
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2012 ISSN 1349-4198
Volume 8, Number 1(A), January 2012 pp. 255–267

COMPARISON OF MEASURING INFORMATION LEAKAGE
FOR FULLY PROBABILISTIC SYSTEMS

Donghong Sun1,3, Yunchuan Guo2, Lihua Yin2 and Changzhen Hu3

1Network Research Center
Tsinghua University

Haidian District, Beijing 100084, P. R. China
sundh105@tsinghua.edu.cn

2Research Center of Information Security
Institute of Computing Technology

Chinese Academy of Sciences
Beijing 100190, P. R. China

3Beijing Institute of Technology
No. 5, South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China

Received August 2010; revised December 2010

Abstract. Quantifying implicit information leakage is important, especially for fully
probabilistic systems (FPS). Although many quantitative methods have been proposed
(including methods based on mutual information, on α-mutual information, on relative
entropy and on pure probability, etc.), there has been little work analyzing their consis-
tency and accuracy. In order to perform this analysis, these methods must be modeled
with a uniform approach. In this paper, a light probabilistic process algebra (PPA-Lite) is
presented, and some existing quantitative methods are uniformly characterized by using
PPA-Lite. Further, their relationships are analyzed by proof and simulation, respectively.
The results show that (1) most of methods concur in determining whether information is
leaked; (2) the method based on (α-) mutual information is the most accurate if the dis-
tribution of the sent information is known. If not, the method based on relative entropy
is the most accurate.
Keywords: Fully probabilistic system, Information leakage, Probabilistic process alge-
bra, Quantitative measurement

1. Introduction. The measurement and quantitative analysis of systems is very im-
portant [1, 2, 3, 4, 5]. Especially for fully probabilistic systems (FPS), quantifying the
implicit leakage of information is of great importance. Briefly, a process A can implicitly
leak information to a process B if all the following conditions are satisfied: (1) A shares
resources with B, (2) A can modify some attributions of the resources, and (3) B can ob-
serve these modifications. The TCSEC (Trusted Computer Security Evaluation Criteria,
also known as the Orange Book, issued by the United States’ National Security Agency)
requires analysis of implicit information leakage for a system to be classified as B2 or
above. Also, CC (Common Criteria for Information Technology Security Evaluation) and
GB17859 have a similar stipulation.

Ideally, it should be guaranteed that any confidential information cannot be implicitly
leaked. This is, however, rarely satisfied by any system. In fact, many systems (such
as operating systems [6, 7], database systems [8, 9], network protocols [10, 11, 12] and
hardware systems [13]) can implicitly leak information. Even a system which requires a
high level of security may implicitly leak information. Taking an ATM (Automatic Teller
Machine) as an example, we assume that a thief steals a bank card, and that he has to

255

256 D. SUN, Y. GUO, L. YIN AND C. HU

guess its PIN number in order to withdraw cash from the ATM. If he fails to guess the
correct PIN number after three attempts, the ATM will dispense no cash, so the ATM is
secure. However, from the point of view of information leakage, the ATM has implicitly
leaked information because the thief obtains the following knowledge: the guessed PIN
number is not correct. In fact, almost all systems can implicitly leak information, so it
is a reasonable assumption that a system is secure if its amount of information leakage is
below a certain threshold. This requires us to quantify information leakage.
In order to quantify information leakage, methods and the corresponding metrics are

needed. TCSEC and GB17859 use bandwidth as a measure of implicit information leak-
age. On the surface, this seems reasonable. However, adopting the bandwidth as a mea-
sure is hard to implement, because the bandwidth of information leakage of a given system
is affected by various factors, e.g., noise and delay. This causes difficulty in accurately
measuring the bandwidth. As shown in [7], there has been little work in successfully
measuring implicit information leakage. Apart from bandwidth-based methods, many
other methods have been proposed. These fall into three categories: methods based on
information theory, methods based on pure probability and the other methods.
The measurements based on information theory include five sub-categories: entropy-

