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ABSTRACT. Since chaotic systems are important nonlinear deterministic systems that
display complex, noisy-like and unpredictable behavior, synchronizing chaotic systems
have become an important issue in the engineering community. This paper proposes an
adaptive dynamic sliding-mode neural control (ADSMNC) system composed of a neural
controller and a switching compensator. The neural controller uses a radial basis function
(RBF) network to online approzimate an ideal dynamic sliding-mode controller, and the
switching compensator is designed to guarantee system stability in the Lyapunov stability
sense. Moreover, the online adaptive laws with variable learning rate are derived to speed
up the convergence rates of the tracking error and controller parameters. Finally, the
synchronization problem between two chaotic gyros based on the mater-slave scheme is
studied. It is shown by the simulation results that the chaotic behavior of two nonlin-
ear identical chaotic gyros can be synchronized by the proposed ADSMNC' scheme after
learning of the controller parameters.

Keywords: Adaptive control, Neural control, Sliding-mode control, Variable learning
rate

1. Introduction. It is well known that sliding-mode control (SMC), which is one of
effective nonlinear robust control approaches, can provide system dynamics with an in-
variance property to uncertainties once the system dynamics is controlled in the sliding
mode [1-3]. However, the SMC strategy usually suffers from large control chattering
caused by a switching function in the control law. It may wear mechanism coupling and
excite unmodelled system dynamics. A common method to improve the chattering is to
replace the switching function by the saturation function. A trade-off problem between
chattering and control accuracy arises [2]. To tackle this problem, among several kinds of
modern SMC schemes, the dynamic sliding-mode control (DSMC) system is an effective
control scheme for eliminating chattering [4,5]. The additional dynamics in the DSMC
system can be considered as compensators designed for improving sliding-mode stability.
Meanwhile, since DSMC uses an integration method to obtain practical control effort, the
chattering phenomenon can be improved effectively.

Though favorable control performance can be achieved by using the SMC and DSMC
systems, they need exact dynamic characteristics of controlled plants to design the control
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law. To tackle this problem, many intelligent control schemes which don not need to know
the system dynamics have been developed [6-12]. The most important feature of these
intelligent control schemes is the self-learning ability that neural networks are used to
approximate arbitrary linear or nonlinear mappings through online learning algorithms
without requiring preliminary offline tuning. Convergence analysis of most of the learning
algorithms was derived based on the Lyapunov stability theorem or the gradient decent
method.

Radial basis function (RBF) networks are characterized by a simple structure with
rapid computation time and superior adaptive performance. There have been consider-
able interests in exploring the applications of RBF network to deal with the non-linearity
and uncertainty in control systems [13-16]. Though these RBF-based intelligent control
schemes can achieve satisfied control performance through online learning algorithms,
how to determine the learning rates of parameter adaptation laws usually requires some
time-consuming trial-and-error tuning procedures. For a small learning rate, convergence
of tracking error and controller parameters can be easily guaranteed, but with slow con-
vergence speed. If the learning rate is too large, the parameter adaptation laws may lead
to instability of the control systems.

To attack this problem concerning the learning rates of the parameter adaptation laws,
a variable learning rate is studied [17-20]. In [17,18], a discrete-type Lyapunov function
was utilized to determine the learning-rate parameters of the adaptation laws. However,
exact calculation of the Jacobian term associated with the system is not feasible due to
the unknown system dynamics. Wai and Tu [19] used a genetic algorithm to determine
the learning-rate parameters of the adaptation laws; however, the computation loading is
heavy and their scheme lacks real-time adaptation ability. Compared with the genetic al-
gorithm, Lin et al. [20] used a particle swarm optimization to deal with the same problem.
The particle swarm optimization algorithm has a quick convergent ability to make it be-
come popular in many applications. However, the system stability can not be guaranteed
and also lacks real-time adaptation ability.

