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Abstract. This paper addresses non-identical parallel machine scheduling problem with
fuzzy processing times (FPMSP). A robust genetic algorithm (GA) approach embedded
in a simulation model to minimize maximum completion time (makespan) is proposed.
The results are compared with those obtained by using LPT rule, known as the most
appropriate dispatching rule for such problems. This application illustrates the need for
efficient and effective heuristics to solve FPMSPs. The proposed GA approach yields
good results and reaches them fast and several times in one run. Moreover, due to its
advantage of being a search algorithm, it can explore alternative schedules providing the
same results. Thanks to the simulation model, several robustness tests are conducted
using different random number sets and it has been shown that the proposed approach is
robust.
Keywords: Non-identical parallel machine scheduling, Fuzzy processing times, Genetic
algorithm, Robustness, Simulation

1. Introduction. Production scheduling consists of planning jobs that need to be per-
formed in an orderly sequence of operations. It is a difficult problem depending on the
number of calculations required to obtain a schedule that optimizes the chosen criterion.
In modern manufacturing, depending on machine layout and job flow, several kinds of
shop exist. As many practical job shop and open shop scheduling problems can be sim-
plified as parallel machine scheduling problem under certain conditions [1-4], the parallel
machine scheduling problem (PMSP) receives a great deal of attention in the academic
and engineering field [3]. Moreover, it is a generalization of the single machine problem
and a particular case of problems arising in flexible manufacturing systems [5,6].

In fact, various factors involved in the scheduling problems are often imprecise or uncer-
tain in nature when formulating scheduling problems of the real-world. This is especially
true when human-made factors are incorporated into the problems. Therefore, in the
real-world situations, parameters are often encountered with uncertainties. Accordingly,
production scheduling problems have been mainly branched into two categories: deter-
ministic scheduling and uncertain scheduling [7]. There are basically two approaches to
deal with uncertainties [8], including the stochastic-probabilistic theory and possibility
theory or fuzzy set theory [9,10].

In this study, the fuzzy set theory is used to deal with the uncertainties in production
scheduling. It provides an alternative and convenient framework for modeling real-world
systems mathematically and offers several advantages in the use of heuristic approaches:
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• Stochastic-probabilistic theory needs a great deal of knowledge about the statistical
distribution of the uncertain parameters. Though, fuzzy theory provides an efficient
way to model imprecision even when no historical information is available [11].

• Using stochastic-probabilistic theory, extensive computation is involved and it is
necessary to have complete knowledge on the statistical distribution of the uncertain
time parameters [12].

• Using fuzzy set theory decreases the scheduling problem computational complexity
with respect to the same problem formulated by stochastic-probabilistic theory [13].

• Fuzzy theory allows using fuzzy rules in heuristic algorithms.
• Instead of optimizing average behaviors like in stochastic-probabilistic theory, fuzzy
theory rather aims at finding solutions where all constraints are satisfied to some
extent, with a sufficient level of confidence.

Fuzzy scheduling has two classes of application: scheduling under flexible constraints
and scheduling under incomplete or imprecise information [8]. This study fits into the
second class. Considering that, in many real-world applications, the processing time of
each job may vary dynamically, processing times are defined as fuzzy variables. Therefore,
the FPMSP studied in this paper is to schedule n independent jobs with fuzzy processing
times on m non-identical parallel machines in order to minimize makespan. In scheduling
problems, makespan (Cmax) is equivalent to the completion time of the last job leaving
the system. The small Cmax usually implies a high utilization. Therefore, reducing the
Cmax should also lead to a higher throughput rate [14,15].
Most of the scheduling problems are characterized as combinatorial optimization prob-

lems. They vary widely according to specific production tasks but most are NP-hard
problems [16-19]. Obviously, they become more difficult to solve when machines are non-
identical and some variables are fuzzy. It is quite difficult to achieve a satisfactory result
efficiently and effectively with traditional optimization methods. Mathematical optimiza-
tion techniques can give an optimal solution for a reasonably sized problem; however, in
the case of a large scale problem, their application is limited. Dispatching rules (LPT,
SPT, EDD, etc.) are suitable only for small scale problems and no single dispatching
rule guarantees good result in various problems [20]. Research efforts have, therefore,
concentrated on heuristic approaches.
Many heuristics have been proposed such as Simulated Annealing, Tabu Search, Branch

and Bound, Neural Network and Genetic Algorithm. Among these various approaches to
different scheduling problems, there has been an increasing interest in applying GAs in
view of its characteristic such as high adaptability, near optimization and easy realiza-
tion. GAs have demonstrated considerable success in providing good solutions to fuzzy
scheduling problems. They have been well documented in the literature, such as in [21],
and have been applied to a wide variety of optimization problems. In particular, Liu
and Iwamura [22,23], Liu [24,25], Li et al. [26], Buckley and Hayashi [27] and Buckley
and Feuring [28] designed a spectrum of GAs to solve fuzzy programming models. For
detailed expositions, the readers may consult Liu [24,29] in which numerous GAs have
been suggested for solving uncertain programming models [7].
GA has been applied with the same success in solving PMSPs in the literature and there

