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ABSTRACT. Circle/arc detection plays an important role in image processing and ma-
chine vision. The Hough transform has been applied to circle/arc detection, and many
multi-step based methods have been proposed for improving its performance (computa-
tion and storage space). The multi-step iterative procedure to find candidate circles/arc
includes: picking initial points, finding correspondent searching points with some prede-
fined geometric properties, and obtaining candidate circles/arcs. However, the number
and distribution of the initial points are keys for efficient detection. In this paper, we
propose a new circle/arc detection method, Fast Randomized method for Efficient Cir-
cle/arc Detection (FRECD). It just requires one “neighbor” point of target circles/arcs
as the initial point. Besides, the proposed FRECD does not use storage for voting space.
From the experimental results, the proposed FRECD provides better performance than
previous multi-step based methods.

Keywords: Multi-step based methods, Circle/arc detection, Randomized method

1. Introduction. Pattern recognition has been applied in many fields. In digital sig-
nal processing, the SOM (self organizing maps) based feature extraction method was
introduced to analyze EEG (Electroencephalograph) signals from motor imagery [1]. In
machine vision, a neural network was applied to recognize the motions pattern [2]. In med-
ical image analysis, an automatic detection of candidate regions was proposed by using
density and shape features [3]. For geometric patterns, circle/arc detection plays an im-
portant role in image processing and machine vision, such as iris detection/segmentation
[4], steering wheel (circular pattern) detection for intelligent transportation system [5],
ball detection for sports video [6], circle localization for PCB optics image [7] and the
detection of safety helmet for ATM’s surveillance system [8]. The Hough transform is
the most popular technology used for pattern detection. It transfers spatial data into a
parameter space. Each spatial point is represented by specific parameters to vote for.
However, its heavy computation and storage requirements make it difficult to be applied
to real-time systems. For example, a circle pattern contains three parameters: (2, ')
and 7', which are respectively the coordinate of the circle center and radius. The order
of the computational complexity for Hough transform to execute the voting procedure is
three.
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Many modified methods have been proposed to reduce the heavy load (computation
and storage requirements) of the Hough transform. Those methods can generally be clas-
sified as the gradient-based methods [9,11] and the probabilistic methods [12-23]. Since
the gradient information of edge contours is sensitive to noise, the gradient-based meth-
ods may fail while vague noise appears near the target circles/arcs [12]. On the other
hand, the probabilistic methods accomplish the circle/arc detection processing into the
following multi-step: (1) picking initial points (n;), (2) finding searching points (n,) based
on geometric properties, and (3) obtaining candidate circles/arcs. In general, the proba-
bilistic methods provide better performance (less computation and storage requirements)
than the gradient-based methods [12]. However, the number and distribution of the initial
points are keys for efficient detection. Our method is proposed based upon these points
of view:

(1) The number of initial points

The RHT (randomized Hough transform) randomly picks three initial points (n; = 3)
to solve circle parameters [15-17]. Its improved version, the efficient randomized circle
detection algorithm (RCD) [18], uses four initial points (n; = 4) and applies a distance
criterion to check whether the initial points lie on the same circle/arc. However, no
matter three or four initial points, the probability of all initial points lying on the same
circle/arc under complex background (or noise) is low. The iterations will explosively be
increased while noise is increasing. For example, a W x H image (total M pixels) contains
a circle (with an N point circumference), and the probability for picking n; initial points
on the same circle can be approximated as (N/M)™, since M > N. We can see that the
probability is far less than one while n; increasing [18].

A simple way to increase the above probability, (N/M)", is to use less number of
initial points (i.e., n; < 3). The semi-random detection method (SRD) [19] randomly
picks two initial points (n; = 2) at a valid row and uses them to find searching points
(ns = 1 or 2) by following the vertical direction. Any three points (from n; and n,) can
be used to obtain a candidate circle based on a right triangle. A SRD-like method which
only utilizes one initial point (n;, = 1) for circle detection is developed [20]. However, all
above methods are not suitable for arc (or dot circle) detection.

