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Abstract. Many previous approaches to frequent episode discovery only accept sim-
ple sequences. Although a recent approach has been able to find frequent episodes from
complex sequences, the discovered sets are neither condensed nor accurate. This paper
investigates the discovery of condensed sets of frequent episodes from complex sequences.
We adopt a novel anti-monotonic frequency measure based on non-redundant occurrences,
and define a condensed set, nDaCF (the set of non-derivable approximately closed fre-
quent episodes) within a given maximal error bound of support. We then introduce a
series of effective pruning strategies, and develop a method, nDaCF -Miner, for discov-
ering nDaCF sets. Experimental results show that, when the error bound is somewhat
high, the discovered nDaCF sets are two orders of magnitude smaller than complete sets,
and nDaCF-miner is more efficient than previous mining approaches. In addition, the
nDaCF sets are more accurate than the sets found by previous approaches.
Keywords: Frequent episodes, Condensed sets, Sequence data mining

1. Introduction. Sequences are an important type of data. Large numbers of real-world
data can be represented as sequences, such as DNA sequences [1], Web-click streams [2]
and audio/video streams [3,4]. Sequences in data mining can be classified into simple
sequences, i.e., single-item sequences as shown in Figure 1(a), and complex sequences in
which multiple items may appear at one timestamp (see Figure 1(b)).

Episodes introduced by Mannila et al. [5] are important pattern for modelling the rela-
tive order of occurrences for different types of data elements over a single data sequence.
For instance, the order ‘A occurs before C’ can be represented as a serial episode denoted
as ⟨AC⟩. One fundamental and important problem in single sequence analysis is finding
frequent episodes (FEs), i.e., the episodes with supports (frequencies) no less than a user
specified threshold min sup, as FEs are able to capture ‘common features’ of the relative
order of occurrence within a sequence. Since FEs were introduced [5], several typical ap-
proaches [5-11] have been proposed to discover FEs. Most approaches [5-9,11] only focus
on FE mining from simple sequences. However, in the real world, complex sequences
need to be considered when multiple events (items) may appear at each time slot. For
example, in the instance of stock price analysis in [10], ten evens need to be considered
in each time slot. Recently, Huang et al. [10] began to investigate FE mining in complex
sequences, and proposed EMMA as an approach to find all FEs in complex sequences.
EMMA, however, suffers from three significant deficiencies. First, the frequency measure
adopted in EMMA violates anti-monotonicity, a common principle in frequent pattern
mining [12]. The second deficiency, inaccurate resulting sets, is a consequence of non-anti-
monotonic measures. The third deficiency with EMMA is that resulting sets are unable to
be condensed because all FEs will be found. In the community of frequent pattern (FP)
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mining [13-16], it has been widely recognised that it is not necessary to find complete
FP sets and only condensed FP sets need to be extracted. With large numbers of redun-
dant patterns, complete FP sets not only bring inconvenience to users’ comprehension
and utilisation, but also result in high search complexity. Consequently, inaccuracy and
non-condensation of the complete FE sets found by EMMA hinder its real applications.
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(a) A single-item sequence (b) A complex sequence

Figure 1. Two classes of sequences

In order to overcome the deficiencies of EMMA and develop a more efficient and ef-
fective approach for FE discovery from complex sequences, we adopt a new frequency
measure, LMaxnR-O-freq, which we proposed in our latest publication [17]. Based on
this measure, we define a condensed set of FEs, nDaCF (the set of non-derivable approx-
imately closed frequently episodes). We then introduce a series of pruning strategies and
develop a method, nDaCF-miner for discovering nDaCF sets.
Table 1 shows a comparison between our work and previous studies in terms of input,

frequency measure and output. For output, three aspects are compared: the outputted FE
set, its condensation and accuracy. In Column 5, ‘F’ means false patterns may be included
in the resulting set, and ‘M’ means frequent patterns may be missed. 1 The comparison
in Table 1 demonstrates that, compared with previous studies, our work has three unique
features and main advantages. These are a more appropriate anti-monotonic frequency
measure, LMaxnR-O-freq [17], more condensed resulting sets and more accurate results.
These will be verified in the experimental evaluation.

Table 1. A comparison between our work and previous studies

Input Frequency measure
Output

Paper
FE set Condensation Accuracy

fixed-win-freq complete no (F, ) [5]
mo-freq complete no ( , M) [6,7]

A single-item T-freq maximal high (F, M) [8]
sequence non-overlapped-freq complete no ( , M) [9]

mo-freq closed insufficient ( , M) [11]
A complex distinct-bound-st-freq complete no (F, M) [10]
sequence LMaxnR-O-freq nDaCF high ( , ) this

The rest of this paper is organised as follows. In Section 2, we present preliminaries,
frequency measure and problem definition. Section 3 proposes the mining method, and
experimental results are presented in Section 4. Section 5 concludes the paper.

2. Preliminaries, Frequency Measure and Problem Definition.

1Please refer to [17,19] for the details of accuracy analysis.



MINING CONDENSED SETS OF FREQUENT EPISODES 455

2.1. Preliminaries. In this paper, we take complex sequences as input. Given a finite set
of items I = {i1, i2, . . . , i|I|} (|I| ≥ 1), a complex sequence, S, over I is an ordered list of
data elements, denoted as S = ⟨(e1, t1)(e2, t2) . . . (en, tn)⟩ (n ≥ 1), where ej ⊆ I is a data
element, tj ∈ {1, 2, . . .} (j = 1, . . . , n) is the occurrence time (timestamp) of ej in S, and
tj < tj+1 for all j = 1, . . . , n−1. We assume that input sequences are consecutive, i.e., tj =
j. Sequence ⟨(e1, 1)(e2, 2) . . . (en, n)⟩ is abbreviated as ⟨(e1)1(e2)2 . . . (en)n⟩. For example,
the sequences in Figures 1(a) and 1(b) can be represented as ⟨(A)1(A)2(C)3(B)4(B)5⟩ and
⟨(AE)1(AC)2(ABC)3(AC)4(BC)5(CD)6⟩ respectively.
Definition 2.1. (Serial Episode) Given itemset I = {i1, i2, . . . , i|I|} (|I| ≥ 1), a serial
episode 2 P over I is an ordered list of types of data elements, denoted as P = ⟨p1p2 . . . pm⟩,
where pj ⊆ I (pj ̸= ∅) (j = 1, . . . ,m) is called an episode element. The length of P ,
denoted as P.L, is defined as m, and the size of P , denoted as P.size, is defined as
the number of items that P contains. Essentially episode P imposes a constraint on
the relative order of occurrences of pj, i.e., pj always occurs before pj+1 for all j =
1, 2, . . . ,m− 1.

In this paper, all items in each episode element pj are listed in alphabetical order in a
pair of parentheses, and the parentheses are omitted when pj contains only one item. For
example, P = ⟨B(AC)⟩ is an episode which requires that B occurs before A and C, and
A and C appear simultaneously.

Definition 2.2. (Sub-episode) An episode P = ⟨p1p2 . . . pm⟩ is a sub-episode of another
episode P ′ = ⟨p′1p′2 . . . p′n⟩, denoted by P ⊑ P ′ or P ′ ⊒ P , (P @ P ′ if P ̸= P ′) if there
exists 1 ≤ j1 < j2 < . . . < jm ≤ n, such that pk ⊆ p′jk for all k = 1, . . . ,m.