are many applications in this field. However, even though it is a common problem in the
industry, only a small number of them deal with non-identical parallel machines [30-32].
Moreover, when some variables are fuzzy, the number of studies is even rare. Among
the few authors dealing with fuzzy parallel machine scheduling problem (FPMSPs), Peng
and Liu [7] consider a multi-objective FPMSP and formulate it as three-objective mod-
els, which minimize the fuzzy maximum tardiness, the fuzzy maximum completion time
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and the fuzzy maximum idleness. They propose three models to formulate fuzzy schedul-
ing problem: fuzzy goal programming, fuzzy chance-constrained programming and fuzzy
dependent-chance programming. They propose a hybrid intelligent algorithm designed
to solve the proposed scheduling models. Petrovic and Duenas [33] present a new fuzzy
logic based decision support system for parallel machine scheduling/rescheduling in the
presence of uncertain disruptions. They use fuzzy rules to determine when to resched-
ule and which rescheduling method to use. Mok et al. [8] try to optimize fault-tolerant
fabric-cutting schedules using GA by minimizing makespan. They propose a fuzzifica-
tion scheme to incorporate uncertainties, in terms of both job-specific and human related
factors, into the fabric-cutting scheduling problem. One of the rare studies dealing with
scheduling non-identical parallel machines with fuzzy processing times using GA belongs
to Raja et al. [34]. Their objective is to minimize the sum of the absolute deviations of
job completion times. They use fuzzy logic to combine earliness and tardiness penalties.
Although all these studies deal with FPMSPs and seem similar, they are quite different
from each other and from the study presented here. Two scheduling problems arising
from the same production layout can be totally different because of their objective func-
tion or because of an additional constraint. Consequently, different methods have to be
used for each solution. Likewise, the problem studied here, scheduling non-identical par-
allel machines with fuzzy processing times to minimize the maximum completion time
(makespan), differs from the studies presented above in terms of its objective function,
constraints and the use of fuzzy theory. Therefore, methods proposed in these studies
are not adequate for its solution. However, this problem is frequently encountered in the
industry and is of interest from both practical and theoretical points of view. The aim of
this study is filling this gap by proposing a GA for minimizing the maximum completion
time of non-identical parallel machines where processing times are fuzzy.

In order to adapt GA to the studied problem, he proposes new GA operators and uses
two of the most appropriate fuzzy ranking and defuzzification methods of the field. The
GA is embedded in a simulation model for solving the problem. The use of simulation
in implementing GA is preferred because of the evolutionary structure of the algorithm
and the ability of simulation to perform tests using different random number sets. By
this means, the robustness of the approach proposed can be easily tested in a series of
numerical experiments.

A numerical example of FPMSP is solved first by using the proposed GA approach and
then by LPT rule, known as the most appropriate dispatching rule for such problems.
Results show that the proposed approach surpasses LPT rule and highlights the need of
using efficient and effective heuristics for FPMSPs.

The paper is structured as follows. First, a quick review of fuzzy set operations, ranking
and defuzzification methods is made in Section 2. The formulation of non-identical parallel
machine scheduling problem with fuzzy processing times in order to minimize makespan
is given in Section 3. The general structure of GA is adapted to the studied problem in
Section 4. GA is embedded in a simulation model because of its computational advantage
in running tests. Numerical examples are solved in Section 5. In the first paragraph (5.1),
the proposed GA is tested with crisp values; in the second paragraph (5.2), processing
times are considered as fuzzy numbers; in the third paragraph (5.3), these results are
compared to those obtained with LPT rule. In Section 6, numerical results are discussed
and the robustness of the approach is tested. The paper ends in Section 7 with a brief
summary of the main findings.

2. Review of Related Fuzzy Theory. In this section, some concepts of fuzzy the-
ory necessary for formulating FPMSP are reviewed. Given a set of tasks, each with its
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processing time membership function, the GA can get a scheduling result with a final
completion-time membership function.

2.1. Fuzzy numbers and fuzzy set operations. Fuzzy ranking and defuzzification
methods used in this study are suitable for all types of fuzzy numbers. However, only
triangular fuzzy numbers (TFN) are used as example of application because of their
computational advantage. Besides, they are largely used for subjective description as
they are based on a knowledge of the minimum, maximum and an “inspired guess” as to
the modal value. But, note that the proposed fuzzy ranking and defuzzification methods
can be performed similarly for all fuzzy numbers with different shapes. Therefore, the
proposed GA is generic and the results of this study will be valid for all types of fuzzy
numbers.
A triangular fuzzy number (TFN) can be denoted as:

A = [µa1/xa1, µa2/xa2, µa3/xa3] = [0/p, 1/q, 0/r]

For a TFN, we have always µa1 = µa3 = 0 and µa2 = 1. Therefore, a TFN can be
denoted as:

A = (p, q, r)

Let A1 = (p1, q1, r1) and A2 = (p2, q2, r2) be two TFN, their sum can be denoted as:

A1 + A2 = (p1 + p2, q1 + q2, r1 + r2)

The multiplication of a TFN and a crisp value k, k ∈ ℜ+
0 , is defined as:

k × A ≡ (k × p, k × q, k × r)

A TFN can also be denoted by its membership function:

µA(x) =


x− p

q − p
if p ≤ x ≤ q,

x− r

q − r
if q ≤ x ≤ r,

0 elsewhere

Therefore, a TFN can be represented graphically as below:

Figure 1. Triangular fuzzy number (TFN)
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2.2. Ranking method. Ranking two numbers is quite important in a scheduling al-
gorithm. Ranking is quite easily performed since the operands are all crisp numbers.
However, in this paper, since fuzzy processing times are considered, fuzzy ranking meth-
ods have to be used. In literature, several fuzzy comparison methods have been proposed,
such as the Hamming distance method, the probability distribution method, pseudoorder
fuzzy preference model [35], new fuzzy-weighted average [36], signed distance method [37]
and so on. Among these methods, the “signed distance” method is suitable for fuzzy
processing time comparison because it is simple in computation and flexible to convert
from the interval data [38].

Signed distance of a TFN, A = (p, q, r), from y-axis is denoted by:

d(A, 0) = (p+ 2q + r)/4

TFNs can be ranked by signed distance method as follows [35]:

B ≺ A if d(B, 0) < d(A, 0),
B = A if d(B, 0) = d(A, 0),
B ≻ A if d(B, 0) > d(A, 0).

The signed distance of a TFN can be graphically interpreted as the barycenter of the
two parts of its membership function (Figure 2).