The so-called efficient voting method [21] picks two initial points (n; = 2) and uses one
of them to find a searching point (n; = 1) within a pseudo circle region. All the three
points will vote for only one candidate circle which has the highest existing rate. The fast
randomized Hough transform (FRHT) [8,22] picks only one initial point (P;) and treats
it as the center of a window region. Within this window, any two points (not P;) with
the same distance to P, will be used to solve a candidate circle based on chord properties.
Since the probability of picking one initial point, (N/M)', is much larger than that of
picking four points, (N/M)*, the method consumes less iterations than the method that
needs four initial points. However, all above methods require storage for voting space.

(2) The distribution of initial points

The main constraint of the above mentioned methods, no matter what the number of
initial points is, their initial point(s) must lie on the targeted circle/arc for a successful
detection. Zhang and Cao intended to use only one initial point inside a targeted circle
region to increase the probability of picking an initial point [23]; however, it may fail while
the initial point is picked outer the target circles. It is also not suitable for arc (or dot
circle) detection.

According to above points of view, we can conclude that an efficient multi-step based
method for circles/arcs detection should possess the following four properties:



FAST RANDOMIZED METHOD FOR EFFICIENT CIRCLE/ARC DETECTION 153

(1) Tt needs as few initial points as possible. Since the probability for picking n; initial
points on the same circle can be approximated as (N/M)™, we can obtain a higher
probability with smaller n;. For example, (N/M)' is larger than (N/M)*.

(2) Tt can pick the initial point(s) which is (are) neighboring to target circles/arcs, rather
than lie on the target circles/arcs.

(3) It can detect both circles and arcs.

(4) Tt does not use storage for voting space.

In this study, the proposed fast randomized method for efficient circle/arc detection
(FRECD) can satisfy above four properties. This paper is organized as follows: Section
2 summarizes several geometric properties of a circle pattern. Section 3 is the proposed
fast randomized method for efficient circle/arc detection (FRECD). Section 4 shows the
experimental results and discussions. Finally, the conclusions will be addressed in Section
5.

2. Properties of a Circle Pattern. The parameters of a circle can be decided by three
points. In Figure 1(a), there are three points a, b and e on a circle, and their coordinates
are (Zq, Ya), (xp, yp) and (z., y.), respectively. To simplify the explanation of the proposed
method, we summarize some well-known geometric properties of a circle as follows:
Property I:

Any two points on a circle can obtain a middle-perpendicular line. The middle-
perpendicular line L, ,, with respect to L., can be denoted:

Y= Ym =1 (T — 1), (1)

where (z,,, ¥m) is the coordinate of the middle point m of a and b, and the slope ¢ is
equal to —(zq — )/ (Ya — Us)-
Property II:

The coordinate of a circle center (2',y’) can be obtained by the intersection of two
middle-perpendicular lines (e.g., L4 and L, ;.). The radius 7’ is the distance from the
circle center to any point a (b or e).

Property III:

The distances from any points on L, to a and b are the same; e.g., Sia = Sib = hy.
Similarly, S,b = S,e = h, and S;b = S;e = h; can be obtained with respect to the
middle-perpendicular line L | ..

Property IV:

For a middle-perpendicular line of a circle, we can find symmetric point pairs. For
example in Figure 1(b), we can find the symmetric point pair, d(z4, yq) and c(z., y.),
with respect to L, 4. Given the points a, b and ¢, the coordinate (24, y4) can be obtained
by the following steps:

1) Obtaining the line equation of L, ,, according to Equation (1) and representing it
as:

Ar + By + C =0, (2)

where A=t, B=—-1,C =y, —1t-xn,.
2) Supposing c(z,, y.) and d(x4, y4) form a symmetric point pair with respect to L 4,
we can obtain Equation (3) from Equation (2):
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Since L, and L., are perpendicular, their slopes are negative reciprocals of each
other: 4
T, — T4 B
3) The coordinate (24, y4) of point d can be computed from Equations (3) and (4):
2-A(A-2.+B-y.+0)

Tqd = Te A2_|_32 (5)
B 2-B(A-2.+B-y.+C)
Yd = Ye — A2—|—32

(a) (b)

FIGURE 1. The illustration of properties of a circle pattern: (a) perpendic-
ular lines of chords (e.g., L4 and L) and symmetric chords (e.g., hy, h,
and h;); (b) symmetric point with respect to a perpendicular line; e.g., the
c and d are the symmetric point pair with respect to L | 4

