a significant difference among
pCMC, qCMC and CA-HMC in 100 test problems (except for R1{9}). From our experi-
ments, we showed that the proposed CA-HMC, which combines the CA, PRS and QRS,
for evaulating the one-to-all AMIN reliability is slightly superior to pCMC, which uses
the PRS and qCMC, which use the QRS.

8. Conclusions. AMINs have been applied extensively in many real-life situations and
the analysis of AMINs has also become a new subject in system reliability. This work in-
troduced a novel MCS, the CA-HMC, which integrates CA, pCMC and qCMC to provide
a very useful means of evaluating the required one-to-all AMIN reliability. The proposed
CA-HMC focuses on improving efficiency, which is a significant contribution not empha-
sized in literature related to network reliability. It improves the performance of the MCS
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Figure 9. R1{9,10} and its estimators

Figure 10. R1{8,9,10} and its estimators

in terms of solution quality when estimating the one-to-all AMIN reliability. Furthermore,
the experimental results show that the proposed CA-HMC yields very good results when
compared with the traditional Monte Carlo method by using pseudo-random numbers or
quasi-random numbers.

Simulation results demonstrate that the proposed HMC is efficient and effective for
simulating one-to-all AMIN reliability. However, the performance of the proposed CA-
HMC is only slightly superior to pCMC. Therefore, future work will include applying
variance reduction methods, such as stratified sampling and important sampling, to the
proposed CA-HMC, and extending the proposed CA-HMC to general MINs.
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