based methods, relative-entropy-based methods, mutual-information-based methods, cha-
nnel-capacity-based methods and α-mutual information-based methods. To the best of
our knowledge, Denning [14] is the first work to adopt entropy to measure information
leakage. Following the work of Denning, many information-theory-based methods have
been put forward. Clark, Millen and Gray [15, 16, 17, 18, 19, 20] respectively adopt en-
tropy, mutual information and capacity channel methods to analyze information leakage.
In contrast with [14, 16, 17], M. Clarkson [21] proposed a new perspective to quantita-
tively measure information leakage by analyzing the attack’s belief. For methods based
on pure probability, Pierro [22] believes that if another party cannot distinguish the two
subjects, then the amount if information leaked is 0. Similarly, Aldini [23, 24] identities
and quantifies information leakage by probabilistic bi-simulation.
In addition to the above, there are other studies. For example, Lowe [25] measures

information leakage by counting refusals. Malacaria [26] also provides a framework for
quantifying how much information can be leaked with a given model. [15, 27] provide an
overview.
Although many novel ways to measure implicit information leakage have been proposed,

their accuracy varies. For example, Moskowitz [28] points out that it is not accurate to
measure information leakage only using channel capacity. And Clark [15] shows that there
is a problem with Denning’s way.
Thus, while many methods have been put forward, very little work analyzes their ac-

curacy. In addition, much research concentrates on a non-deterministic system rather
than a fully probabilistic system (FPS) and measurement for an FPS is more difficult.
In this paper, we analyze the consistency and accuracy of different approaches which can
be used to measure implicit information leakage for an FPS. First, a light probabilistic
process algebra (PPA-Lite) is presented and employed to model an FPS, and the exist-
ing qualitative methods (including methods based on mutual information, on α mutual
information, on relative entropy and on pure probability, etc.) are formally modeled by
using the PPA-Lite. Further, their relationships are analyzed by proof and simulation,
respectively. The results show that (1) most of methods concur in determining whether
information is leaked; (2) the method based on (α-) mutual information is the most ac-
curate if the distribution of the sent information is known. If not, the method based on
relative entropy becomes the most accurate.

COMPARISON OF MEASURING INFORMATION LEAKAGE 257

This paper is structured as follows. Section 2 intuitively introduces implicit information
leakage in an FPS and presents some related concepts from information theory. Section
3 discusses the syntax and the formal semantics of PPA-Lite which will be used to model
an FPS. Section 4 discusses how to model an FPS and its information leakage via PPA-
Lite. In Section 5, PPA-Lite is used to formally and uniformly describe the existing
measurement methods of implicit information leakage. Different methods are theoretically
compared and a simulation is given in Section 6. Finally, we summarize and conclude the
paper.

2. Preliminaries. In this section, we will review some notions of information theory
which will be used in the following and then give an intuitive description of implicit
information leakage in an FPS.

2.1. Probabilistically implicit information leakage. We provide here an intuitive
description of probabilistic and implicit information leakage. Consider a system which has
two types of users: high security level users (HU) and low security level users (LU), and
a security policy stipulating that HU are prohibited from transmitting any information
to LU.

If HU and LU share some resources, HU may probabilistically change their attributions
of these resources and LU can observe this change. In this way, HU can indirectly transmit
messages to LU, and information can be probabilistically and implicitly leaked.

Example 2.1. Assume a probabilistic scheduling algorithm, which has two types of users
HU and LU. HU is the scheduler who can schedule the transaction A and B, and LU
can observe the scheduled A and B. HU and LU have a prior agreement: if HU wants to
transmit bit 0 to LU, he will schedule A with probability 0.7 and B with 0.3; otherwise if
HU wants to transmit bit 1, he will schedule A with probability 0.1 and B with probability
0.9. So, if LU observes that A and B are scheduled with probability 0.8 and 0.2 respectively,
he can infer that the transmitted bit is 0; and if LU observes that A and B are scheduled
with probability 0.2 and 0.8 respectively, he can infer that the transmitted bit is 1; so the
scheduling algorithm can leak information.

2.2. Related notions [30, 31]. Let X, Y be random variables defined over space X ,
Y , respectively. Let x and y represent values of these variables, with probability mass
function p(x) = Pr{X = x}.

Definition 2.1. The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈X

p(x) log2p(x).

The log is to the base 2 and entropy is expressed in bits.

Definition 2.2. Given two probability mass functions p(x) and q(x), the relative entropy
or Kullback-Leibler distanced DKL(p, q) is defined as

DKL(p, q) =
∑
x∈X

p(x) log
p(x)

q(x)

In the above definition, we follow the convention that 0 log 0
0
= 0, 0 log 0

q
= 0 and

p log p
0
=∝.