Figure 2. Calculation of signed distance for a triangular fuzzy number

The barycenter of the segments [(p, 0); (q, 1)] and [(q, 1); (r, 0)] will be situated at (p+
2q + r)/4 on y-axis.

2.3. Defuzzification method. Defuzzification is a reverse process of fuzzification and
it converts a fuzzy number into a crisp value. The “centroid” defuzzification method is
one of the most prevalent and physically appealing defuzzification method. It returns the
center of area under the curve. Let A be a fuzzy number and µA its membership function.
Defuzzification of A by the “centroid” method is denoted by δ(A) and returns the crisp
value of x∗:

x∗ = δ (A) =

∫
µA (x) .xdx∫
µA (x) dx

For a TFN, A = (p, q, r), x∗ = δ(A) = (p + q + r)/3 and it represents the cen-
troid/barycenter of the triangle ((p, 0); (q, 1); (r, 0)) presented in Figure 3.
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Figure 3. Centroid defuzzification method for a triangular fuzzy number

3. Problem Formulation. The FPMSP considered in this study can be described as
follows: n jobs need to be processed on m non-identical parallel machines and it is desired
to minimize the maximum completion time (makespan). Notations, assumptions and
constraints used for FPMSP in this study are described as follows:
Notations
n: number of jobs.
m: number of machines.
i = 1, . . ., n: the jobs to be scheduled.
j = 1, . . .,m: the machines.
Vi: speeds of machines.
Pi,j: processing time of job j on machine i.
x(i, j): boolean variable which determines whether job j is processed by machine i.
X(n×m): matrix composed of x(i, j) and representing the scheduling of n jobs on m

machines.
Ci: fuzzy completion time of machine i.

Assumptions

• Machines have different speeds (Vi).
• All jobs are available simultaneously at time zero.
• Each job has only one operation and can be processed on any machine.
• The processing times are assumed to be fuzzy variables (Pi,j).
• The execution-time membership function of each task is known and finite.

Constraints

• Each machine can process only one job at a time:

x(i, j) ∈ {0, 1}
• Each job is to be processed without interruption:

m∑
i=1

x (i, j) = 1, j = 1, . . . , n

• All jobs have to be processed to complete the production:
n∑

j=1

m∑
i=1

x(i, j) = n

Thus, we have following equations:
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• Processing time of a job j on different machines can be expressed as:

Pk,j × Vk = Pl,j × Vl, k, l = 1, . . . ,m (1)

• Ci, fuzzy completion time of machine i:

Ci =
n∑

j=1

x(i, j)× Pi,j, i = 1, . . . ,m (2)

• The maximum completion time (makespan) is equal to:

Cmax =
m

max
i=1

{Ci} =
m

max
i=1

{
n∑

j=1

x(i, j)× Pi,j

}
(3)

• The objective function can be formulated as follows:

minCmax =
m

max
i=1

{
n∑

j=1

x(i, j)× Pi,j

}
(4)

4. Genetic Optimization of FPSMP. The GA, inspired by the process of Darwinian
evolution, has been recognized as a general search strategy and as an optimization method
which is often useful for attacking combinatorial problems. It is introduced in the 1970’s
by Holland [39] and Davis and Coombs [40] were first to propose GA for solving scheduling
problems. Since then, a significant number of applications have been appearing.

In contrast to other local search methods, such as Simulated Annealing or Tabu Search,
which are based on handling one feasible solution, GA utilizes a population of solutions
in its search, giving it more resistance to premature convergence on local minima [41].
Another advantage of GA is having a good performance in a large and complex search
space. The ability of GA to explore and to exploit simultaneously the search space, makes
it more efficient than the other methods. Nevertheless, GA has also some disadvantages;
its performance, in terms of the optimality, is highly dependent on the realization of
each of the above steps, and on the values of the GA parameters, that are number of
solutions in the initial population (i.e., population size), number of generations (i.e.,
termination criterion), and probability values for genetic operators (i.e., crossover and
mutation probabilities) [21,42].

A generic GA starts by creating an initial population of chromosomes. Each chromo-
some encodes a solution of the problem, and its fitness value is related to the value of the
objective function for that solution. During each iteration step (or called “generation”),
genetic operations, that is, reproduction, natural selection, crossover and mutation are ap-
plied in order to search potential better solutions. Crossover combines two chromosomes
to generate next-generation chromosomes preserving their characteristics. Mutation re-
organizes the structure of genes in a chromosome randomly so that a new combination
of genes may appear in the next generation. It serves the search by jumping out of local
optimal solutions. Reproduction is to copy a chromosome to the next generation directly
so that chromosomes from various generations could cooperate in the evolution and the
“quality” of the population may be improved after each generation [43]. In following para-
graphs, the general structure of GA is adapted to the fuzzy parallel machine scheduling
problem in order to minimize maximum completion time (makespan). A specific coding
method is used to represent schedules on parallel machines. Fuzzy set operations, fuzzy
ranking and defuzzification methods presented above are employed to schedule jobs with
fuzzy processing times. Some genetic operators are to be redesigned for the considered
problem.
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4.1. Coding. The raw i of the matrix X consists of jobs to be processed on machine i.
Raws are called “genes” (g1, . . . , gi, . . . , gm) and they represent jobs to be processed on
each machine; jobs to be processed on machine iare given by elements non-zero of gene
i(x(i, j) = 1). The completion time of machine i, (Ci), is equal to the sum of processing
times of jobs to be processed on that machine; it is called as the “value of gene i” and it
is defined by the following function:

f(gi) =
n∑

j=1

x(i, j)× Pi,j, i = 1, . . . ,m (5)

4.2. Generation of initial population. As the matrix X represents the scheduling
of n jobs on m machines, an initial solution can be obtained randomly by having only
one non-zero element, x(i, j) ∈ {0, 1}, in each column. Several initial solutions can be
obtained by repeating the same operation and each initial solution is called “chromosome”.
Chromosomes can be identified by their order of creation, k ∈ N . Initial population is the
set consisting of N chromosomes. The number of chromosomes, i.e., population size, is one
of the important parameters of GA. Members of the initial population (chromosomes) are
the parents of the next generations and the efficiency of the algorithm is highly dependent
on their “quality”.