Recently, synchronization among chaotic dynamical systems has received a great deal
of interest among scientists from various fields [21-23]. Until now, many different methods
have been applied theoretically and experimentally to synchronize chaotic systems. Yau
[24] proposed a nonlinear rule-based controller for chaos synchronization. However, the
fuzzy rules should be pre-constructed by a time-consuming trial-and-error tuning proce-
dure to achieve the required performance. Poursamad and Davaie-Markazi [25] proposed
a robust adaptive fuzzy controller with a switching compensator to ensure system’s sta-
bility; however, the switching compensator required the bound of the system uncertainty
and it will cause chattering phenomena. The adaptive control techniques are applied
to chaos synchronization in [26-28]; however, these adaptive control schemes require the
structural knowledge of the chaotic dynamic functions.

In this paper, an adaptive dynamic sliding-mode neural control (ADSMNC) system is
proposed to synchronize two nonlinear identical chaotic gyros via the DSMC approach.
The proposed ADSMNC system is composed of a neural controller and a switching com-
pensator. Even though the plant is unknown, the proposed ADSMNC system can use
the updating rules to adjust the controller parameters. To guarantee the convergence
of tracking errors, an analytical method based on a discrete-type Lyapunov function is
proposed to determine the conditions on learning rates of the parameter adaptation laws.
Finally, in the simulation study, it is shown that the proposed ADSMNC system can drive
the slave gyro system to synchronize the master gyro system with rapid convergence of
the tracking error and without the chattering phenomena.
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FI1GURE 2. Uncontrolled chaotic trajectories for different system parameters

2. Problem Formulation and DSMC Design. A gyroscope is a device for measuring
or maintaining orientation based on the principle of conservation of angular momentum
[21]. Usually, a gyroscope is mounted on the axis of rotation of the wheels. A schema
of a symmetric gyro with linear-plus-cubic damping system is shown in Figure 1 where
the attitude of the gyro mounted on a vibrating base are described by Euler’s angles 6
(nutation), ¢ (precession) and 1 (spin). The Lagrangian of the symmetric gyro can be
described as follows:

1 . 1 . . _
L= 511(92 + ¢*sin” 6) + §Ig(d> cos O +1))? — M, (¢ + £sinwt) cos 6 (1)

where I and I3 are the polar and equatorial moments of inertia of the symmetric gyro,
respectively, M, is the gravity force, ¢ is the amplitude of the external excitation distur-
bance, and w is the frequency of the external excitation disturbance. Then, the dynamic
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model of the symmetric gyro with linear-plus-cubic damping is given as [21].

0+ <BI_T>2 u ;5320)2 - ]\%E sinf + l[)_119 + lj)—fﬂ?’ = M[—fé sin wt sin 6 (2)
where 8¢ = dL/d¢, Dy and D, are positive constants. Equation (2) can be rewritten as
é+a2(1_,07§se)2—5sin9+719+7293:fsinwtsin9 (3)

sin” 6
where f is the angle, fsinwt is the parametric excitation, 719 and 7293 are the linear
and nonlinear damping, respectively, and QZ%SZG)Q — [sin# is a nonlinear resilience

force. The open-loop system behavior was simulated with o = 100, 8 = 1, 7, = 0.5,
v = 0.05 and w = 2 for observing the chaotic unpredictable behavior. The time responses
of the uncontrolled chaotic gyro with initial condition (1,1) with f = 33 and f = 36 are
shown in Figures 2(a) and 2(b), respectively. It is shown the uncontrolled chaotic gyro
has different types of trajectories for different system parameters.

Generally, the two chaotic systems in synchronization are called the drive (master)
system and response (slave) system, respectively. In the chaos synchronization problem, it
is required that the slave system can track the trajectories of the master system. Consider
two coupled chaotic gyros systems as [21].