Definition 2.3. (Sliding Window) Given sequence S = ⟨(e1)1(e2)2 . . . (en)n⟩, a sliding
window in S from starting time st to ending time et, denoted as win(S, st, et), is defined
as ⟨(est)st(est+1)st+1 . . . (eet)et⟩, where 1 ≤ st < et ≤ n. The width of the window is defined
as et− st [8].

Definition 2.4. (Occurrence, Minimal Occurrence) Given S = ⟨(e1)1(e2)2 . . . (en)n⟩ and
episode P = ⟨p1p2 . . . pm⟩, if there exists 1 ≤ j1 < j2 < . . . < jm ≤ n s.t. pk ⊆ ejk for all
k = 1, 2, . . . ,m, then we say that P occurs in S, and o = ⟨(ej1)j1(ej2)j2 . . . (ejm)jm⟩ is an
occurrence of P in S. For simplicity, we use a timestamp list ⟨j1, j2, . . . , jm⟩ to represent
o, and use o[k] to denote jk (k = 1, 2, . . . ,m). Furthermore, if st ≤ j1 < jm ≤ et, then we
say that window win(S, st, et) contains P . The width of occurrence o = ⟨j1, j2, . . . , jm⟩ is
defined as jm − j1. An occurrence of P in S, o = ⟨j1, j2, . . . , jm⟩, is minimal if P has no
other occurrence in S, o′ = ⟨j′1, j′2, . . . , j′m⟩, s.t. (j1 < j′1 ∧ j′m ≤ jm) ∨ (j1 ≤ j′1 ∧ j′m < jm)
(i.e., [j′1, j

′
m] ⊂ [j1, jm]).

The set of all (minimal) occurrences of P in S is denoted as O(S, P ) (MO(S, P )). The
occurrences in any set are ordered by their first timestamps in descending order. For
instance, given S in Figure 1(a) and P = ⟨AB⟩, O(S, P ) = {⟨1, 4⟩, ⟨2, 4⟩, ⟨1, 5⟩, ⟨2, 5⟩}
and MO(S, P ) = {⟨2, 4⟩}.

An episode P of size P.size can be extended to any super-episode P ′ of size P.size+ 1
by adding an item α in two ways: vertical extension and horizontal extension. Vertical
extension, also called element extension, involves inserting an item into an episode ele-
ment. Horizontal extension, also called sequence extension, involves inserting an item (as
an episode element) into an episode. According to the position of insertion, episode exten-
sions can be classified into rightmost extensions and non-rightmost extensions. Episode
extensions are formally defined as follows.

2In this paper, we only consider serial episodes, and do not consider parallel episodes or composite
episodes [5].
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Definition 2.5. (Episode Extension ‘⋄’) Episode P = ⟨p1p2 . . . pm⟩ can be extended
with item α ∈ I in two ways.

1. Vertical Extension ‘⋄V ’
(a) Rightmost Vertical Extension ‘⋄RV ’

Episode P ′ = ⟨p1p2 . . . pm−1p
′
m⟩ is called a rightmost vertical extension of P with

item α, denoted by P ⋄RV α, if p′m = pm ∪ {α}, and ∀β ∈ pm, α < β 3.
(b) Non-rightmost Vertical Extension on the jth Element ‘⋄jV ’

Episode P ′ = ⟨p1p2 . . . pj−1p
′
jpj+1 . . . pm⟩ (1 ≤ j ≤ m) is called a non-rightmost

element extension of P on the jth element with item α, denoted by P ⋄jV α, if
(1) p′j = pj ∪ {α} and (2) ∀β ∈ pj, α > β if j = m.

2. Horizontal Extension ‘⋄H ’
(a) Rightmost Horizontal Extension ‘⋄RH ’

Episode P ′ = ⟨p1p2 . . . pmα⟩ is called a rightmost horizontal extension of P with
item α, denoted by P ⋄RH α.

(b) Non-rightmost Horizontal Extension before the jth Element ‘⋄jH ’
Episode P ′ = p1p2 . . . pj−1αpj . . . pm (1 ≤ j ≤ m and α ̸= pj) is called a non-
rightmost horizontal extension of P before the jth element with item α, denoted
by P ⋄jH α.

For example, ⟨A(BC)⟩ = ⟨AB⟩ ⋄RV C, ⟨A(BC)D⟩ = ⟨ABD⟩ ⋄2V C, ⟨AB⟩ = ⟨A⟩ ⋄RH B
and ⟨ABD⟩ = ⟨AD⟩ ⋄2H B. Note that ⟨A(BC)⟩ = ⟨AC⟩ ⋄2V B ̸= ⟨AC⟩ ⋄RV B since B > C,
⟨ACC⟩ = ⟨AC⟩ ⋄RH C ̸= ⟨AC⟩ ⋄2H C since C = C, and ⟨ACCD⟩ = ⟨ACD⟩ ⋄3H C ̸=
⟨ACD⟩ ⋄2H C since C = p2.

Definition 2.6. (Episode Concatenation ‘⊕’) Given prefix episode P = ⟨p1 . . . pm⟩
(m ≥ 1) and suffix episode Q = ⟨q1 . . . qn⟩ (n ≥ 0), these can be concatenated in two ways.

1. Horizontal Concatenation ‘⊕H ’
P ⊕H Q = ⟨p1 . . . pmq1 . . . qn⟩.

2. Vertical Concatenation ‘⊕V ’
P ⊕V Q = ⟨p1 . . . pm−1p

′
mq2 . . . qn⟩, where p′m = pm ∪ q1.

For example, ⟨AB⟩ ⊕H ⟨CD⟩ = ⟨ABCD⟩ and ⟨AB⟩ ⊕V ⟨CD⟩ = ⟨A(BC)D⟩. Any
episode with P as the prefix (P -prefixed episode) can be represented by P ⊕ Q, where
⊕ ∈ {⊕H ,⊕V }.

2.2. Frequency measure. We adopt a new frequency measure, LMaxnR-O-freq [17]
to measure frequency of episodes in this paper. This measure was adapted from ‘repetitive
support’ in [18]. This section reviews the definitions briefly.

Definition 2.7. (Non-redundant Sets of Occurrences) Given sequence S and episode
P , a set of occurrences of P in S is non-redundant, if for any two occurrences, o =
⟨j1, j2, . . . , jm⟩ and o′ = ⟨j′1, j′2, . . . , j′m⟩ (o ̸= o′) in this set, ¬∃k ∈ {1, 2, . . . ,m}, s.t.
jk = j′k.

The set of all non-redundant sets of occurrences of P in S is denoted as nR-O(S, P ).
In nR-O(S, P ), the sets with maximal cardinality are included in MaxnR-O(S, P ). For
instance, given S in Figure 1(a) and P = ⟨AB⟩, MaxnR-O(S, P ) = {{⟨1, 4⟩, ⟨2, 5⟩},
{⟨2, 4⟩, ⟨1, 5⟩}}.
Based on the maximal non-redundant set of occurrences, a naive frequency measure

can be defined as:

MaxnR-O-freq(S, P ) = max
∀OS∈nR-O(S,P )

(|OS|) (1)

3α < β means α is after β alphabetically, e.g., B < A.
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However, MaxnR-O-freq is time expensive to compute. To achieve a more efficient
computation, for MaxnR-O(S, P ), we chose a special set called the leftmost maximal
non-redundant set, denoted as LMaxnR-O(S, P ). To define the set, the occurrences
in any non-redundant set are ordered by the ending timestamp in ascending order, i.e.,
in a sorted set {o1, o2, . . . , 0r} ∈ nR-O(S, P ), ol[m] < ol+1[m] (m = P.L) holds for all
l = 1, 2, . . . , r − 1.