3. Fast Randomized Method for Efficient Circle/Arc Detection. Given a W x H
edge image with F edge points, we denote D as a set of all edge points:

D:{Pi(miayi)|i:172v"'vE}v (6)

where P;(z;, y;) denotes the coordinate of an edge point. As shown in Figure 2, the pro-
posed fast randomized method for efficient circle/arc detection (FRECD) is summarized
as follows:
Step 1: Initialization

Let I be the iteration number, and I = 0 initially. 7; is the predefined iteration number
that we can tolerate. Let N be the current detected circle number, and N = 0 initially.
T, is the target circle number. In the meanwhile, we create a cell sequence Cy(j), where

j=1,..., d, where
d=vW?+ H2. (7)
Step 2: Initial point selection
We randomly pick a point S as an initial point (any point from edge, noise or background
point) and let I = I 4+ 1. If I = T;, we stop the whole procedure; otherwise, we forward
to Step 3.
Step 3: Window creation
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FIGURE 2. The illustrations of the proposed FRECD. The point S is the
initial point; the points a and b are the searching points. Within the pseudo
circle region, a third point ¢ is used to check whether valid according to
Property IV. If the point ¢ is valid, a candidate circle/arc is obtained by
using the three points (i.e., a, b and ¢).

We create a window region with w X w size that is centered at the initial point S.
Step 4: Symmetric point searching

Within the window, we pick edge points P, (P, € D and P, # S) one by one and
compute the distance between P; and S. In Figure 2, a point, a, is picked (a € D), and
the distance h is computed between a and S. If the correspondent cell Cy(h) is empty,
we store the point a to the cell Cy(h) and continue to pick the next point. When we find
a point b with the same distance h (i.e., a and b form a symmetric point pair and may be
on the same circle), we will forward to Step 5 and check their geometric properties. Once
we cannot find any symmetric point pair, we empty the cell sequence and return to Step
2.
Step 5: Geometric property checking

In Figure 2, if the symmetric point pair (points a and b) is on the same circle, we can
find their middle point m (z,, ¥,), where

{ T = (To + 73) /2 _ (8)

Ym = (ya + yb)/2
The distance r between a (or b) and m is

r = [l(a,m)]| = [I(b6, )]l (9)
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where || @ || denotes Euclidean distance between two points; e.g., ||(a, m)|| denotes the
Euclidean distance between point a and m. We define a pseudo circle with radius r and
center a. If a point, ¢, on the pseudo circle whose distance to the center a satisfies:

l(e;a)l =7 < A, (10)

where A, is the maximum tolerant error between ||(c,a)|| and r. In all experiments of
this study, we allow A, = 1. We will check whether its symmetric point d(x4,y4) exists
(i.e., d € D) based upon Property IV. If d(x4, y4) can be found, we will consider the three
point (a, b, ¢) can form a candidate circle. The parameters (z',y,r') can be obtained by
Properties T and II. We continue the process to Step 6. If all points within this pseudo
circle region are searched, we empty Cy(j) and return to Step 4.
Step 6: Circle detection

We use a parameter (existing rate) to decide if a circle/arc exists. The edge points on
the candidate circle of («',y',7’) can be described as:

Du:{a|¢@f—yy+@ﬁ—yﬁ—r’§a}, (11)

where D' C D, and ¢, is the maximum tolerant error (¢, = 1 in this study) near to the
radius r’. We regard the candidate circle as the target circle while

|D'| > 270" T, (12)

where |D'| is the cardinality of D', and T, € [0,1] is the predefined existing rate of
the obtained candidate circle. If the candidate circle is confirmed as the target circle
by Equation (12), we remove all elements of D" out of D and empty the cell sequence;
meanwhile, we let the current detected circle number be N =N + 1. If N =1T,,, we stop
the whole procedure; otherwise, return to Step 2.

4. Experiments and Discussions. Since the efficient randomized circle detection (RCD)
and the fast randomized Hough transform (FRHT) are similar to the proposed method

(FRECD). They randomly pick four (one) initial points with a predefined distance crite-

rion (symmetric properties) to detect target circles/arcs. In the following description, we

utilize geometric distribution theory to analyze the probability distribution and compu-

tation comparison with the RCD and FRHT. In addition, we use several synthetic and

realistic images to compare the performance of the RCD, FRHT, and proposed FRECD.