Master system:

i : : 1 —cosx)? : : .
x:fms1nwtsmx—a2¥+Bsmx—7lx—’ygx3:gm (4)
sin® x
1 — cosx)?
where g, = f,sinwtsinz — a2¥ + Bsing — 14 — Vi3,
sin® x
Slave system:
N : : 1 — cosy)? : . .
y:fysmwtsmy—cﬂ%+Bsmy—7ly—*ygy3+u:gy+u (5)
1 — cosy)?
where g, = f, sinwtsiny — QQ# + Bsiny — vy — 2> and u is the control input.
sin® y

If uncertainties occur, i.e., the system parameters deviate from their nominal values or
an coupling term is added into the system, the two coupled chaotic gyros systems can be
modified as

and

j=g,+Ag,+u+F (7)
where Ag, and Ag, denote the system uncertainties of master system and slave system,
respectively, and F' denotes the coupling term. The control objective of the two coupled
chaotic gyro systems is for different initial conditions of the master and slave systems, and
the coupling term in the slave system, the two coupled system, i.e., the master system

(4) and the slave system (5), are synchronized by designing an appropriate signal control
input u. To achieve the control objective, the tracking error is defined as

e=1x—y. (8)
From Equations (6)-(8), the error dynamic equation can be obtained as
E=0r—gy—u+Ag, —Agy—F =g, —gy,—u+w (9)
where the lumped uncertainty w is defined as w = Ag, — Ag, — F'.
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It is well known the major advantage of SMC and DSMC systems is their insensitivity
to parameter variations and external disturbance once the system trajectory reaches and
then stays on the sliding surface. The sliding surface is defined as

s=¢é+aje+ ay /te(T)dT (10)
where a; and ay are positive constants, and a dygamic sliding surface is defined as
§=5+bis+by /tS(T)dT (11)
0
where b; and by are positive constants. Differentiating Equation (11) with respect to time

and using Equations (9) and (10) obtain
C. = S + b18 + b28
= go—Ggy—u+w+ (a1 +b)é+ (as + arby + by)é
+(02b1 + albg)e + agbg fot G(T)dT
= Go— gy — U+ W+ C1é+ e+ cze+ e [ e(T)dr
where ¢; = a1 4+ b1, ¢3 = as + a1by + by, ¢3 = asby + a1by and ¢4 = asby. The ideal DSMC
system is given as

t
udsmc:/ adsmc(T)dT (13)
0

(12)

t
udsmc - gz - gy + Clé + CZé + C3€ + C4/ G(T)dT + ngn(g) (14)
0

where W is a given positive constant with the assumption |w| < W. Substituting Equation
(14) into Equation (12) yields

¢ =w — Wsgn(s). (15)
Consider the Lyapunov function candidate in the following form as
1
Vi = 58. (16)
Differentiating Equation (16) with respect to time and using Equation (15) obtains

Vi ¢ = ws —W[g|
] [¢] = W] (17)

—(W =) [s] < 0.

If the state trajectory stays on the dynamic sliding surface, i.e., ¢ = § 4+ by $ + bys = 0,
then it will asymptotically reach the sliding surface s = 0. Hence, after transient period,
we can approximately have s = 0. Moreover, if s = é + a,é + ase = 0, by choosing the
values of a; and ay properly, the desired system dynamics such as setting time can be
easily designed by the second-order system. Then, the control law of the DSMC system in
Equation (14) can guarantee the stability in the Lyapunov sense [1,4]. Since the dynamics
is usually nonlinear and a precise model is difficult to be obtained, the ideal DSMC system
is difficult to be implemented.

Al

3. Design of the ADSMNC System. To efficiently and precisely control the synchro-
nization, an adaptive dynamic sliding-mode neural control (ADSMNC) system is proposed
as shown in Figure 3, where the controller output is defined as

'L.Ladsc — 'L.an + usc- (18)

The neural controller 1, uses a RBF network to approximate the ideal dynamic sliding-
mode controller igsm,. in Equation (14), and the switching compensator 1. is designed to
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FIGURE 4. Structure of the RBF network

cope with the influence of residual approximation error introduced by the neural controller.
The used RBF network is shown in Figure 4, and the output of the RBF network with n
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hidden neurons is given by

unc = Gout [Z aigi (ng, myg, 51)] (19)

=1

where g¢;, and g¢,,; are the scaling factors of the input and output variables, respectively;
«; represents the connection weights between the hidden layer and the output layer; and
0; represents the firing weight of the i-th hidden neuron given as