Definition 2.8. (LMaxnR-O) The leftmost maximal non-redundant set of occurrences
of P in S, LMaxnR-O(S, P ), is defined as the occurrence set, OS = {o1, . . . , or}, that
satisfies (1) OS ∈ MaxnR-O(S, P ) and (2) ∀OS ′ = {o′1, . . . , o′r} ∈ MaxnR-O(S, P )
(OS ̸= OS ′), ol[k] ≤ o′l[k] holds for all l = 1, . . . , r and k = 1, . . . , P.L.

For instance, in MaxnR-O(S, P ) = {{⟨1, 4⟩, ⟨2, 5⟩}, {⟨2, 4⟩, ⟨1, 5⟩}}, LMaxnR-O(S, P )
= {⟨1, 4⟩, ⟨2, 5⟩}.

Definition 2.9. (LMax-nR-O-freq) The measure based on the leftmost maximal non-
redundant set of occurrences is defined as LMaxnR-O-freq(S, P ) = |LMaxnR-O(S, P )|.

Given S and min sup, P is frequent in S if sup(S, P ) = LMaxnR-O-freq(S, P ) ≥
min sup. In the rest of the paper, S is omitted when it is apparent. For example,
sup(S, P )=sup(P ), O(S, P )=O(P ) and LMaxnR-O-freq(S, P )=LMaxnR-O-freq(P ).

2.3. Problem definition. This section defines the condensed set, nDaCF and formalises
the mining problem.

A pattern P is closed if there exist no supper-pattern P ′ of P such that sup(P ) =
sup(P ′) [12]. Closed patterns [14] are a concise representation that is widely used in
frequent pattern mining. However, Pei et al. [15] point out that sets of closed frequent
patterns might still be too large since a pattern P can only be pruned if there is a supper-
pattern P ′ with the same support. Even if sup(P ′) deviates from sup(P ) slightly, e.g.,
sup(P ) = 100 and sup(P ′) = 99, P cannot be pruned and represented by P ′. In this
paper, a small deviation between sup(P ′) and sup(P ) is tolerable. Episode P is pruned
as a non-approximately-closed episode if there exists supper-episode P ′ such that the
deviation between sup(P ′) and sup(P ) is within a specified maximal error bound θ. The
conventional ‘closed’ is called ‘exactly closed’ in this paper. Exactly closed episodes and
approximately closed episodes are defined as follows.

Definition 2.10. ((Non) Exactly Closed Episode) Given S, P is exactly closed (eC)
if ¬∃P ′ A P , such that sup(P ) = sup(P ′), else P is non-exactly-closed (neC).

Definition 2.11. ((Non)Approximately-closed Episode) Given S, P and maximal
error bound θ, P is approximately-closed (aC) if ¬∃ P ′ A P such that J(sup(P ), sup(P ′)) =
|sup(P ′) − sup(P )|/sup(P ) ≤ θ, where J(sup(P ), sup(P ′)) represents the deviation be-
tween sup(P ′) and sup(P ). Otherwise, we say P is non-approximately-closed (naC).

Non-exactly-closed episode P can be represented by its supper-episode P ′ since sup(P )
can be exactly derived from sup(P ′), i.e., given sup(P ′), it can be deduced that sup(P ) =
sup(P ′). Non-approximately-closed episode P can be represented by its supper-episode
P ′ since sup(P ) can be approximately derived from sup(P ′), i.e., given sup(P ′), it can be
deduced that J(sup(P ), sup(P ′)) ≤ θ. The derivation relationship is defined as follows.

Definition 2.12. (Derivation Relationship) Given S, θ, P and P ′ A P , assume
sup(P ′) has been obtained. we say P can be exactly derived from P ′, denoted as eD(P, P ′),
if sup(P ) = sup(P ′) can be deduced. We say P can be approximately derived from P ′,
denoted as aD(P, P ′), if it can be deduced that J(sup(P ), sup(P ′)) ≤ θ.



458 M. GAN AND H. DAI

The eD relationship satisfies the transitivity property, i.e., if eD(P, P ′) and eD(P ′, P ′′),
then eD(P, P ′′). However, aD does not satisfy the transitivity property.

Definition 2.13. (The nDaCF Set) Given S, min sup and θ, a set of frequent episodes
discovered from S, P is called a nDaCF set, if (1) for ∀P ∈ P, P cannot be derived from
P, i.e., ¬∃P ′ ∈ P such that eD(P, P ′) or aD(P, P ′), and (2) for ∀P ̸∈ P, if sup(P ) ≥
min sup, then P can be derived from P, i.e., ∃P ′ ∈ P such that eD(P, P ′) or aD(P, P ′).

Intuitively, any episode in the nDaCF set is non-derivable, and any frequent episode
outside of it can be derived from it. Given a found nDaCF set P, for any frequent episode
P , we have

sup(P )

{
= sup(P ) if P ∈ P
∈ [sup(P ′), (1 + θ)sup (P ′)] if P ̸∈ P (2)

where P ′ ∈ P and P ′ ⊃ P . That is to say we can use sup(P ′) to approximate sup(P )
with guaranteed maximal error bound θ for each frequent episode P outside of P.

Definition 2.14. (The Mining Problem) Given S, min sup and θ, the problem is
discovering a nDaCF set P from a given complex sequence S.

3. Mining the nDaCF Sets. The basic idea of the mining process is to enumerate each
candidate episode in a prefix tree level by level. In the enumeration procedure, a series of
effective strategies is introduced to prune derivable non-closed episodes, and infrequent
episodes are pruned. Unpruned frequent episodes are inserted into the nDaCF set. All
frequent episodes outside the nDaCF set can be derived from it. Example 3.1 is used to
illustrate the checking and pruning operations along with the execution of the proposed
method.

Example 3.1. Given a sequence as shown in Figure 1(b), min sup = 3 and θ = 1/3, the
proposed method is used to discover a nDaCF set from the sequence.

3.1. Computation of support. The essence of computing LMaxnR-O-freq(P ) is to
construct LMaxnR-O(P ). Given S and P = ⟨p1p2 . . . pm⟩, LMaxnR-O(P ) can be con-
structed recursively as follows. If m = 1, let LMaxnR-O(P ) = O(P ). If m > 1,
LMaxnR-O(P ) = Join(LMaxnR-O(pre(P )), LMaxnR-O(tail(P ))), where pre(P ) =
⟨p1 p2 . . . pm−1⟩ and tail(P ) = ⟨pm⟩. As shown in Figure 2, the basic idea of the Join
procedure is, for each occurrence o′j in LMaxnR-O(pre(P )), to find the leftmost occur-
rence o∗r in LMaxnR-O(tail(P )) that comes after the last timestamp of o′j, and to insert
oj = o′j ◦ o∗r into LMaxnR-O(P ). For example, given sequence S shown in Figure 1(b)
and P = ⟨A(AC)⟩, we have pre(P ) = ⟨A⟩, tail(P ) = ⟨AC⟩, LMaxnR-O(pre(P )) =
{⟨1⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨6⟩}, LMaxnR-O(tail(P )) = {⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨6⟩}, LMaxnR-O(S, P ) =
Join({⟨1⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨6⟩}, {⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨6⟩}) = {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩, ⟨4, 6⟩}. Note that
in implementation, it is not necessary to record the whole LMaxnR-O(S, P ) if P.L > 1.
We only need to keep the last timestamp of every occurrence since the former timestamps
can be obtained from pre(P ), e.g., LMaxnR-O(S, P ) is recorded as {⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨6⟩}.