All experiments are performed on Windows Vista Operation System with Intel Core 2

Duo CPU (2.20 GHz ) and executed (C++ programming) by using Borland C++ Builder

6.0.

4.1. Probability analysis. Since an efficient initial point picking algorithm is crucial
to the performance of detection methods, the probability point of views of the geometric
distribution of initial points is discussed. While the RCD and FRHT need their initial
point(s) must lie on the target circle/arc for a successful detection, the proposed method
just requires one neighbor point (even noise or background) of target circles/arcs as the
initial point.

We use V' (valid picking) and F' =1 — V (failed picking) to denote the probability of
event of randomly picking valid initial point(s) and invalid one(s), respectively. Let K
be a random variable with a geometric distribution, the cumulative distribution function
(CDF) can be denoted as [24]:

Cx(k) =V + F'V + F°V + ...+ FF1v
=V-(1+F+F+---+F
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_(1-F). <11__1;k> -

=1— F*,
where Ck (k) denotes the accumulated probability, and the random variable K denotes
the number of failed picking until valid picking occurs exactly once.
If a W x H image (total M pixels) contains a circle with N edge points, the probability
of randomly picking a valid initial point on the circle is:

P = N/M ~ 21 - /M, (14)

where M = W x H and r denotes the radius of the target circle.

For the RCD, it needs to pick randomly four valid initial points on a target circle/arc
(valid picking for a candidate circle/arc), and the V' (the probability of valid picking) of
the RCD is:

Vaen ~ (27 ~ pt (15)
ReD A | ~ P
For the FRHT, it only needs one valid initial point, and the V' of the FRHT is:
2m - r
VernT &~ ~ P. (16)

For the proposed FRECD, it only needs one “neighbor” initial point (even noise or a
background point). As shown in Figure 3, the “neighbor” initial point (S) can be picked
in the region between the inner and outer dot circles. Therefore, the V' of the FRECD is:

1 r4w/2

27 - r
VirECD & — (27 - r)dr =w
r—w/2 M

=w-P, (17)

where w € Z* and denotes the window size. We can see that Vrrpcp is much larger than
Vrep and Vieggr. According to Equation (13), the CDFs of the three methods can be
represented as:

Crren(k) =1 — (1 — Vgep)® =1 — (1 — PHE, (18)
Crrrur(k) =1 — (1 = Verar)* =1 — (1 = P)¥, (19)
Cxrrecp(k) =1 — (1 — Virpep) =1 — (1 —w - P)~. (20)

target circle

Ficure 3. The illustration of the distribution of picking a “neighbor” ini-
tial point (e.g., S). It can be picked in the region between the inner and
outer dot circles.
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Physically, the Ck (k) denotes the probability of picking valid initial point(s) at the
kth iteration, and it means the past (k — 1) iterations of pickings are failed. We can use
Equations (18)-(20) to obtain the plots of the three CDFs. As shown in Figure 4, we set
P as two different values: 0.0035 and 0.0007, and it can be seen that the Cx prrcp(k) is
higher than the others. That is, the probability of picking valid initial point(s) at the kth
iteration of the proposed FRECD is higher than the others.

/\: RCD <>: FGHT m: FRECD
Ci(k) C(k)

1.0 W 1.0 -

0.8 0.8

04 04

0.2 / 0.2

0.0 - k00
0 200 400 600 800 1000 0 200 400 600 800 1000

(a) (b)

FIGURE 4. The distribution of cumulative density function, Cx(k), while
P is set as: (a) 0.0035; (b) 0.0007

4.2. Computation analysis. We use a W x H image (total M pixels) that contains a
circle with N = 27 - r edge points on the circumference to estimate total computation
for picking valid initial points and finding searching points. The computation (T') can be
approximated as:

where I; € Z* denotes the iteration times of finding searching points during the past &
iterations of pickings. As the discussions in Section 4.1, the probabilities of picking valid
initial point(s) for the three methods are shown in Equations (15)-(17). In general, the
minimum iteration times of the RCD for picking valid initial points (n;, = 4) on the same
circle/arc at the kth iteration is approximated as 1/Vgcp. From Equation (15), we can
obtain:

k(RCD) ~ <%>4 (22)

Since the RCD does not need to find any searching points, the total computation for RCD
is approximated as:
M

T(RCD) ~ <N>4' (23)

For the FRHT, the minimum iteration time of the FRHT (n; = 1) for picking one valid
initial point at the kth iteration is approximated as 1/Vigpyr. From Equation (16), we
can obtain:

k(FRHT) ~ % (24)

The FRHT needs to set a window region to find searching points (ns = 2). In the worst
case, there are M pixels within the window region; i.e., the window covers the whole
image. Therefore, the total computation is approximated as:

M M?