. _ \2
9i(gin§,mi,5i) = exXp <_M> (20)

)

where m; and J; are the center and width of the i-th hidden neuron, respectively.
Substituting Equation (18) into (12) yields

t
S =0z — Gy — Unpc — Use + W + 1€ + C2€ + c3€ + 04/ e(r)dr. (21)
0

From Equations (14) and (21), it is obtained

¢ = (TUasme — Une — Use) + W — Wsgn(s). (22)

3.1. Online learning algorithm. The online learning algorithm is a gradient descent
algorithm in the space of network parameters and aims at minimizing ¢¢ for achieving
fast convergence of ¢. Multiplying both sides of Equation (22) by ¢ gives

§§. - g[(udsmc - unc - usc) + W — WSgH(§)]. (23)

According to the gradient descent method, the learning rules are summarized as follows.
1) The weights «; are updated by the following equation [29]
299 9SOy

Ai:_a—:_a.— = Ta Ougz 24
o M0 g = 0 B, leSou (24)

where Aq; is the updated value of the i-th connection weights between the hidden layer
and output layer and the positive constant 7, is the learning-rate parameter. The con-
nective weights can be updated according to the following equation:

a;(t+1) = a;(t) + Aa(1). (25)

2) The center and width of the hidden neurons can also be adjusted in the following
equations to increase the learning capability.

Amz - Tim amz - Tim aUnC 892 amz - 277m§goutaz 512 92 (26)
0O D 00; (gins — m;)?
A(Sz - _néa—(si = —"Ns aunc 891 8—62 - 2776§goutaz 513 92 (27)

where Am,; and AJ; are the updated values of the center and width for the i-th hidden
neuron, respectively; and 7,, and ns are the positive learning-rate parameters. The center
and width of the hidden neurons are updated as follows:

m;(t + 1) = m;(t) + Am;(¢) (28)
6i(t +1) = 6;(t) + Adi(2). (29)
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3) The scaling factors of input and output variables also can be adjusted in the following
equation to increase the learning capability.

Jin = nmagm B nmaunc i—1 aez 8gm
. inS — MY
= —2ning290utz |:(g572)0619z:| (30)
i=1 i
a§§ a§§ aUnc .
A out — “Tloutw——— — “Nout>: — = TNou 191 31
Yout n tagom n taumagom n t§;[a ] (31)

where Ag;, and Age,; are the updated values of the input and output scaling factors for the
neuron network, respectively; and 7;, and 7,,; are the positive learning-rate parameters.
The scaling factors of input and output variables are updated as follows,

gz’n(t + 1) = gin(t) + Agin(t) (32)
gout(t + 1) = gout(t) + Agout(t)- (33)

3.2. Variable learning-rate parameters. The learning algorithms (24), (26), (27),
(30) and (31) call for a proper choice of the learning-rate parameters 0, Mm, M5, Nin
and 1),,, respectively. For given small values of the learning-rate parameters, parameter
convergence can be guaranteed but convergence speed is very slow. On the other hand, if
the values of the learning-rate parameters are too large, the algorithm becomes unstable.
To solve this problem, a variable learning rate is determined by considering a cost function

as

1
E= 58. (34)

According to the gradient descent method, the adaptive law of the weight can be
represented as [29]:
OF OE 0Oty OF
a—ai = T MNa Dty Doy, = _naau—ncgoutgi-
If the plant dynamics is unknown, the Jacobian term cannot be obtained in advance.
Therefore, the whole updating rules cannot work properly during the learning process.