3.2. Search strategy. Breadth-first search strategy is adopted to generate episodes, so
that non-closed frequent episodes can be pruned as early as possible. To begin with, the
input sequence is scanned to find frequent size-1 episodes (e.g., in Example 3.1, the set is
{A,C}), and then for each frequent size-1 episode, conduct ⋄RV and ⋄RS to generate size-2
episodes. The episodes are extended level by level until larger frequent episodes can no
longer be generated. The episodes are stored in an episode enumeration tree. Figure 3
shows the complete episode enumeration tree for Example 3.1 (infrequent episodes are
excluded in the tree). Each episode P is stored in a node (nodes and episodes are used
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Procedure 1: Join(LMaxnR-O(pre(P )), LMaxnR-O(tail(P )))

Input : LMaxnR-O(pre(P )) and LMaxnR-O(tail(P ))
Output: LMaxnR-O(P )
start ← 1;1

for each j=1 to |LMaxnR-O(pre(P ))| do2

for each r=start to |LMaxnR-O(tail(P ))| do3

if o∗r[1] > o′j[m − 1] then4

oj ← o′j ◦ o∗r = 〈o′j[1], o′j[2], ..., o′j[m − 1], o∗r[1]〉;5

Insert oj into LMaxnR-O(P );6

start ← r + 1;7

return LMaxnR-O(P )8

1

Figure 2. The Join procedure
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Figure 3. Episode enumeration tree and pruned nodes

interchangeably in the rest of this paper), and all P -prefixed episodes are included in the
P -rooted subtree. Any node P is extended as follows: (1) for each possible item α, do
P ⋄RV α (if α > β, do the extension with α first), and (2) for each possible item α, do
P ⋄RH α (if α > β, do the extension with α first). The extension strategy guarantees that
no episodes are missed and no duplicate episodes are generated.

3.3. Checking and pruning strategies. Since frequency measure LMaxnR-O-freq is
anti-monotonic [17], infrequent episodes can be safely pruned by the downward pruning
strategy [12]. This means an episode is not extended if it is infrequent, and an episode
is infrequent if any of its sub-episodes is infrequent. For frequent episodes, a series of
strategies are introduced to check and prune derivable episodes. The derivable episodes
are divided into four categories.

1. Subtree-eD episodes: episode P is a subtree-eD episode if there exists P ′ = P ⋄ α,
such that any P -prefixed episode, P ⊕ Q, can be exactly derived from the supper-
episode P ′ ⊕Q, i.e., eD(P ⊕Q,P ′ ⊕Q).

2. Subtree-aD episodes: episode P is a subtree-aD episode if there exists P ′ = P ⋄ α,
such that any P -prefixed episode, P ⊕ Q, can be approximately derived from the
supper-episode P ′ ⊕Q, i.e., aD(P ⊕Q,P ′ ⊕Q).

3. Node-eD episodes: episode P is a node-eD episode if there exists a supper-episode
P ′ = P ⋄ α such that eD(P, P ′).

4. Node-aD episodes: pattern P is a node-aD pattern if there exists a supper-pattern
P ′ = P ⋄ α such that aD(P, P ′).



460 M. GAN AND H. DAI

Any subtree with subtree-eD episode P as the root can be pruned since all P -prefixed
episodes are neC. A node-aD episode indicates that only itself is naC and can be pruned.
The subtrees of a subtree-aD episode and a node-aD episode can be pruned if they satisfy
additional conditions. For the above four classes of episodes, four corresponding checking
and pruning strategies are introduced.

Theorem 3.1. (Subtree-eD Checking) Given S and P , let LMaxnR-O(P ) = {ol}
(1 ≤ l ≤ sup(P )), P ′ = P ⋄ α, and LMaxnR-O(P ′) = {o′l} (1 ≤ l ≤ sup(P ′)). For any
P -prefixed episode, P ⊕Q, eD(P ⊕Q,P ′ ⊕Q) holds, i.e., P ⊕Q is non-exactly-closed, in
one of the following three cases for any Q (Note: Subtree-eD-Checking(P ) returns true if
such a P ′ exists).

1. If ∃P ′ = P ⋄jH α s.t. (1) sup(P ) = sup (P ′);
and (2) o′l[P

′.L] ≤ ol[P.L] for all l = 1, . . . , sup(P ).
2. If P.L = 1, ∃P ′ = P ⋄1V α, s.t. sup(P ) = sup(P ′).

3. If P.L > 1, ∃P ′ = P ⋄jV α, s.t. (1) j ̸= P.L; (2) sup(P ) = sup (P ′) and (3)
o′l[j] = ol[j] for all l = 1, . . . , sup(P ).

For instance, as shown in Figure 3, in Example 3.1, P = ⟨(AC)⟩ is a subtree-eD episode,
because there exists P ′ = P ⋄1H A = ⟨A(AC)⟩ that satisfies the conditions in Case 1 of
Theorem 3.1. Similarly, ⟨AAC⟩ and ⟨ACCC⟩ are subtree-eD episodes.

Theorem 3.2. (Subtree-aD Checking) Given S, P , min sup and θ, any P -prefixed
episode, P ⊕Q, must be non-approximately-closed (since J(sup(P ⊕Q), sup(P ′ ⊕Q)) ≤
θ), if ∃P ′ = P ⋄jH α such that (1) sup(P ) − sup(P ′) ≤ θ × min sup, and (2) for ∀
o′l ∈ LMaxnR-O(P ′) and the corresponding ol ∈ LMaxnR-O(P ), o′l[P

′.L] ≤ ol[P.L]
(Note: Subtree-aD-Checking(P ) returns true if such a P ′ exists).

For instance, as shown in Figure 3, in Example 3.1, P = ⟨C⟩ is a subtree-aD episode
because there exists P ′ = ⟨AC⟩ such that the conditions in Theorem 3.2 are satisfied.
Please refer to the appendix for the proofs of Theorems 3.1 and 3.2.

Definition 3.1. (Node-eD Checking) If P ′ = P ⋄α exists such that sup(P ) = sup (P ′),
then eD (P, P ′) holds, i.e., P is neC (return true), else P is eC (return false).

Definition 3.2. (Node-aD Checking) Given S, P and θ, it returns true if ∃P ′ = P ⋄α,
such that J (sup(P ), sup (P ′)) ≤ θ.

Four pruning strategies are introduced for the four classes of derivable episodes.