4.3. Calculation of fitness values. Fitness is the performance evaluation of chromo-
somes [44]. After the generation of new population, fitness value of each chromosome k
is calculated (Fk). The higher the fitness value, the better the performance of the chro-
mosome (i.e., parent). Hence, parents with higher fitness values have more chances to
survive. In the proposed formulation, each chromosome represents a schedule of paral-
lel machines. Therefore, the performance of a chromosome has to be measured by the
maximum completion time that it provides.
In FPSMP, completion times are fuzzy numbers and maximum completion time has

to be determined using “signed distance” ranking method presented in 2.2. Let Ci, be
the completion time of machine i and denoted by a TFN, Ci = (pi, qi, ri). The maximum
completion time is equal to:

Cmax =
m

max
i=1

{Ci} = (pt, qt, rt), t = 1, . . . ,m

with

(
pt + 2× qt + rt

4

)
=

m
max
i=1

{
pi + 2× qi + ri

4

}
The completion time provided by a chromosome k is denoted by Cmax(k). As the

objective function of the considered problem is the minimization of the makespan, the
fitness value of chromosome k can be obtained using the following function [42]:

Fk = α× e−β×δ(Cmax (k)), (6)

where α and β are positive real numbers and δ(Cmax(k)) is the defuzzified makespan of
chromosome k. Let Cmax(k) = (pt(k), qt(k), rk(k)) be the maximum completion time
given by chromosome k.

δ (Cmax (k)) = (pt (k) + qt (k) + rt (k)) /3

4.4. Reproduction. Reproduction is the process in which parents copy themselves ac-
cording to the probabilities that are proportional to their fitness values. As a result,
parents with higher fitness values will have higher probabilities of producing their off-
spring in the next generation [44]. Here, such parents are selected using the roulette wheel
method. The roulette wheel selection method ranks the chromosomes based on their fit-
ness function values, and then assigns them a probability distribution in favor of good
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chromosomes, so as to obtain a better chance of producing good next generations [45]. It
has following steps [42]:

• Calculate selection probability of chromosomes k, P (k) =
Fk

N∑
i=1

F (i)

k = 1, . . . , N.

• Generate cut points, S(k),

S(0) = 0

S(k) = P (1)+, . . . ,+P (k), k = 1, . . ., N.

• Generate N random number uniformly distributed between 0 and 1, ζs for s =
1, . . . , N.

• For each ζs, equation S(k − 1) < ζs < S(k) gives chromosomes to be selected.

4.5. Crossover. According to the coding method used in this paper, crossover operator
deals with genes, and not with chromosomes like most of the applications in literature.
Each gene i consists of jobs to be processed on machine i, (x(i, j) ̸= 0, j = 1, . . ., n);
each chromosome contains m genes and each one consists in one feasible schedule. The
new proposed crossover operator combines two genes of the same chromosome in a proper
order to obtain a new chromosome giving a better feasible solution. The first gene to
combine, gu, indicates the machine with maximum completion time:

f(gu) =
m

max
i=1

{f (gi)} = Cmax (7)

The job with the shortest processing time of gene gu is denoted by j′ and given by the
equation below:

Pu,j′ =
k

min
j=1

{Pu,j} = (pj′ , qj′ , rj′), k < m and xuj ̸= 0 (8)

with

(
pj′ + 2× qj′ + rj′

4

)
=

k

min
j=1

{
pj + 2× qj + rj

4

}
Crossover operation is carried out by moving job j′ to another machine. The new

machine is represented by gene gz and given by the following equation:

(f (gu) -f (gz))×
Vz

Vu

=
m

max
i=1

{
(f (gu)− f (gi))×

Vi

Vu

}
(9)

The processing time of job j′ on machine z, Pz,j′ , can be calculated using Equation (1):

Pz,j′ = Pu,j′ ×
Vu

Vz

4.6. Mutation. Crossover operator is used to combine existing genes in order to obtain
new chromosomes, whereas mutation operator creates new chromosomes by causing small
perturbations in genes. Therefore, it helps to maintain the diversity of the population and
to extend the solution space. Because of the coding method used in this paper, mutation
operator can be applied easily by alternating some elements x(i, j) of matrix X. Every
column of matrix X has only one element valued “1” (one job is processed only on one
machine). Mutation can be carried out by moving randomly this element from one raw to
another (i.e., moving a job from one machine to another). This operation prevents from
getting stuck on local suboptimal solutions and it is very helpful to maintain the richness
of the population in dealing with large scale problems.
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4.7. Optimality criterion. Optimality test is performed as the last step of the algo-
rithm. The optimality criterion for a chromosome k is given by:

Pu,j′ >

(
f (gu )− f (gi )×

Vi

Vu

)
, i = 1, . . . ,m. (10)

Two sides of the inequality can be calculated easily using Equations (7) and (8). They
are both TFN and can be compared using the “signed distance” ranking method. If
the inequality x is satisfied for a chromosome, it means that this chromosome cannot
provide better solutions. If it is satisfied for all chromosomes, none of the completion
times (Cmax(k)) can be improved; thus, algorithm ends and the solution is given by the
equation:

minCmax =
N

min
k=1

{Cmax (k)}

The minimum makespan is a TFN and can be denoted as: minCmax = (pk, qk, rk). A
final crisp solution can be obtained by defuzzification:

x∗ = δ(minCmax) = (pk + qk + rk)/3

5. Numerical Examples and Simulation Results. GA is embedded in a simulation
model and performed using Simul8TM simulation software (Figure 4). Each “work center”
corresponds to one step of the algorithm. Simulation entity passes through “work centers”
to complete the algorithm.
A new population is created at the beginning of each flow of the entity and a new

solution is obtained at the end of the flow. Each flow, i.e., iteration, begins with a
randomly generated population of 10 chromosomes, half of the chromosomes are exposed
to “natural selection” and the rest of them undergo a crossover operation. Crossover
operation is repeated until the optimality criterion is satisfied. Between two crossover
operations, chromosomes are mutated in order to ensure “genetic diversity”. It helps to
extend the solution space by causing small perturbations in genes. The lifetime of each
generation is modeled by an entity passing through the system. The initial population
survives 100 generations, it means 100 iterations are performed to complete one simulation
run. Each generation provides one solution to the problem, at the end of simulation, the
solution with the minimum value is kept as the result of the GA. The use of simulation
allows to perform several iterations by using different initial populations. Accordingly,
several tests can be easily performed using different random number sets.