Aa; = =1, (35)

Lin and Peng [17] used a simple approximation of the error term 50 = ¢ +é. It could
T
overcome the aforementioned problem and make the online learningcpossible; however,
oOF Ae

i = Au to make the

approximation more accurate even though the plant dynamics is unknown; however, the
algorithm is quite sensitive the external disturbances. In this paper, comparing Equation

the stability analysis is not given. Yeh and Tsai [18] developed

oF
(24) with (35), the Jacobian term of the system can be found as B = Then, the
u'nc
difference A¢(t) associated with the dynamic sliding surface can be represented by
()"
s(t+1) =¢(t) + Ag(t) =<(t) + {%] AP (36)

where AP denotes the change of an adjustable parameter vector, «; in Equation (24), for
example, in the updating rules (24), (26), (27), (30) and (31). Using the chain rule, we
have

O 9 OF Diye  Dine
OP ~ OE di,, 0P 0P

(37)
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and ds¢ de¢ O i
39 S OUpe Unc
AP = —npp— = — = . 38
®op = ™o, op PP (38)
From Equations (37) and (38), it is obtained
1" Dy ||
Ac=|=—=| AP =-
S [GP] ®s | 5p (39)
where ||-|| is the Euclidean norm. Consider a discrete-type Lyapunov function as
1
Vo = §§2(t)- (40)
The change in the Lyapunov function is expressed as
1
AV = Va(t+1)=Va(t) = S[* (1 +1) = <* (#)]
1
= 8600 s+ 3500
Ditne || 1 Ditne || (41)
= _ t _
aestt)| | |5 = Gesto)|
1 |9t |]? Dt ||”
= - t —2].
2'P° ()‘ op | || op
If np is chosen as 0 < np < PN then the discrete-type Lyapunov stability is
unc
oP

guaranteed due to V5 > 0 and AV, < 0. Therefore, the output tracking error will
converge to zero as t — oo. In the following theorem, a sufficient condition on the
variable learning-rate parameters is derived to ensure convergence of the output tracking
error.

Theorem 3.1 (Connection Weights). Let n, be the learning-rate parameter of the
adaptation law for the weights of the RBF network. Then, convergence of the tracking
error is quaranteed if no s chosen as

2
0 <N, < (42)
n (|gout| |9|max)2
where ||, = max |0;| and | -| is the absolute value.
Proof: Since
aunc
8 - goutei S |gout9i| S |gout| |92| S |gout| |0|max (43)
%
i Diine Ol Aitne]”
d —= = - e, = it foll
M 0 Oay Oy’ aan} ) 10 TOLOWS,
aunc
80[ S \/ﬁ|gowf| |9|ma,x' (44)

From Equations (41) and (44), AV; can be rewritten as
Qe

da [77“ - 2] (45)

Oo
1
57704§2n (|gout| |9|max)2 |:7704n (|gout| |9|rnax)2 - 2] .

1
AVy = §na<2

Ol

IN
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2
If n, is chosen as 0 < 1, < 5, then the discrete-type Lyapunov stability is

n (|gout| |9|ma,x) . .
guaranteed due to V5 > 0 and AV, < 0. So the output tracking error will converge to

zero as t — o0o. This completes the proof of Theorem 3.1.
Before presenting Theorem 3.2, we introduce the following lemmas [16]:

Lemma 3.1. Let f(r) = rexp(—r?), then |f(r)| < 1,Vr € R.
Lemma 3.2. Let g(r) = r?exp(—r?), then |g(r)| < 1,Vr € R.

Theorem 3.2 (Center and Width). Let 1, and ns be the learning-rate parameters of
the adaptation laws for the center and width of the hidden neurons in the RBF network.
The convergence of the tracking error is gquaranteed if n,, and ns are chosen as

162
0< M, 1n5< i 46
2n(|a|ma,x |gout|)2 ( )
= min |d;].

where |a| = max |o;| and |d]

max min

Proof: (a) According to Lemma 3.1, it follows

2
|:(gzn§5i mz)_:| exp {— |:‘(gmg6i—mz):| } < 1.
Since
81.1177,0 o 8unc 89z o 2aigout (gmg - mz) 0.
om;  00; Oom; 0 5; '
S 2aggout (gm§5_ mz) 91
< 2aigout (ging - mz) 0. (47)
> 51 51 i
2aigout 2 |a|max |gout|
S ST 16l
ing Qime _ [One Ditne D ]"
om | omy omy T om,|
aunc 2 |Oé| |gout|
< —max 7 48
|| < v )
From Equations (41) and (48), AV2 can be rewritten as
1 on O, ||
A — - nc nc o
(49)