Definition 3.3. (Subtree-eD Pruning) If Subtree-eD-Checking(P ) returns true, then
P is called a subtree-eD episode, i.e., the subtrees of P can be pruned since any P -prefixed
episodes, P ⊕Q, can be derived exactly from a corresponding P ′-prefixed episodes, P ′⊕Q.

For instance, the subtrees of ⟨(AC)⟩ can be pruned because ⟨(AC)⟩ is a subtree-eD
episode.

Definition 3.4. (Node-eD Pruning) Episode P is pruned if there exists P ′ such that
Node-eD-Checking(P) = true.

Exactly derivable episodes can be pruned directly since eD satisfies transitivity. In
contrast, not all approximately derivable episodes can be pruned straightaway, since aD
does not satisfy the transitivity property. Actually, P can be pruned if there exists P ′ such
that not only aD (P, P ′) but also J(P.max-aD-sup, sup(P ′)) ≤ θ, where, P.max-aD-sup
denotes the maximal support of the episodes that need to be approximately derived from
P , P.aD-episodes.
Two aD pruning strategies are defined as follows.
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Figure 4. Checking and pruning process

Definition 3.5. (Subtree-aD Pruning) If ∃P ′ = P ⋄jH α, such that (1) Subtree-aD-
Checking(P )=true and (2) J(P.max-aD-sup, sup(P ′)) ≤ θ if P.max-aD-sup > 0, or
(3) P.max-aD-sup = 0, then P is called subtree-aD node, i.e., P and its subtrees can be
pruned since any P -prefixed episode P ⊕ Q can be approximately derived from P ′ ⊕ Q,
and any episode in P.aD-episodes can be approximately derived.

For instance, in Figure 3, for P = ⟨C⟩, there exists P ′ = ⟨AC⟩ such that Subtree-aD-
Checking(P ) = true. Consequently, the subtrees of ⟨C⟩ can be pruned. Since ⟨AC⟩ is
chosen to approximately represent the subtrees of ⟨C⟩, ⟨AC⟩.max -aD-sup = sup(C) = 5.

Definition 3.6. (node-aD Pruning) Episode P is pruned if there exists P ′ such that
(1) Node-aD-Checking(P) = true, and (2) J(P.max-aD-sup, sup(P ′)) ≤ θ when P.max-
aD-sup > 0 or (3) P.max-aD-sup = 0.

For instance, in Example 3.1, for P = ⟨AC⟩, there exists P ′ = ⟨AAC⟩ such that
node-aD-checking(P )=true. However, ⟨AAC⟩ cannot be used to approximately represent
⟨AC⟩, because J(⟨AC⟩.max-aD-sup, sup(⟨AAC⟩)) = (5− 3)/5 = 0.4 > 1/3 = θ.

The above checking and pruning strategies are conducted as shown in Figure 4. The
subtree-eD-pruning and subtree-aD-pruning are conducted first to prune derivable episodes
as early as possible.

3.4. nDaCF-Miner. The proposed nDaCF-Miner is described in Figure 5. The basic
idea is to enumerate episodes level by level, and prune infrequent episodes and derivable
non-closed episodes. To begin with, frequent items are found as the basis for episode
enumeration. In Line 2, frequent length-1 episodes are found as the Tail set to be used in
the Join procedure. From Line 4 to Line 33, episodes are enumerated level by level and
the five pruning strategies are conducted. Episode extension is embedded in the checking
process. For new episodes with a length of more than 1, the Join procedure is conducted
to compute their supports with infrequent episodes pruned straightaway. The episode
extension in lines 23 and 30 only creates the episodes that have not been generated in the
previous checking process. In lines 12-15, 18-19 and 25-28, P.max -aD-sup is transmitted
to P ′ when P ′ is selected to approximately derive P .

Example 3.1 is used to illustrate the execution of nDaCF-Miner. First, find frequent
item set, {⟨A⟩ : 5, ⟨C⟩ : 5} and Tail = {⟨A⟩ : 5, ⟨C⟩ : 5, ⟨(AC)⟩ : 3}, where the number
attached to each episode is its support.

As shown in Figure 3, when l = 1, there exists P ′ = ⟨AC⟩ so that P = ⟨C⟩ is a subtree-
aD episode, and the subtree of P can be pruned according to Definition 3.5. Therefore,
⟨AC⟩ is selected to approximately represent the subtree of ⟨C⟩, and ⟨AC⟩.max -aD-sup =
sup(⟨C⟩) = 5. Episode ⟨A⟩ can be exactly derived from ⟨AC⟩.

When l = 2, there exists P ′ = ⟨A(AC)⟩ so that P = ⟨(AC)⟩ is a subtree-eD episode,
and the subtree of P can be pruned. Episode ⟨AA⟩ can be exactly derived from ⟨A(AC)⟩.
Episode ⟨ACC⟩ is selected to exactly represent ⟨AC⟩. Since ⟨AC⟩.max -aD-sup = 5 > 0,
it is transmitted to ⟨ACC⟩, i.e., ⟨ACC⟩.max -aD-sup = 5.
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Algorithm 1: nDaCF-Miner(S, min sup, θ, Tr, P)

Input : S, min sup, θ

Output: Pattern set P, and search tree Tr

Scan S to find frequent items and insert them into the 1st level of Tr;1

Find frequent length-1 patterns as the Tail set;2

l ← 1;3

while Level l is not empty do4

for each pattern P in Level l do5

if Subtree-eD-checking(P )=true then6

P.type ← subtree-eD; Set a subtree-eD link from P ′ to P ;7

P ′.max-aD-sup ← P.max-aD-sup; Prune the subtrees of P ;8

else if the conditions in Theorem 3.2 are satisfied then9

P.type ← subtree-aD; Set a subtree-aD link from P ′ to P ;10

Prune the subtrees of P ;11

if P.max-aD-sup > 0 then12

P ′.max-aD-sup=P.max-aD-sup;13

else14

P ′.max-aD-sup=sup(P );15

else if Node-eD-Checking(P)=true then16

P.type ← node-eD; Extend pattern P ;17

if P.max-aD-sup > 0 then18

P ′.max-aD-sup=P.max-aD-sup;19

Set a node-eD link from P ′ to P ;20

Delete node P ;21

else if the conditions in Definition 3.2 are satisfied then22

P.type ← node-aD; Extend pattern P ;23

Select a P ′ of the maximal support, and set a node-aD link from P ′ to P ;24

if P.max-aD-sup > 0 then25

P ′.max-aD-sup=P.max-aD-sup;26

else27

P ′.max-aD-sup=sup(P );28

else29

P.type ← reserved; P ← P ∪ {P}; Extend pattern P ;30

if P.max-aD-sup = 0 and P.type 6= subtree-aD then31

Delete node P ;32

l ← l + 1;33

return P;34

1

Figure 5. nDaCF-Miner

When l = 3, ⟨A(AC)⟩ can be exactly derived from ⟨A(AC)C⟩. There exists P ′ =
⟨A(AC)C⟩ such that P = ⟨AAC⟩ is a subtree-eD episode, and the subtree of P can be
pruned. For P = ⟨ACC⟩, according to Definition 3.6, there exist no P ′ at Level 4 such
that Conditions (1) and (2) are satisfied. Therefore, ⟨ACC⟩ is kept in the resulting set.
When l = 4, ⟨A(AC)C⟩ can be exactly derived from ⟨A(AC)CC⟩. For P = ⟨ACCC⟩,

there exists P ′ = ⟨A(AC)CC⟩ such that P is a subtree-eD episode.
When l = 5, there is only one episode ⟨A(AC)CC⟩, and no larger FEs can be generated.