T(FRHT) ~ — M ~ —. 25
(FRHT) ~ — - M ~ — (25)
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Similarly, the minimum iteration of the FRECD (n; = 1) for picking a neighbor initial
point at the kth iteration is approximated as 1/Vrrgcp. From Equation (17), we can

obtain: \
kE(FRECD) = —. 26
(FRECD) = - (26)
The proposed FRECD also needs a window region (w X w) to find searching points
(ns = 3). In the worst case, all points in the window are considered as searching points,

I; = w?; therefore, the total computation is approximated as:

M, Muw
The ratio between T(FRECD) and T(RCD) is obtained as:
T(FRECD M NY* N\’
(FRECD)  (Mw) (NA" (M) (28)
T(RCD) N )\ M

Since the value of (N/M) is less than one, we may conclude that the proposed FRECD
will consume less computation than the RCD. Similarly, the ratio between T(FRECD)
and T(FRHT) is obtained as:

omm = (%) () =37 (9

where w € Z*. Since M (image size) is much larger than w (window size), we can
conclude that the proposed FRECD will consume less computation than the FRHT.

In what follows, we will use synthetic images to verify the feasibility (probability and
computation analysis) of the proposed FRECD. These synthetic images contain several
target circles/arcs which are artificial created and imposed with different levels of pepper
noises. Besides, we use some realistic images that contain some objects with circular
patterns to repeat the experiments. Table 1 shows the parameter settings of the three
methods in our experiments: w denotes the window size, and it is set as 30 in all experi-
ments heuristically. A, and ¢, are two tolerance values described in Equations (10) and
(11), respectively. T, denotes the existing rate of the obtained candidate circle, which is
described in Equation (12).

TABLE 1. The parameter settings of the three methods. The “x” denotes
that the parameter is not needed.

Methods w (window size) A, (pixel) ¢, (pixel) 7, (existing rate)
RCD X X 1 0.7
FRHT 30 X 1 0.7

FRECD 30 1 1 0.7

4.3. Experiments for synthetic images. An original synthetic image with a target
circle is our test image. The radius r’ of the circle is 37 pixels, and there are 232 edge
points on the circle. In Figure 5(a), 500% pepper noise (1160 points) is imposed on the
original circle image, and the detected result by using the proposed FRECD is shown in
Figure 5(b).

We impose different levels of pepper noise on the original image. The thresholds T;
(the largest iteration that we can tolerate) and T}, (the excepted number of target circles)
are set to be oo and 1, respectively. We obtain noisy images by changing the noise levels
(n%) from 50% (i.e., adding 116 noise points) to 500% (i.e., adding 1160 noise points).
The experimental result shows that all the three methods can detect the target circle
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(a) (b)

FIGURE 5. A synthetic image test (one target): (a) 500% noise imposed
on the original image with one target circle; (b) the detection result of (a)
by using the proposed FRECD

——RCD
20000

15000 A/A
£ 10000 /d
i /M
5000 M
0 7%

= T T T T T T T ' noise level
0 50 100 150 200 250 300 350 400 450 500 550 (n%)

(a)

—C—FRHT —#—FRECD

0 ' ' ' ‘ ' ' ' ' ' ' ' noise level
0 50 100 150 200 250 300 350 400 450 500 550 (n%)

(b)

FIGURE 6. The experimental result of the synthetic image in Figure 5(a).
The average iteration times (k) of picking valid initial point(s) at the kth
iteration of the three methods: (a) RCD; (b) FRHT and the proposed
FRECD.

successfully. Figure 6 illustrates the average iteration times of picking valid initial points
at the kth iteration, k.. (obtained from 100 tests), for detecting the target circle. In
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Figure 6(a), it can be seen that k4. of the RCD is much larger than the others. In Figure
6(b), the proposed FRECD provides significant better performance than the FRHT in
consuming less iteration times for picking a valid initial point: “neighbor” initial point.
In the meanwhile, we obtain the average computation, 7,,., from the 100 tests. As shown
in Figure 7, the proposed FRECD obviously consumes less computation than the others
in each noise level.