IN

om
1 (2 |a|max|g0Ut|> <2|a|max|gout|>2
— 1SN Nmn | —— ) —2].
2 |5|m1n |5|min
| |rnin

2n(|a|ma,x |gout|)
is guaranteed due to V5 > 0 and AV, < 0. Therefore, the convergence of the center in the

hidden neurons is guaranteed.
(b) According to Lemma 3.2, one has

F%Mé4mq2wp{_[@m%;mnr}

If n,,, is chosen as 0 < 7, <

5, then the discrete-type Lyapunov stability

< 1.
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Since
aunc o 8unc 89z _ 2aigout (gmg - mz)29
a6, 00, 96; 0; 2 '
2aigout (gzn§ - mi)2
< 0;
> 52
2aigout (ging i)2
< 0;
>~ 51 52 i
< 2aigout < 2 |a|max |gout|
5i |5|min

and

00 05, = 06y’ lols)
H i

Dtine {au Diine aumr

From Equations (41) and (51), AV ¢

1
AV, = 5775§2

Ol

IN

o[

it can be obtained that

S \/ﬁ2|a||rg|ax|gout|.

can be rewritten as

-

min

Ol

om

s

1 2 |Oé| ] |gout| 2 2 |C¥| |gout| 2
_ 2 max max —921.
2" " ( Ol T 10l

| |min

If ns is chosen as 0 < ny <
2n(|af gy

|gout|)
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(50)

(51)

(52)

5+ then the discrete-type Lyapunov stability is

guaranteed due to Vo > 0 and AV, < 0. Therefore, the convergence of the width in the

hidden neurons is guaranteed.

Theorem 3.3 (Scaling Factors g¢;, and g,u). Let 1, and 1y be the learning-rate
parameters of the adaptation laws for the scaling factors g;, and oy, respectively. Then,
convergence of the tracking error is guaranteed if n;, and 1y, are chosen as

| |min

0 <nin <
" 2(n el [Gout] 15T )?
and 2
0 < Nour <
o (n |a|max |9|max)2
where [g|,,,. = max [¢|.

max

Proof: (a) According to Lemma 3.1, it follows that

{w] eXp{_[wﬂ} <1
Since N 2 .
o = 9 1{ = g”’g(sz_ 0,
< 2|gout|iH_ (s —mdy |
- 2|gm|i| |max|| _ Zn|gmﬁ5 ||a|max|g|

IN

Z
210 | Goui |a|ma£T$ImaX

9]

min

(53)

(54)
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we have
max |§|max. (56)

‘ aunc 27L |gout| |C¥|

Ogin | ~ 0]

From Equations (41) and (56), AV; can be rewritten as
e iy

AVy, = 57inS

1 2 2
n; -2
2 2
177 §2 <2n |gOUt| |a|max |§|max> n; <2n |gOUt| |a|max |§|max> 9.
2 9] 9]

min min

min

2

(57)

IN

31,

min

o (72 |Gout| |0t] s |6l max)
stability is guaranteed due to Vo > 0 and AV, < 0. Therefore, the convergence of the
scaling factor g;, is guaranteed.

If n;, is chosen as 0 < n;, < 5 >, then the discrete-type Lyapunov

(b) Since
e = 20 S D101 S D s P = o Pl (59
we have ‘
\2;; < 1[0y 1Oy (59)

From Equations (41) and (59), AV; can be rewritten as

2 [nout 2 - 2]
(60)

2 2
< 5770Ut§2 (n |a|max |0|max) [7701“5 (n |a|max |9|max) - 2] :

1
A‘/Z - 5770ut§2

aunc

8gout

aunc
8gout

If Moue is chosen as 0 < 1My < >, then the discrete-type Lyapunov stability

(n |a|max | |ma,x)

is guaranteed due to V5 > 0 and AV; < 0. Therefore, the convergence of the scaling factor
Jout 18 guaranteed.