Consequently, ⟨A(AC)CC⟩ is inserted into the resulting set, and the extension terminates.
Finally, the found nDaCF set is P = {⟨ACC⟩ : 4, ⟨A(AC)CC⟩ : 3}, which consists of

only two episodes. In contrast, the complete set contains 16 episodes as shown in Figure
3. It shows that the found nDaCF set is highly condensed.
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Based on the nDaCF set and the derivation relationship in the tree in Figure 3, 14 FEs
outside P can be derived from Level 5 to Level 1. When l = 5, from ⟨A(AC)CC⟩ : 3,
it can be derived that ⟨A(AC)C⟩ : 3 and ⟨ACCC⟩ : 3. When l = 4, from ⟨A(AC)C⟩ :
3, ⟨A(AC)⟩ : 3 can be derived; from ⟨A(AC)CC⟩ : 3 and the subtree-eD link from
⟨A(AC)C⟩ : 3 to ⟨AAC⟩ : 3, ⟨AACC⟩ : 3 can be derived. When l = 3, from ⟨A(AC)⟩ : 3
(plus ⟨A(AC)C⟩ : 3 and ⟨A(AC)CC⟩ : 3), it can be derived that ⟨(AC)⟩ : 3, ⟨(AC)C⟩ : 3
and ⟨(AC)CC⟩ : 3. Episode ⟨AA⟩ : 3 can de derived from ⟨A(AC)⟩ : 3, and ⟨AC⟩ : 4 can
be derived from ⟨ACC⟩ : 4. When l = 2, ⟨A⟩ : 4 can be derived from ⟨AC⟩ : 4; from
⟨AC⟩ : 4, it can be derived that ⟨C⟩ : 5 (since it is kept in the tree); from ⟨ACC⟩ : 4, it can
be derived that sup(⟨CC⟩) ∈ [sup(⟨ACC⟩), (1 + 1/3)sup(⟨ACC⟩)] = [4, 5.33]. Similarly,
we have sup(⟨CCC⟩) ∈ [sup(⟨ACCC⟩), (1 + 1/3)sup(⟨ACCC⟩)] = [3, 4].

4. Experimental Evaluation. To evaluate the performance of nDaCF-Miner, we gen-
erated a series of synthetic sequences and performed nDaCF-Miner on the sequences.
The performance of nDaCF-Miner was compared with that of the typical mining ap-
proach MINEPI [7] and two of the latest ones, EMMA [10] and Clo episode [11]. The
algorithms were implemented in Java, and were performed on a computer with an Intel
processor at 1.86 Ghz and a RAM of 2 Gb, running Windows XP.

We designed a synthetic sequence generator. The generator accepts four major parame-
ters: |S| (the number of data elements contained in S), |I| (the number of distinct items),
E (average number of items contained in a data element) and w (average window width).
Since MINEPI and Clo episode can only process single-item sequences, we generated
two groups of sequences; one contains five complex sequences, denoted as S10I500E1W10,
and the other contains five single-item sequences, denoted as S10I500E6W10, with each
number behind a parameter equaling the value of the parameter. Each experiment was
conducted on five sequences to obtain an average value. In the experiments, we evaluated
and compared three major components: accuracy, compactness and efficiency.

4.1. Accuracy. We use P0 to denote the set discovered from a single-item sequence under
the measurement LMaxnR-O-freq, and use P1, P2 and P3 to denote the sets discovered
from the same sequence under three typical frequency measures: fixed-win-freq [5],
mo-freq [6] and distinct-bound-st-freq [10]. The restriction of fixed/max window width
is specified as w = 10. Taking P0 as the standard result, the accuracy of Pk (1 ≤ k ≤ 3)
w.r.t. P0 is evaluated by the difference between Pk and P0. The difference is captured by
three classes of episodes [17].

1. Missed (M) episodes — episodes missed by Pk, i.e., the episodes in P0, but not in
Pk.

2. False (F) episodes — episodes in Pk, but not in P0.
3. Inaccurate (I) episodes — episodes in Pk ∩ P0 with different frequencies in Pk and

P0.

The inaccuracy of Pk w.r.t. P0 is evaluated by three ratios below.

Rk
M =

|P0\Pk|
|P0|

(3)

Rk
F =

|Pk\P0|
|P0|

(4)

Rk
I =

|{P |P ∈ Pk ∩ P0, supk(P ) ̸= sup0(P )}|
|P0|

(5)

where 1 ≤ k ≤ 3, and supk(P ) (sup0(P )) represents the frequency of episode P in Pk

(P0). Let total inaccuracy TI = Rk
M +Rk

F +Rk
I .
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Table 2. A comparison between Pk and P0 for frequent episodes

Rk
M Rk

F Rk
I TIk

k = 1 0.003 0.124 0.313 0.440
k = 2 0.082 0.000 0.164 0.246
k = 3 0.002 0.062 0.212 0.276

To evaluate the inaccuracies of the results discovered under different frequency mea-
sures, we performed the three previous approaches and the proposed method on the group
of single-item sequences, S10I500E1W10. For fixed-win-freq and distinct-bound-st-freq
adopted byMINEPI [6] and EMMA [10], both the window-width restrictions fixed-win
and max -win were specified as 10. The parameter min sup was specified as 500. The
inaccuracies are evaluated by the three ratios. Table 2 shows the average ratios for in-
accuracies, with each value being an average obtained from the five tests. The results in
Column 2 show that Pk (k = 1, 2, 3) missed some frequent episodes because some non-
redundant occurrences were missed in the counting. In Column 3, R2

F = 0 indicates that
no false (infrequent) episodes were included in the discovered sets under mo-freq since
no redundant occurrences are over-counted. Whereas R1

F and R3
F are neither zero as re-

dundant occurrences are over-counted under fixed-win-freq and distinct-bound-st-freq.
Column 5 in Table 2 demonstrates that the found sets under fixed-win-freq, mo-freq
and distinct-bound-st-freq include inaccuracies.

4.2. Compactness. To evaluate the compactness of found sets, three types of sets, all,
closed and nDaCF, are discovered from simple sequences and complex sequences, with
comparison between their sizes.
Figures 6(a) and 6(b) show the comparisons of compactness among the three sets discov-

ered from single-item sequences S10I500E1W10 and complex sequences S10I500E6W10
respectively when θ varies from 0 to 0.1. In Figure 6(a), the all set is discovered by
MINEPI [7], and the closed set is discovered by clo episode [11]. In Figure 6(b), the all
set is discovered by EMMA [10], and the closed set is discovered by nDaCF -Miner-NP
(the nDaCF-Miner without pruning strategies) with θ = 0. The results demonstrate
that nDaCF is much more condensed than all and closed (all has a magnitude of 104,
closed has a magnitude of 103, and nDaCF has a magnitude of 102 when θ is some-
what high). In addition, nDaCF achieves higher compactness when θ rises. It should
be noted that different frequency measures are adopted by different mining approaches.
The clo episode adopts mo-freq, nDaCF -Miner uses LMaxnR-O-freq, and EMMA
uses distinct-bound-st-freq. With more restricted constraints, mo-freq(P ) is normally
less than LMaxnR-O-freq(P ). In general, distinct-bound-st-freq(P ) is greater than
LMaxnR-O-freq(P ). Therefore, when θ = 0, nDaCF is slightly larger than closed in
Figure 6(a), and nDaCF is smaller than closed in Figure 6(b).
Figures 7(a) and 7(b) show the comparisons of compactness on single-item sequences

S10I500E1W10 and complex sequences S10I500E6W10 respectively when min sup varies
from 400 to 700 and θ = 0.6. Note that y-axis uses a logarithmic scale in Figures 6 and
7.