5.1. Testing with crisp values. The proposed approach is first tested with crisp pro-
cessing times. The case study can be described as follows: 9 jobs need to be processed on
4 non-identical parallel machines and it is desired to minimize the maximum completion
time (makespan).
The following assumptions are used:

• All jobs are available simultaneously at time zero.
• Processing times are known and finite.
• Each job has only one operation and can be processed on any machine.
• Machines have different speeds.

The constraints which must be respected are:

• Each machine can process only one job at a time.
• Each job is to be processed without interruption.
• All jobs have to be processed to complete the production.
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Figure 4. Application of GA using simulation

The speed of the first machine is considered as V1 = V . Processing times of each job
processed at speed V is noted by Pj (Table 1). Machines have different speeds but, as the
speed of each machine can be expressed in term of V , it is no need to present processing
times of jobs on each machine in separate tables. In this numerical example, the speeds
of machines are considered as follows: V1 = V , V2 = 2V , V3 = 2V , V4 = 3V .

The proposed GA deals with fuzzy numbers. In order to execute the same algorithm
with crisp processing times, they have to be expressed as fuzzy numbers (Table 1). For
this purpose, it is sufficient to consider TFNs as:

A = (p, q, r) where p = q = r

Table 1. Crisp processing times

Processing times (min.) J1 J2 J3 J4 J5 J6 J7 J8 J9

Pj

P 13 19 24 22 28 17 19 24 27
Q 13 19 24 22 28 17 19 24 27
r 13 19 24 22 28 17 19 24 27

The problem is solved by using the proposed GA approach and the results are given in
Table 2. An ideal solution can be defined by supposing that jobs can be interrupted at
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anytime and it can be calculated as:

Cmaxideal =

n∑
j=1

δ(Pj)

m∑
i=1

Vi

The ideal solution is found 24.13 minutes. However, as one of the constraint is violated,
this solution is not feasible. It only helps to decide on the optimal solution and to compare
solutions to the ideal one. According to the ideal solution, the optimal solution must be
obviously greater than 24.13 minutes. Cmax = 24.50 minutes can be accepted as optimal
solution. It is obtained 11 times during the simulation (Table 2). However, some of them
are provided by the same schedule. In fact, there are 6 schedules giving the same optimal
solution. They are presented in Table 3.
If the same problem is formulated as a PSMP and solved by conventional GA, the

same results are obtained, which confirms the validity of the proposed approach. Another
finding of this application is the demonstration of PMSP being a sub-set of FPMSP.

5.2. Solving FPSMP. The FPMSP defined in Table 4 is solved by using the proposed
GA approach, which is the main purpose of the study. The ideal solution is 25.46 minutes.
Thus, it can be concluded that the minimum solution found by the approach (Table 5),
Cmax = 25.83 minutes, is optimal. It is obtained 7 times in one simulation run and they
are provided by 3 different schedules.
Optimal schedules are given in Table 6. As completion times are TFNs, they are

compared by using the “signed distance” method presented in Subsection 2.2. It is found
that Cmax = C1 = (17.50, 24.50, 35.50) and using the “centroid” defuzzification method
presented in Subsection 2.3, the optimal result is obtained as δ(Cmax) = 25.83 minutes.
It should be noted that the machines are loaded differently according to schedules given

in Table 6, which illustrates the ability of the proposed GA approach to explore alternative
optimal schedules.

5.3. Comparison with LPT. The same problem defined in Subsection 5.2 is solved by
using LPT rule, known as the most appropriate dispatching rule for PMSPs. Application
of LPT rule to FPMSPs is described in [46]. We adapted their method for non-identical
parallel machines and obtained following results given below in Table 7.
Application of the “signed distance” ranking method yields Cmax = C1 = (20.00, 29.50,

41.00) and application of “centroid” defuzzification method gives δ(Cmax) = 30.17 min-
utes. Results reveal that the proposed GA approach surpasses LPT rule and illustrates
the need for efficient and effective algorithms for FPMSPs.

6. Result Analysis.

6.1. Results of GA. Results obtained by the solution of the FPMSP (Subsection 5.2)
show that the proposed GA approach yields good results and reaches them fast. Ex-
amination of Table 5 reveals that the optimal solution is reached quite fast only at 9th
iteration. In addition, the optimal solution is reached several times in one run. The same
Table 5 shows that optimal solution is reached 7 times in 100 iterations, which proves
the efficiency of the algorithm. The same success is repeated during the robustness tests
performed with 10 different random number sets (Subsection 6.2).
The effectiveness of the algorithm can be evaluated by comparing the result of the

GA approach (25.83 minutes, Table 5) to the ideal but infeasible solution of the problem
(25.46 minutes, Subsection 5.2), or to the results provided by the LPT rule (30.17 minutes,
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Table 2. Results with crisp processing times