3.3. Switching compensator design. There exists an approximation error between
optimal neural controller and ideal DSMC system as

Udsme = Uy + € (61)
where % is the optimal neural controller and e denotes the estimate approximation error
and is assumed to be bounded as 0 < |¢| < E with E is a positive constant. To ensure the
stability of the closed-loop control system, this paper proposes a switching compensator
as

Us. = E'sgn(s) (62)
where E denotes the estimated bound of the approximation error. Using Equations (61)
and (62), Equation (22) can be rewritten as

¢ =¢e — Esgn() 4+ w — Wsgn(). (63)

For further analysis, define E = E — E. To guarantee the stability of the ADSMNC
system, a Lyapunov function candidate is defined as
1 1 =

Vo=—-¢4+ —F? 64
3 2§+277€ ( )
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where 7. is the learning rate. Differentiating Equation (64) with respect to time and using

Equation (63), we can obtain

1 ~ =
¢+ —FF

Ne

Vs

¢ |e — Esgn(c) 4w — ngn(g)]

1 (65)
_|__

(E _ E) b
Me

For achieving V3 < 0, the adaptation law of the approximation error is designed as

E = (66)
so that Equation (65) can be rewritten as
Vs = ce—E¢|+cth — Wagme ||
< sl el = E | + [s] [w] = W [g] (67)

<[ (] = B) + [s| (Jjuwr| = W) < 0.

Since Vj is negative semi-definite, that is Vi (s, Ezt) < Vi(s, E,0), it implies s and E are
bounded. Defining a function Q(7) = ks> < —V3 and integrating Q(#) with respect to

time, it can be obtained that

t
/ Q(r)dr < Vy(s, B, 1) — Va(s, B, 0).
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FIGURE 5. Simulation results of the fuzzy-rule-based control system [24]
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Because Vi(s, E,0) is bounded, and Vi(s, F, t) is nonincreasing and bounded, the fol-
lowing result can be obtained
t
lim [ Q(7)dr < oc.
t—o0 0

(69)

Moreover, since €(¢) is bounded, by Barbalat’s Lemma [1], we can conclude that
tlim Q(t) =0, i.e., s = 0ast— oco. As a result, the stability of the proposed ADSMNC
—00

system is guaranteed.
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FIGURE 6. Simulation results of the adaptive fuzzy sliding-mode control

system [25]

4. Simulation Results. In this section, the proposed ADSMNC system is applied to
globally synchronize two identical chaotic gyros with nonlinear damping. To investi-
gate the effectiveness of the proposed ADSMNC system, a comparison among the fuzzy-
rule-based control [24], the adaptive fuzzy sliding-mode control [25] and the proposed
ADSMNC is made. Two simulation cases including variations of parameters and initial
condition are considered. The setting of Case 1 are (z,%,y,9) = (1,1,—1,—1), f, = 33
and f, = 33, and those of Case 2 are (z,2,y,9) = (1,1,1,1), f, =33 and f, = 36.

4.1. Comparison of different control methods. First, the fuzzy-rule-based controller
[24] is applied to synchronize two identical chaotic gyros with nonlinear damping. The
fuzzy control rules are given in the following form,

Rule i : IF e is F! and ¢é is Fi, THEN w is f;(e1,e3), i =1,2,...,n

(70)

where, in the i-th rule, F? and F! are the fuzzy sets of e and ¢, respectively, u is the output
defined as the value of the analytical function f;(-) with the input variables (e, es). The
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FI1GURE 7. Simulation results of the proposed ADSMNC system

simulation results of the fuzzy-rule-based control system for Case 1 and Case 2 are shown
in Figure 5. The tracking responses of states (x,y) are shown in Figures 5(a) and 5(d), the
tracking responses of states (&, y) are shown in Figures 5(b) and 5(e), and the associated
control efforts are shown in Figures 5(c) and 5(f). The simulation results show a favorable
synchronization performance can be achieved. However, the fuzzy rules should be pre-
constructed by a time-consuming trial-and-error tuning procedure to achieve the desired
performance.