4.3. Efficiency. For single-item sequences, the efficiency of nDaCF-Miner is compared
with that of MINEPI [7] and Clo episode [11] when θ and min sup vary. For complex
sequences, the efficiency is compared between nDaCF-Miner and EMMA [10] when θ
and min sup vary. Figures 8(a) and 8(b) show the runtime comparison on single-item
sequences S10I500E1W10 when min sup and θ vary respectively. Figures 9(a) and 9(b)
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Figure 6. Compactness comparison with varying θ

Figure 7. Compactness comparison with varying min sup

show the runtime comparison on complex sequences S10I500E6W10 when min sup and θ
vary respectively. In Figure 8(a) and Figure 9(a), θ = 0.06, and in Figure 8(b) and Figure
9(b), min sup = 600. It can be seen from Figures 8 and 9 that (1) nDaCF-Miner is more
efficient than MINEPI, (2) nDaCF-Miner is competitive with EMMA and Clo episode
in terms of efficiency when θ is low, and (3) nDaCF-Miner outperforms EMMA and
Clo episode when θ is high to some degree.

The high efficiency of nDaCF-Miner benefits from one scan of the sequence and also
from effective pruning strategies. MINEPI needs n scans of the sequence and generates
large numbers of candidate episodes, e.g., 54836 candidates are generated when min sup =
600. Consequently, MINEPI is the lest efficient. Clo episode also needs n scans of the
sequence. Clo episode is faster than MINEPI since it generates fewer candidates when
non-closed episodes are pruned. In contrast, nDaCF-Miner needs only one scan of the
sequence and prunes large numbers of candidates. The effectiveness of pruning heavily
depends on the error bound θ. When θ is high to some degree, nDaCF-Miner is faster
than either clo episode or EMMA.
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Figure 8. Runtime comparison on single-item sequences

Figure 9. Runtime comparison on complex sequences

5. Conclusion and Discussion. In this paper, based on a new frequency measure,
LMaxnR-O-freq [17], we defined a condensed set of episodes, nDaCF , with more ac-
curate frequencies. We further introduced a series of pruning strategies, and developed
nDaCF-Miner for discovering nDaCF sets from complex sequences. The experimental
results showed that when error bound θ is high to some degree, the found nDaCF sets
are able to compress the complete sets by a magnitude of 100 and compress the closed
sets by a magnitude of 10. This demonstrates that nDaCF-Miner is more efficient than
previous mining approaches such as MINEPI [6], EMMA [10] and Clo episode [11].
Both Table 1 and the experimental results have shown that the proposed method out-

performs previous approaches. On the one hand, compared with approaches intended for
simple sequences [5-9,11], nDaCF-Miner has wider applications because it accepts both
complex sequences and simple sequences, and can find more accurate and condensed re-
sults. On the other hand, nDaCF-Miner has overcome three deficiencies of EMMA by
adopting a new frequency measure and obtaining more accurate and condensed FE sets.
In addition, it is faster than previous approaches when the error bound is somewhat high.
This research is of both theoretical and practical significance. In practical terms, the

proposed method can be used to discover FEs from various real-world sequences more ef-
ficiently and more effectively. Furthermore, accurate and significant episode associations
can be generated from the found nDaCF sets directly [21]. These episode associations
represent the relationships among different elements in real-world sequences, such as DNA
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sequences, Web-click sequences and stock sequences, and thus, the techniques can be ap-
plied to protein analysis, Web usage analysis, Web intrusion detection, and stock price
analysis and forecasting. In theoretical terms, more effective and more accurate discrim-
inative episodes, sequence clustering and sequence classifiers (different from traditional
clustering [20] and classification in transactional data) could be constructed based on the
nDaCF sets of higher accuracy and compactness [21].

However, the proposed method has some deficiencies which need to be explored in
future work. Firstly, it is not applicable to data streams. Discovery of nDaCF sets
over streams is a more challenging problem with stricter requirements such as one-pass,
overtime feedback and limited space expense. A key to this problem is updating the
found nDaCF set adaptively and quickly when a new data element arrives. Secondly, the
method should be adapted to processing time series data [22], where sequence elements
may be numerical values instead of items. One possible way is to discretise numerical
values into different levels which can be represented by items.
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Appendix A. Proof of Theorem 3.1.
Proof: Any P -prefixed pattern can be represented as P ⊕H Q or P ⊕V Q. The main

idea of the proof is: for any P -prefixed pattern P ⊕H Q (P ⊕V Q), we replace P with P ′

to get P ′⊕HQ (P ′⊕V Q). Then, we prove sup(P ′⊕HQ) = sup(P ⊕HQ) (sup(P ′⊕V Q) =
sup(P ⊕V Q)) to complete the proof. In the proof, assume P.L = m and Q.L = n.
Case 1 P ′ = P ⋄jH α.
Case 1.1 P ⊕H Q. Let LMaxnR-O(P ⊕H Q) = {o′′l }. For each occurrence o′′l =

⟨o′′l [1], . . . , o′′l [m + n]⟩ ∈ LMaxnR-O(P ⊕H Q) (l = 1, . . . , sup(P ⊕H Q)), the left part
LP = ⟨o′′l [1], . . . , o′′l [m]⟩ = ⟨ol[1], . . . , ol[m]⟩ ∈ LMaxnR-O(P ). In o′′l replacing LP with
⟨o′l[1], . . . , o′l[m + 1]⟩, we obtain o∗l = ⟨o′l[1], . . . , o′l[m + 1], o′′l [m + 1], . . . , o′′l [m + n]⟩. The
o∗l is an occurrence of P ′ ⊕H Q in S since o′l[m + 1] ≤ ol[m] (Condition (1) in Theorem
3.1) = o′′l [m] < o′′l [m+ 1]. Inserting each o∗l constructed above into a set, we obtain a set
of occurrences of P ′ ⊕H Q, O∗ = {o∗l }. According to the way in which o∗l is generated,
O∗ is a non-redundant set. Therefore, sup(P ⊕H Q) = |LMaxnR-O(P ⊕H Q)| = |O∗| ≤
sup(P ′ ⊕H Q), and thus, sup(P ⊕H Q) ≤ sup(P ′ ⊕H Q). On the other hand, according
to the anti-monotonicity of support, we have sup(P ⊕H Q) ≥ sup(P ′ ⊕H Q) as P @ P ′.
Consequently, sup(P ⊕H Q) = sup(P ′ ⊕H Q).
Case 1.2 P ⊕V Q. The theorem can be proven in a similar way as in Case 1.1 (the

proof is omitted).
The theorem can be proved similarly in cases 2 and 3 (the proofs are omitted).