20000

——RCD
15000 /A/A
10000 /A/Q
5000 A

0 - ' T T T T T T ' noise level
0 50 100 150 200 250 300 350 400 450 500 550 (n%)

Tove

(a)

6000

——FRHT -®—FRECD
4000

~ 2000 W

0 ! T T T T T T ' noise level
0 50 100 150 200 250 300 350 400 450 500 550 (n%)

(b)

FIGURE 7. The experimental result of the synthetic image in Figure 5(a).
The average computation times, Ty, (obtained from 100 tests), of the three
methods: (a) RCD; (b) FRHT and the proposed FRECD.

In Figure 8(a), we create three different target arcs in a 256 x 256 image (i.e., T, = 3)
and impose 500% pepper noise (3965 points) with the original image. If we let T; = co (the
largest iteration that we can tolerate), all three methods can detect all targets successfully
by changing the noise levels (n%) from 50% to 500%; Figure 8(b) shows the detected result
by using the proposed FRECD.

Figure 9 illustrates the average iteration times of picking valid initial points at the
kth iteration, k.. (obtained from 100 tests), for detecting the target arcs. Since the
probability of valid picking of the RCD is quiet low, it requires much iteration in picking
valid initial point(s). In Figure 9(a), we can see that the kg of the RCD is much
larger than the others. In Figure 9(b), the proposed FRECD provides significant better
performance than the FRHT in consuming less iteration times for picking a valid initial
point: “neighbor” initial point. In the meanwhile, we obtain the average computation,
T,ve, from the 100 tests. As shown in Figure 10, the proposed FRECD obviously consumes
less computation than the others in each noise level.
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FIGURE 8. A synthetic image test (three targets): (a) 500% noise imposed
on the original image with three target arcs; (b) the detection result of (a)
by using the proposed FRECD

TABLE 2. The detection result of the moon image in Figure 11(a). The T;,
T, and T, are set as 107, 1 and 0.5, respectively. The average results: kqpe
(iteration times of picking valid initial point(s) at the kth iteration) and
Tave (computation) are obtained from 100 tests.

Methods kawe (£S.D.) Tave (£S.D.)
RCD 16,265 (£12,865) 16,265 (£12,865)
FRHT 273 (£187) 225,782 (£154,983)

FRECD 132 (+113) 0,274 (£2,836)

4.4. Experiments for realistic images. Several realistic images are used to compare
the performance of proposed FRECD with the FRHT and RCD. Figure 11 shows the edge
images of three realistic images: (a) the moon; (b) a traffic sign and (c¢) an NBA player.
We use these three images for 100 tests to obtain the average results: kg, (iteration times
of picking valid initial point(s) at the kth iteration) and Tj,. (computation).

In Figure 11(a), an arc pattern is on the moon edge, and Figure 12(a) shows its detection
result. In Table 2, all of the three methods can detect the arc pattern successfully while
T; is set as 107. The kg (1324113) of the proposed FRECD is much less than that of the
other methods. In addition, the T,,. (9,274 + 2,836) of the proposed FRECD consumes
the least computation than the others.

In Figure 11(b), there are two circles on the traffic sign. When T; = 107, all of the three
methods can detect the target circles successfully, and Figure 12(b) shows the detection
result. In Table 3, the kqe (985+694) and Ty (44,211+31, 142) of the proposed FRECD
are much less than that of the other methods.

In Figure 11(c), a circle pattern is on a complex background. When T; = 107, all of
the three methods can detect the target circle successfully, and Figure 12(c) shows the
detection result. In Table 4, the ky. (472 + 353) and T, (23,075 + 17,257) of the
proposed FRECD are much less than those of the other methods.