Iteration
p

Cmax r δ(Cmax)
Iteration

p
Cmax r δ(Cmax)No. q No. q

1 25,00 25,00 25,00 25,00 51 27,00 27,00 27,00 27,00
2 24,67 24,67 24,67 24,67 52 24,67 24,67 24,67 24,67
3 26,00 26,00 26,00 26,00 53 24,50 24,50 24,50 24,50
4 27,00 27,00 27,00 27,00 54 25,50 25,50 25,50 25,50
5 25,50 25,50 25,50 25,50 55 25,50 25,50 25,50 25,50
6 25,00 25,00 25,00 25,00 56 28,00 28,00 28,00 28,00
7 24,50 24,50 24,50 24,50 57 25,00 25,00 25,00 25,00
8 25,50 25,50 25,50 25,50 58 25,00 25,00 25,00 25,00
9 27,00 27,00 27,00 27,00 59 25,00 25,00 25,00 25,00
10 26,00 26,00 26,00 26,00 60 25,33 25,33 25,33 25,33
11 27,00 27,00 27,00 27,00 61 25,00 25,00 25,00 25,00
12 26,00 26,00 26,00 26,00 62 24,50 24,50 24,50 24,50
13 24,50 24,50 24,50 24,50 63 25,50 25,50 25,50 25,50
14 25,50 25,50 25,50 25,50 64 25,50 25,50 25,50 25,50
15 25,67 25,67 25,67 25,67 65 25,50 25,50 25,50 25,50
16 27,00 27,00 27,00 27,00 66 25,50 25,50 25,50 25,50
17 26,00 26,00 26,00 26,00 67 27,00 27,00 27,00 27,00
18 25,33 25,33 25,33 25,33 68 24,50 24,50 24,50 24,50
19 24,50 24,50 24,50 24,50 69 26,00 26,00 26,00 26,00
20 25,50 25,50 25,50 25,50 70 26,00 26,00 26,00 26,00
21 26,00 26,00 26,00 26,00 71 27,00 27,00 27,00 27,00
22 27,00 27,00 27,00 27,00 72 25,50 25,50 25,50 25,50
23 27,00 27,00 27,00 27,00 73 27,00 27,00 27,00 27,00
24 27,00 27,00 27,00 27,00 74 27,00 27,00 27,00 27,00
25 24,50 24,50 24,50 24,50 75 25,67 25,67 25,67 25,67
26 25,33 25,33 25,33 25,33 76 27,00 27,00 27,00 27,00
27 26,00 26,00 26,00 26,00 77 25,33 25,33 25,33 25,33
28 25,50 25,50 25,50 25,50 78 27,50 27,50 27,50 27,50
29 25,50 25,50 25,50 25,50 79 27,00 27,00 27,00 27,00
30 25,50 25,50 25,50 25,50 80 26,00 26,00 26,00 26,00
31 25,67 25,67 25,67 25,67 81 26,00 26,00 26,00 26,00
32 25,00 25,00 25,00 25,00 82 27,50 27,50 27,50 27,50
33 27,00 27,00 27,00 27,00 83 27,00 27,00 27,00 27,00
34 25,00 25,00 25,00 25,00 84 24,50 24,50 24,50 24,50
35 25,67 25,67 25,67 25,67 85 27,00 27,00 27,00 27,00
36 26,00 26,00 26,00 26,00 86 26,00 26,00 26,00 26,00
37 25,50 25,50 25,50 25,50 87 26,00 26,00 26,00 26,00
38 27,00 27,00 27,00 27,00 88 25,50 25,50 25,50 25,50
39 26,00 26,00 26,00 26,00 89 25,50 25,50 25,50 25,50
40 25,50 25,50 25,50 25,50 90 26,33 26,33 26,33 26,33
41 24,50 24,50 24,50 24,50 91 27,00 27,00 27,00 27,00
42 25,50 25,50 25,50 25,50 92 26,00 26,00 26,00 26,00
43 26,00 26,00 26,00 26,00 93 27,50 27,50 27,50 27,50
44 27,00 27,00 27,00 27,00 94 25,50 25,50 25,50 25,50
45 24,50 24,50 24,50 24,50 95 25,00 25,00 25,00 25,00
46 25,50 25,50 25,50 25,50 96 25,33 25,33 25,33 25,33
47 25,50 25,50 25,50 25,50 97 27,50 27,50 27,50 27,50
48 25,33 25,33 25,33 25,33 98 24,50 24,50 24,50 24,50
49 25,00 25,00 25,00 25,00 99 27,00 27,00 27,00 27,00
50 26,00 26,00 26,00 26,00 100 26,00 26,00 26,00 26,00
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Table 3. Optimal schedules with crisp processing times

Iterations No.7 & No.19
Machines Scheduled jobs Ci

M.1 job 8 24,00
M.2 job 1 job 7 job 6 24,50
M.3 job 9 job 4 24,50
M.4 job 5 job 2 job 3 23,67

Iterations No.41 & No.68
Machines Scheduled jobs Ci

M.1 job 3 24,00
M.2 job 4 job 9 24,50
M.3 job 1 job 6 job 2 24,50
M.4 job 5 job 8 job 7 23,67

Iterations No.13
Machines Scheduled jobs Ci

M.1 job 3 24,00
M.2 job 4 job 9 24,50
M.3 job 5 job 2 23,50
M.4 job 8 job 6 job 1 job 7 24,33

Iterations No.45 & No.62 & No.98
Machines Scheduled jobs Ci

M.1 job 3 24,00
M.2 job 5 job 2 23,50
M.3 job 7 job 1 job 6 24,50
M.4 job 9 job 4 job 8 24,33

Iterations No.25 & No.53
Machines Scheduled jobs Ci

M.1 job 3 24,00
M.2 job 5 job 7 23,50
M.3 job 9 job 4 24,50
M.4 job 6 job 1 job 8 job 2 24,33

Iterations No.84
Machines Scheduled jobs Ci

M.1 job 3 24,00
M.2 job 5 job 7 23,50
M.3 job 2 job 1 job 6 24,50
M.4 job 9 job 4 job 8 24,33