Appendix B. Proof of Theorem 3.2. In the proof, we use the notations: P ′ = P ⋄jH
α, P ∗ = P ⊕ ⟨β⟩, P ∗∗ = P ′ ⊕ ⟨β⟩, LMaxnR-O(P ) = {ol}, LMaxnR-O(P ′) = {o′l},
LMaxnR-O(P ∗) = {o∗l }, LMaxnR-O(tail(P ∗)) = {o′′l }. In order to prove Theorem 3.2,
we introduce Definition B.1 and Lemma B.1.

Definition B.1. Let P ∗ = P ⊕ ⟨β⟩ (⊕ ∈ {⊕H ,⊕V } and β ∈ I) and

sup(P )− sup(P ⊕ ⟨β⟩) = sup(P )− sup(P ∗)

= |LMaxnR-O(S, P )| − |LMaxnR-O(S, P ∗)|
= |O(P−β)|

(6)

where O(P−β) denotes the set of occurrences of P that cannot be used to construct the cor-
responding occurrences in LMaxnR-O(S, P ∗). According to the combinations of different
⊕ and P.L, O(P−β) is formally defined in three cases.

1. (When P ∗ = P ⊕V ⟨β⟩ and P.L = 1)
O(P−β) = {ol| ol ∈ LMaxnR-O(P ) ∧ ol ̸∈ LMaxnR-O(⟨β⟩)} (l = 1, 2, . . . , sup(P )).
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2. (When P ∗ = P ⊕V ⟨β⟩ and P.L > 1) pre(P ∗) = pre(P ), tail(P ∗) = tail(P )⊕V ⟨β⟩,
and O(P−β) = {ol|ol ∈ LMaxnR-O(P ) ∧ ¬∃o′′r ∈ LMaxnR-O(tail(P ∗)) s.t. o′′r [1] ≥
ol[P.L] ∧ (o′′r [1] > o∗l−1[P

∗.L] ∨ l = 1)}.
3. (When P ∗ = P ⊕H ⟨β⟩) pre(P ∗) = P , tail(P ∗) = ⟨β⟩, and

O(P−β) = {ol|ol ∈ LMaxnR-O(P ) ∧ ¬∃o′′r ∈ LMaxnR-O(⟨β⟩) s.t. o′′r [1] ≥ ol[P.L] ∧
(o′′r [1] > o∗l−1[P

∗.L] ∨ l = 1)}.

Based on Definition B.1, we have the following lemma.

Lemma B.1. Given P , Q, and an item β, if ∃P ′ = P ⋄jH α, such that, for ∀ o′l ∈
LMaxnR-O(P ′) and the corresponding ol ∈ LMaxnR-O(P ), o′l[P

′.L] ≤ ol[P.L], then the
following inequations hold.

sup(P ′)− sup(P ′ ⊕ ⟨β⟩) ≤ sup(P )− sup(P ⊕ ⟨β⟩) (7)

sup(P ′)− sup(P ′ ⊕Q) ≤ sup(P )− sup(P ⊕Q) (8)

where ⊕ ∈ {⊕H ,⊕V }, and (7) is a special case of (8).

B.1. Proof of Lemma B.1.
Proof: First, we prove (7) is true in three cases of Definition B.1. The main idea is to

show that in each case, for every o′l ∈ O(P ′
−β), an occurrence, ol, can be constructed such

that ol ∈ O(P−β). Thus, we have |O(P ′
−β)| ≤ |O(P−β)|, i.e., (7). In the following, we only

prove the lemma in Case 3. The proofs for Case 1 and 2 are omitted.
Case 3 (When P ∗ = P ⊕H ⟨β⟩) pre(P ∗) = P , tail(P ∗) = ⟨β⟩. For each o′l ∈ O(P ′

−β) =
{o′l|o′l ∈ LMaxnR-O(P ′) ∧ ¬∃o′′r ∈ LMaxnR-O(⟨β⟩) s.t. o′′r [1] ≥ o′l[P

′.L] ∧ (o′′r [1] >
o∗∗l−1[P

∗∗.L] ∨ l = 1)}, we construct ol = ⟨o′l[1], . . . , o′l[j − 1], o′l[j + 1], . . . , o′l[P
′.L]⟩ by

deleting o′l[j] from o′l. Since P ′ = P ⋄jH α, ol constructed above is an occurrence of P .
Furthermore, ol ∈ LMaxnR-O(P ) since o′l[P

′.L] ≤ ol[P.L]. In addition, if there exists
no o′′r for o′l in O(P ′−β), then there exist no o′′r for ol in O(P−β). Therefore, we have

|O(P ′
−β)| ≤ |O(P−β)|, i.e., (7).

Inequation (8) can be proved using (7) iteratively. Any P ⊕ Q can be represented as
(. . . (P⊕β1)⊕β2) . . .⊕βn, where β1 . . . βn are the series of items in Q. Using (7) iteratively,
we have:
1) sup(P ′)− sup(P ′ ⊕ β1 ≤ sup(P )− sup(P ⊕ β1)
2) sup(P ′ ⊕ β1)− sup((P ′ ⊕ β1)⊕ β2) ≤ sup(P ⊕ β1)− sup((P ⊕ β1)⊕ β2)
...
n) sup((. . . (P ′ ⊕ β1) . . . ⊕ βn−1)−sup((. . . (P ′ ⊕ β1) . . . ⊕ βn) ≤ sup((. . . (P ⊕ β1) . . . ⊕
βn−1)− sup((. . . (P ⊕ β1) . . .⊕ βn).

Adding all left sides from 1) to n) and adding all right sides from 1) to n), we obtain
sup(P ′)− sup((. . . (P ′ ⊕ β1) . . .⊕ βn ≤ sup(P )− sup((. . . (P ⊕ β1) . . .⊕ βn) = sup(P ′)−
sup(P ′ ⊕ Q) ≤ sup(P ) − sup(⊕Q) (Note: the value (⊕H or ⊕V ) before βj depends on
how the prefix and βj are concatenated in Q).

B.2. Proof of Theorem 3.2.
Proof: The proposition “Any P -prefixed pattern, R = P ⊕ Q, is non-approximately-

closed” ⇐⇒ ∃ R∗ = (P ⊕Q) ⋄ α s.t. J(sup(R), sup(R∗)) ≤ θ.
The main idea of the proof is: we first choose P ′ = P ⋄jH α given in the assumption of

this theorem, to construct a particular R∗ = P ′ ⊕Q = (P ⋄jH α)⊕Q, then complete the
proof by showing that J(sup(R), sup(R∗)) ≤ θ.

For P ′ = P ⋄jH α, due to Condition (2) given in Theorem 3.2, we have sup(P ⊕ Q) −
sup(P ′⊕Q) ≤ sup(P )− sup(P ′) ((8) in Lemma B.1). Therefore, J(sup(P ⊕Q), sup(P ′⊕
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Q)) = sup(P⊕Q)−sup(P ′⊕Q)
sup(P⊕Q)

≤ sup(P )−sup(P ′)
sup(P⊕Q)

≤ sup(P )−sup(P ′)
min sup

≤ θ×min sup
min sup

(Condition (1) given

in Theorem 3.2) = θ. Thus, the proof is completed.