258 D. SUN, Y. GUO, L. YIN AND C. HU

Definition 2.3. Let X, Y be two random variables with a joint probability mass function
p(x, y) and marginal probability mass functions p(x) and p(y). The mutual information
DMI(X;Y) and α-mutual information DαMI(X;Y) are respectively defined as:

DMI(X;Y) = DKL(p(x, y), p(x)p(y))

DαMI(X;Y) =
1

α− 1
log

(∑
x∈X

∑
y∈Y

p(x, y)α

((px)p(y))α−1

)
where α > 0 and α ̸= 1.

3. Probabilistic Process Algebra. As described in the above section, probabilistic
information leakage almost cannot be avoided in a system. This requires us to quantify
its information leakage. To achieve this goal, many quantification methods have been
proposed, but the accuracy of these methods varies. For example, in Example 2.1, the
amount of information leakage based on relative entropy is 1:49 bits, but the amount
based on mutual information is 0.29 bits (We assume the proportion of 0’s and 1’s is the
same). In order to compare these methods, the first thing we must do is to uniformly
model them. Although many methods can be used to model information leakage, it is
not easy to implement them. In this section, we analyze the natural features of proba-
bilistic information leakage, eliminate some calculus which is not suited for probabilistic
information leakage and present a light probabilistic process algebra (PPA-Lite).

3.1. Syntax. LetA be a set of observable and countable actions, composed of two disjoint
subsets of actions: H = {h, h0, h1, . . .} (called the high-level actions, which are only
executed by HU) and L = {l, l0, l1, . . .} (called the low-level actions, which are only
executed by LU). That is, A = H ∪ L and H ∩ L = ϕ. In the following, we use a, b, c to
denote a single observable action and τ (τ /∈ A) to denote an unobservable action. Let
Act = A ∪ τ . The syntax of PPA-Lite is defined in Figure 1.

P::= x variable
| π.P prefix
|

∑
i∈I [pi]Pi probabilistic choice

| P\A restriction
| P/A hiding
| rec x.P recursion
| 0 stop

Figure 1. Syntax

In Figure 1, π ∈ Act, A ⊆ A and π.P represent the execution of π followed by P ;∑
i∈I [pi]Pi is the probabilistic choice, where pi ∈ (0, 1) is a probability with the constraint

of
∑
i∈I

pi = 1; P\A restricts the execution of actions in A; P/A hides the execution of

actions in A; 0 denotes a stop term, such as a deadlock.
To model the probabilistic leakage of information, restriction and hiding operations

are very important, because a system can not implicitly leak any information if and only
if LU can not determine wether HU executes the restriction or the hiding. Although
many studies can be used to model information leakage, they do not address a fully
probabilistic system. Our PPA-Lite is a pared-down version of [32, 33], but it can be used
to effectively model the information leakage of a fully probabilistic system and analyze
existing quantification methods.

COMPARISON OF MEASURING INFORMATION LEAKAGE 259

Before introducing the formal semantics of PPA-Lite, we give its intuitive meaning. The
process [p]a.P1 + [1− p]b.P2 has two options: The first is to execute a with probability p,
then proceed as P1; The second is to execute b with probability 1−p, then proceed as P2.
The process a.b.c.0\{b} will not execute the action b, i.e., a.b.c.0\{b} ≡ a.0. The process
([0.5]a.0+[0.5]b.0)\{b} will execute a with probability 1, because b is prohibited from being
executed, i.e., ([0.5]a.0+[0.5]b.0)\{b} ≡ a.0. The hiding operator P/A will turn all actions
in A into τ , and its probability will be preserved. For example, ([0.5]a.0+ [0.5]b.0)/{b} ≡
([0.5]a.0+[0.5]τ.0). The process rec x.P is a recursion operator. For example, P = a.b.P
will execute a, and then b the execution will be repeated and never stop. In the next
section, an execution of a hiding (restriction) operator is called an event.