Then, the adaptive fuzzy sliding-mode control [25] is applied to synchronize two iden-
tical chaotic gyros again with a sliding surface being defined as s = ¢ 4+ 3e. The adaptive
fuzzy sliding-mode control requires the information of the bound of the lumped uncer-
tainty. The simulation results of the adaptive fuzzy sliding-mode control system for Case
1 and Case 2 are shown in Figure 6. The tracking responses of states (z,y) are shown
in Figures 6(a) and 6(d), the tracking responses of states (&,y) are shown in Figures
6(b) and 6(e), and the associated control efforts are shown in Figures 6(c) and 6(f). The
simulation results show a favorable synchronization performance can be achieved under
both the simulation cases after the controller parameters being well learned. Unfortu-
nately, to guarantee the system stability, a switching compensator should be used, but
the undesirable chattering phenomenon occurs as shown in Figures 6(c) and 6(f).

4.2. ADSMNC system. The ADSMNC system with variable learning rates is applied
to synchronize two identical chaotic gyros with nonlinear damping. The control param-
eters of the proposed ADSMNC system are chosen as a; = 8, ay = 16, by = 2, by = 1
and 1. = 0.1. The learning rates 1a, Mm, N5, Nin and 7,,; can be automatically tuned
to suitable values using the proposed tuning algorithm. The simulation results of the
ADSMNC system with variable learning rates for Case 1 and Case 2 are shown in Figure
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FIGURE 8. Simulation results of the proposed ADSMNC system for chaos
synchronization with a coupling term

o
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.

7. The tracking responses of states (z,y) are shown in Figures 7(a) and 7(d), the tracking
responses of states (,¢) are shown in Figures 7(b) and 7(e), and the associated control
efforts are shown in Figures 7(c) and 7(f). The simulation results show the proposed
ADSMNC scheme with variable learning rates not only can achieve a favorable synchro-
nization performance but also does not cause the chattering phenomena in the associated
control efforts.

To demonstrate the robust performance of the proposed ADSMNC, a coupling term
F(&,y) = cos(& — 29) is now added. The simulation results for Case 1 and Case 2 are
shown in Figure 8. The tracking responses of states (z,y) are shown in Figures 8(a)
and 8(d), the tracking responses of states (i, 7) are shown in Figures 8(b) and 8(e), the
associated control efforts are shown in Figures 8(c) and 8(f). The simulation results show
not only perfect tracking can be achieved but also appropriate learning rates can be tuned
because the proposed online learning algorithm is applied.

The selection of the learning-rate parameters (1o, Mm, M5, Nin and 7yy,;) for the online
training of the RBF network has a significant effect on the network performance. The
simulation results of the ADSMNC system with learning rates outside the convergence
region for Case 1 and Case 2 are shown in Figure 9. The tracking responses of states (z,y)
are shown in Figures 9(a) and 9(d), the tracking responses of states (&,y) are shown in
Figures 9(b) and 9(e), and the associated control efforts are shown in Figures 9(c) and
9(f). The simulation results show the unstable tracking responses are induced due to the
selection of learning rates outside the convergence region.

5. Conclusions. This paper has successfully demonstrated the design of an adaptive
dynamic sliding-mode neural control (ADSMNC) system to synchronize two nonlinear
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FIGURE 9. Simulation results of the ADSMNC system with learning rates
outside the convergence region

identical chaotic gyros. The proposed ADSMNC system is composed of a neural controller
and a switching compensator. The neural controller using a RBF network is the main
controller, and the switching compensator is designed to dispel the approximation error
introduced by the neural controller. To speed up the convergence of tracking errors, an
analytical method based on a discrete-type Lyapunov function is proposed to determine
the variable learning rates of the parameter adaptation laws. Finally, it is verified by the
simulation study that system stabilization, favorable synchronization performance and
no chattering phenomena can be achieved using the proposed ADSMNC system. Since
the dynamic characteristic of chaotic gyros is nonlinear and the exact dynamic model is
unobtainable, the developed model-free ADSMNC system is more suitable to drive the
slave gyro system to synchronize the master gyro system.
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