4.5. Discussions of the probability of picking valid initial points. In practice
(similar to the synthetic and realistic experiments), the value of P (i.e., N/M) is ranged
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FIGURE 9. The experimental result of the synthetic image in Figure 8(a).
The average iteration times (kg.e) of picking valid initial point(s) at the kth
iteration of the three methods: (a) RCD; (b) FRHT and the proposed
FRECD.
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FIGURE 10. The experimental result of the synthetic image in Figure 8(a).
The average computation, T, (obtained from 100 tests), of the three meth-
ods: RCD, FRHT and the proposed FRECD.
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(a) (c)

FIGURE 11. The edge images of three realistic images: (a) moon; (b) a

traffic sign; (c) an NBA player

TABLE 3. The detection result of the traffic sign image in Figure 11(b). The
T;, T,, and T, are set as 107, 2 and 0.7, respectively. The average results:
kave (iteration times of picking valid initial point(s) at the kth iteration)
and Ty,. (computation) are obtained from 100 tests.

Methods kave (£S.D.) Tave (£S.D.)
RCD 71,927 (£36,423) 71,927 (£+36,423)
FRHT 5,989 (+£2,431) 27,928,200 (+18,725,900)
FRECD 985 (4694) 44,211 (4+31,142)

TABLE 4. The detection result of the NBA player image in Figure 11(c).
The T}, T;, and T, are set as 107, 1 and 0.7, respectively. The average results:
kave (iteration times of picking valid initial point(s) at the kth iteration) and
Tuve (computation) are obtained from 100 tests.

Methods kave (£S.D.) Tove (£S.D.)
RCD 8,786,500 (+1,123) 8,786,500 (+1,123)
FRHT 14,578 (£11,598) 4,434,380 (+3,528,730)

FRECD 472 (+353) 23,075 (£17,257)

from 0.0007 to 0.0043. We use these values to demonstrate the performance of required
iteration before picking valid initial point(s).

(1)

For the synthetic image experiment in Figure 5(a), the image size is 256 x 256
(i.e., M), and there are about 232 (i.e., N) edge points on the target circle, the
P is approximated as 232/(256 x 256) ~ 0.0035. From Figure 4(a), we can see
Ck,rrecp(k) is the highest one. This is the reason that the FRECD consumes
less iteration than others in picking a valid initial point, as shown in Figure 6(b).
Furthermore, Ck rep(k) of the RCD is far less than the others while = < 1,000.
This explains why the RCD consumes much more iteration times than the others,
as shown in Figure 6(a) and Figure 7(a).

For the realistic image experiments in Section 4.4, the P values of the moon (in
Figure 11(a)) and traffic sign images (in Figure 11(b)) are 1005/(591 x 394)
0.0043 and 1343/(450 x 600) ~ 0.0049, respectively. Since those P’s are close to the

~
~
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(a) (b) (c)

FIGURE 12. The edge images of three realistic images: (a) moon; (b) a
traffic sign; (c) an NBA player

value (0.0035) in above synthetic image experiment, we can obtain similar results:
the proposed FRECD has higher cumulated probability than the others, and the
detection result shows that the proposed FRECD consumes the least iterations than
the others. In Figure 11(c), there is a target circle (the basketball) with complex
background. We have a small P value as 414/(666 x 800) ~ 0.0007. In Figure 4(b),
we can see the proposed FRECD still has obviously higher cumulated probability
than the others. That means the proposed FRECD has better performance than the
other two methods in picking a valid initial point, especially in cases with noise or
complex background.

5. Conclusions. In this paper, we propose a new circle/arc detection method, the
fast randomized method for efficient circle/arc detection (FRECD). It only requires one
“neighbor” point (even noise or background) of target circles/arcs as the initial point.
From the probability and computation analysis, we can conclude that the FRECD con-
sumes much less iteration times (for picking a valid initial point) and computation (T')
than the RCD and FRHT. Moreover, the proposed FRECD does not use storage for vot-
ing space, and the experimental results indicate the proposed FRECD method provides
better performance than previous multi-step based methods.

In order to be an efficient multi-step based method, the FRECD uses a bigger window
size to obtain a higher probability of picking a valid initial point; however, the computa-
tion costs (i.e., computation T') will increase simultaneously (please see Equation (27)).
Therefore, how to decide a proper window size becomes an important issue. For future
work, we will find a way to decide an adaptive window size (w) instead of a predefined
value.
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