prefix π.P
π,1−→1 P

choice
Pi

π,p−→kP
′
i∑

i∈I [qi]Pi

π,p.qi−−−→i,kP
′
i

restriction P
π,p−→kP

′

P\A
π,p/(1−v(P,A))−−−−−−−−−→kP ′\A

, π /∈ A

hiding1 P
π,p−→kP

′

P/A
τ,p−→kP ′/A

, π ∈ A

hiding2 P
π,p−→kP

′

P/A
π,p−→kP ′/A

, π /∈ A

recur P
π,p−→kP

′

rec X.P
π,p−→kP ′[rec X.P/X]

Figure 2. Semantics

3.2. Formal semantics. The formal semantics of PPA-Lite is shown in Figure 2, where

P
π,p−→k Q is a derivation meaning that in P , action π will be executed with probability

p, and its result is as Q. In addition, k is used to record the derived object. For example,

([0.5]a.0+[0.2]a.0+[0.3]b.0)
a,0.5−→1.1 0 and ([0.5]a.0+[0.2]a.0+[0.3]b.0)

a,0.2−→2.1 0. In the rule
Erest, the normalization factor v(P,A) is used to compute the accumulative probability of

executing actions in A from P , which is defined by v(P,A) =
∑

{|pi|P
π,pi−→k Pi, π ∈ A|},

where {| . . . |} is a multi-set. For example, if P = [0.1]a.0+[0.35]a.0+[0.25]b.0+[0.18]b.0+
[0.12]c.0, then v(P, {a}) = 0.45, v(P, {b}) = 0.43, v(P, {c}) = 0.12 and v(P, {a, c}) = 0.57.

The rule Prefix shows that π will be executed with probability 1 in π.P and then π.P is
reduced to P . The rule Choice tells us that if Pi can be reduced to P

′
i after π is executed

with probability p, then
∑

i∈I [qi]Pi will become Pi
′ with probability p.qi. The other rules

have a similar meaning.

4. Probabilistic Information Leakage. There are two different approaches which can
be used to identify information leakage: one is based on weakly probabilistic bi-simulation,
while the other is based on probabilistic trace equivalence.

Before discussing how to identify probabilistic information leakage, we present some

notions. Let PRO be a set of probabilistic processes and P ∈ PRO, a sequence P
π1,p1−−−→j1

P1
π2,p2−−−→j2 P2 . . .

πi,pi−−→ji Pi is called an execution (Ex) if P
π1,p1−−−→j1 P1 and Pi

πi+1,pi+1−−−−−→ji+1

Pi+1 for all i ≥ 1 can be derived by Figure 2. Given an Ex = P
π1,p1−−−→j1 P1

π2,p2−−−→j2

P2 . . .
πi,pi−−→ji Q, the trace tr of Ex is a sequence of actions of Ex in the original order,

i.e., tr = π1π2 . . . πi, and the execution probability PRj1j2...ji(tr) = p1 × p2 . . . × pi. In
addition, lst(Ex) represents the last term of Ex, i.e., lst(Ex) = Q. An Ex is called a

260 D. SUN, Y. GUO, L. YIN AND C. HU

complete execution if lst(Ex) = 0. For simplicity, P
π1,p1−→j1 P1

π2,p2−→j2 P2 . . .
πi,pi−→ji Q is

written P =
tr,PRj1j2...ji

(tr)
−−−−−−−−−→j1j2...ji Q. Let Ptr be a set of derived processes from P with

trace tr and TR(P) be a set of traces from P , i.e., Ptr =

{
Q|P

tr,PRj1j2...ji
(tr)

−−−−−−−−−→j1j2...ji Q

}
and TR(P) =

{
tr|P

tr,PRj1j2...ji
(tr)

−−−−−−−−−→j1j2...ji Q is an execution

}
.

Given tr ∈ TR(P), let PRP,Q(tr) be the sum of execution probability of tr from P to Q
and PRP (tr) be the accumulative probability from P by executing tr, that is, PRP,Q(tr) =∑{

|PRj1j2...ji(tr)|P
tr,PRj1j2...ji

(tr)
−−−−−−−−−→j1j2...ji Q is an execution|

}
and PRP (tr) =

∑
Q∈Ptr{

|PRj1j2...ji(tr)|P
tr,PRj1j2...ji

(tr)
−−−−−−−−−→j1j2...ji Q is an execution|

}
. If S ⊆ PRO, then PRP,S

(tr) =
∑

Q∈S

{
|PRj1j2...ji(tr)|P

t−→ r, PRj1j2...ji (tr)j1j2...jiQ is an execution|
}
, that is,

PRP,S(tr) is the accumulative probability from P into any process in S by executing tr.
In order to further explain these notions, we give an example as follows.