Table 4. Fuzzy processing times

Processing times (min.) J1 J2 J3 J4 J5 J6 J7 J8 J9

Pj

p 10 12 22 16 20 13 12 21 18
q 13 19 24 22 28 17 19 24 27
r 22 24 38 25 30 25 44 30 36

Table 7). The optimal result of the algorithm is only 1.5% far from the ideal solution and
16.8% better then the result of the LPT rule, known as the best dispatching rule for the
minimization of the maximum completion time of parallel machines. Moreover, even the
worst result (28.00 minutes, Table 5) of the algorithm is much more better (7.8%) than
the result obtained by the LPT rule. Another conclusion provided by the examination
of these results is that non-optimal results are not too “bad” either. The average result
of 100 iterations is 26.59 minutes (Table 5), which is only 2.94% far from the optimal
solution. These findings shows the effectiveness of the proposed approach.
Another benefit of this approach, thanks to its advantage of being a search algorithm,

unlike other methods proposed for such scheduling problems as Linear Programming,
Branch and Bound, LPT, the proposed approach can explore alternative schedules pro-
viding the same results. Three alternative schedules, both optimal, are proposed in Table
6.

6.2. Testing the robustness. Roy [47] defines the term “robust” as an adjective refer-
ring to a capacity for withstanding “vague approximations” and/or “zones of ignorance”
in order to prevent undesirable impacts, notably the degradation of the properties to be
maintained. Considering the definition of Roy [47], a “robust heuristic” can be defined
as an algorithm providing consistent results (i.e., being resistant) in multiple runs per-
formed using different random numbers that correspond to the uncertain parameters of
the algorithm and form a “zone of ignorance”.
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Table 5. Results with fuzzy processing times

Iteration
p

Cmax r δ(Cmax)
Iteration

p
Cmax r δ(Cmax)No. q No. q

1 20,00 28,00 30,00 26,00 51 19,50 26,00 36,00 27,17
2 17,67 25,33 35,67 26,22 52 20,00 28,00 30,00 26,00
3 21,00 26,00 34,00 27,00 53 19,00 27,50 33,00 26,50
4 18,33 25,67 33,67 25,89 54 20,00 28,00 30,00 26,00
5 18,00 27,00 36,00 27,00 55 18,00 27,00 36,00 27,00
6 20,00 28,00 30,00 26,00 56 17,50 24,50 35,50 25,83
7 20,00 25,50 37,00 27,50 57 20,00 28,00 30,00 26,00
8 21,00 26,00 34,00 27,00 58 20,00 28,00 30,00 26,00
9 17,50 24,50 35,50 25,83 59 19,00 26,33 36,00 27,11
10 20,00 28,00 30,00 26,00 60 22,00 24,00 38,00 28,00
11 19,00 27,50 33,00 26,50 61 19,00 27,50 33,00 26,50
12 19,00 26,33 36,00 27,11 62 20,00 25,50 37,00 27,50
13 19,00 27,00 35,50 27,17 63 20,00 28,00 30,00 26,00
14 19,00 24,33 36,33 26,56 64 21,00 26,00 34,00 27,00
15 21,00 25,33 32,67 26,33 65 18,00 27,00 36,00 27,00
16 19,00 27,50 33,00 26,50 66 17,33 23,33 39,33 26,67
17 20,00 25,50 37,00 27,50 67 19,00 27,50 33,00 26,50
18 19,50 26,00 36,00 27,17 68 19,00 27,50 33,00 26,50
19 19,00 24,33 36,33 26,56 69 17,50 24,50 35,50 25,83
20 19,00 27,50 33,00 26,50 70 21,00 26,00 34,00 27,00
21 20,00 28,00 30,00 26,00 71 19,50 25,50 33,00 26,00
22 21,00 26,00 34,00 27,00 72 18,00 27,00 36,00 27,00
23 20,00 28,00 30,00 26,00 73 20,00 28,00 30,00 26,00
24 21,00 26,00 34,00 27,00 74 17,50 24,50 35,50 25,83
25 21,00 26,00 34,00 27,00 75 19,33 27,33 33,67 26,78
26 20,00 28,00 30,00 26,00 76 20,00 25,50 37,00 27,50
27 19,00 27,50 33,00 26,50 77 20,00 25,50 37,00 27,50
28 20,00 28,00 30,00 26,00 78 21,00 26,00 34,00 27,00
29 19,50 26,00 36,00 27,17 79 19,00 24,33 36,33 26,56
30 17,50 24,50 35,50 25,83 80 19,00 27,50 33,00 26,50
31 21,00 25,33 32,67 26,33 81 18,67 24,33 40,33 27,78
32 19,50 26,00 36,00 27,17 82 20,00 28,00 30,00 26,00
33 22,00 24,00 38,00 28,00 83 19,00 27,50 33,00 26,50
34 20,00 28,00 30,00 26,00 84 19,00 27,50 33,00 26,50
35 20,00 28,00 30,00 26,00 85 19,00 27,50 33,00 26,50
36 18,00 27,00 36,00 27,00 86 17,50 24,50 35,50 25,83
37 20,00 28,00 30,00 26,00 87 19,00 24,33 36,33 26,56
38 17,67 25,33 35,67 26,22 88 20,00 28,00 30,00 26,00
39 20,00 28,00 30,00 26,00 89 20,00 28,00 30,00 26,00
40 22,00 24,00 38,00 28,00 90 20,00 28,00 30,00 26,00
41 18,00 27,00 36,00 27,00 91 17,67 25,33 35,67 26,22
42 20,00 28,00 30,00 26,00 92 20,33 25,33 36,67 27,44
43 18,00 27,00 36,00 27,00 93 20,00 28,00 30,00 26,00
44 20,00 28,00 30,00 26,00 94 17,67 25,33 35,67 26,22
45 20,00 28,00 30,00 26,00 95 22,00 24,00 38,00 28,00
46 18,00 27,00 36,00 27,00 96 20,00 28,00 30,00 26,00
47 17,50 24,50 35,50 25,83 97 21,00 26,00 34,00 27,00
48 20,00 28,00 30,00 26,00 98 20,00 25,50 37,00 27,50
49 18,00 27,00 36,00 27,00 99 19,00 27,50 33,00 26,50
50 22,00 24,00 38,00 28,00 100 20,00 28,00 30,00 26,00
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Table 6. Optimal schedules with fuzzy processing times

Iterations No.9 & No.56
Machines Scheduled jobs Ci

M.1 job 8 21,00 24,00 30,00
M.2 job 5 job 7 16,00 23,50 37,00
M.3 job 2 job 1 job 6 17,50 24,50 35,50
M.4 job 9 job 4 job 3 18,67 24,33 33,00

Iterations No.30 & No.86
Machines Scheduled jobs Ci

M.1 job 8 21,00 24,00 30,00
M.2 job 3 job 7 17,00 21,50 41,00
M.3 job 6 job 1 job 2 17,50 24,50 35,50
M.4 job 9 job 5 job 4 18,00 25,67 30,33

Iterations No.47 & No.69 & No.74
Machines Scheduled jobs Ci

M.1 job 8 21,00 24,00 30,00
M.2 job 1 job 6 job 2 17,50 24,50 35,50
M.3 job 7 job 9 15,00 23,00 40,00
M.4 job 4 job 3 job 5 19,33 24,67 31,00

Table 7. Results of LPT

Machines Scheduled jobs Ci

M.1 Job 8 21,00 24,00 30,00
M.2 Job 5 job 4 18,00 25,00 27,50
M.3 job 9 job 2 job 1 20,00 29,50 41,00
M.4 job 3 job 7 job 6 15,67 20,00 35,67

Robustness test should not be performed by causing changes in processing times which
are the part of the input of the problem. Changing the processing times would result
in the modification of the problem. This analysis is rather called “sensitivity analysis”.
In this study, as the problem considered is just a numerical example, there is no need
to perform a sensitivity analysis. Besides, sensitivity analysis measures how the solution
(here the optimal schedule) responses to the changes in the inputs.
10 different tests using 10 different random number sets are performed. The summary

of the results are presented in Table 8. The second column of the table shows how many
time the optimal solution (δ(Cmax) = 25.83 minutes) is reached and the third column
shows the average results of the 100 iterations in one test.
According the results, the proposed GA approach proves its efficiency and effectiveness

in solving FPMSPs. Optimal solutions are again reached fast and several times (6.6 times
in average) in one run. Non-optimal schedules are not “bad” either, the average of all
solutions found in 100 iterations of 10 tests is 26.71 minutes (Table 8). Besides, all the
alternative optimal schedules have been explored.

7. Conclusion. The parallel machine scheduling problem receives a considerable atten-
tion in both academic and industrial field. Various factors involved in the scheduling
problems are often imprecise or uncertain. The fuzzy set theory provides an alternative
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Table 8. Summary table of test results

Test No Number of Optimal Solution Reached Average δ(Cmax)
1 6 times 26.77 minutes
2 6 times 26.67 minutes
3 8 times 26.69 minutes
4 7 times 26.74 minutes
5 7 times 26.73 minutes
6 6 times 26.70 minutes
7 5 times 26.71 minutes
8 7 times 26.64 minutes
9 6 times 26.76 minutes
10 8 times 26.69 minutes

Average 6.6 times 26.71 minutes

and convenient framework for modeling real-world systems mathematically and offers sev-
eral advantages in the use of heuristic approaches. In this study, non-identical parallel
machine scheduling problem with fuzzy processing times (FPMSP) is considered and a
GA approach is proposed to minimize maximum completion time (makespan).

New GA operators and two of well-known ranking and defuzzificaton methods are
used in order to adapt the general structure of GA to the considered problem. The GA
is embedded in a simulation model for solving the problem. The use of simulation in
implementing GA is preferred because of the evolutionary structure of the algorithm and
the ability of simulation to perform several tests using different random number sets. By
this means, the robustness of the proposed approach can be easily tested in a series of
numerical experiments.

The proposed approach is first tested for scheduling non-identical parallel machines
with crisp processing times (Subsection 5.1). Results were identical to those obtained
by using conventional GA for PMSPs. This exercise served to validate the proposed GA
approach and proved that PMSPs form a sub-set of FPMSPs. Then, a numerical example
of FPMSP is solved by using the proposed GA approach (Subsection 5.2) and results are
compared to those obtained by LPT rule (Subsection 5.3), known as the most appropriate
dispatching rule for such problems. Results showed that the proposed approach surpasses
LPT rule and illustrates the need of using efficient and effective heuristics for FPMSPs.

The discussion of numerical results leads to the following conclusions (Subsection 6.1):

• The proposed approach is quite efficient since it can find optimal results fast and
several times in one run.

• Non-optimal results are not too “bad” either which shows the effectiveness of the
approach. The worst result obtained by the proposed approach is better than the
result of LPT rule.

• Thanks to its advantage of being a search algorithm, other alternative schedules
giving the same optimal result can be explored.

The robustness of the approach is tested by running the simulation using 10 different
random number sets (Subsection 6.2). Results revealed that the proposed approach is
robust enough to provide same results efficiently and effectively in different circumstances.

The motivation of the author is to contribute to the literature of scheduling parallel
machines under uncertainty, which can help to consider more realistic production sched-
uling problems in industrial field. This problem is not addressed before for non-identical
parallel machines with fuzzy processing times. This study highlights the advantage of
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using fuzzy set theory for modeling such problems and emphasizes the need for efficient
and effective heuristics to solve them. Accordingly, in this study, a robust GA approach
is proposed to solve parallel machine scheduling problem with fuzzy processing times.
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