Example 4.1. Let P
def
= [0.3]a.P1 + [0.6]b.P2 + [0.1]a.P2, P1

def
= [0.8]c.P2 + [0.2]b.P3,

P2
def
= [1]a.P3 and P3

def
= [1]c.0. Then both P

a,0.3−−→1 P1
a,0.2−−→2 P3

c,1−→1 0 and P
a,0.1−−→3

P2
a,1−→1 P3

c,1−→1 0 are executions of P . Let Ex1 ≡ P
a,0.3−−→1 P1

a,0.2−−→2 P3
c,1−→1 0 and Ex2 ≡

P
a,0.1−−→3 P2

a,1−→1 P3
c,1−→1 0. Then the traces of Ex1 and Ex2 are aac. Because lst(Ex1) =

lst(Ex2) = 0, Ex1 and Ex2 are complete. In Ex1 and Ex2, the execution probabilities
of acc are respectively as follows: PR1,2,1(aac) = 0.3× 0.2× 1 = 0.06 and PR3,1,1(aac) =
0.1× 0.1 = 0.01. The derived set from P by executing a is {P1, P3}, i.e., Pa = {P1, P3}.
The set TR(P) of traces from P is {a, ac, aca, acac, aa, aac, b, bc, bca, bcac, bac}. The ac-
cumulative probability PRP,0(aac) from P to 0 by executing aac is equal to PR1,2,1(aac)+
PR3,1,1(aac) = 0.07 and the accumulative probability PRP (a) from P by executing a is
equal to 0.3 + 0.1 = 0.4.

Now we can define the probabilistic bi-simulation and probabilistic trace equivalence.
Given an equivalence relation R ⊆ PRO × PRO, let PRO/R be the equivalence class
induced by R. Then the weak probabilistic bi-simulation [34] is defined as follows.

Definition 4.1. 1 An equivalence relation R ⊆ PRO×PRO is called a weak probabilistic
bi-simulation, if each (P,Q) ∈ R implies that ∀π ∈ Act, ∀S ∈ PRO/R, PRP,S(τ

∗π) =
PRQ,S(τ

∗π). If there exists a weakly probabilistic bi-simulation R such that (P,Q) ∈ R,
then P and Q are weakly probabilistic bi-simulation equivalent, written as P ∼ Q.

In the above definition, τ ∗ is a sequence of unobservable actions (including zero unob-
servable action).

Definition 4.2. A process P can implicitly leak information via weakly probabilistic bi-
simulation iff P\H ̸∼ P/H.

Next, we discuss the information leakage based on probabilistic trace equivalence.

Definition 4.3. Given the two processes P , Q ∈ PRO, P and Q are strongly prob-
abilistically trace equivalent, denoted P ≈ Q, if ∀x ∈ TR(P) ∪ TR(Q) and lst(x) ≡
0.PRP (x) = PRQ(x).

1The definition is slightly different from [34], because we concentrate on fully probabilistic systems.

COMPARISON OF MEASURING INFORMATION LEAKAGE 261

Definition 4.3 requires that if P ≈ Q, then for any trace, its execution probability in P
is equal to its execution probability of in Q. This definition is very strict, because a trace
may include unobservable actions. In many situations, only observable actions need to be
analyzed. This leads to another definition, that is, weakly probabilistically trace equivalent
(WPTE).

Definition 4.4. Given a trace tr and a set A of observable actions, the projection of tr
on A is the sequence obtained by deleting the unobservable actions, formally defined by

tr ↑ A =

 0 if tr = 0
t ↑ A if tr = at and a /∈ A
a(t ↑ A) if tr = at and a ∈ A

Given a process P and a set A of observable actions, the set ProjTRA(P) of observable
traces is defined as ProjTRA(P) = {tr ↑ A|tr ∈ TR(P)}. Because unobservable actions
are deleted, the execution probability of an element in ProjTRA(P) may be different
from that of the element in TR(P).

Now we define the execution probability of an element in ProjTRA(P). Let x ∈
ProjTrA(P), then the execution probability of PRP |A(x) can be defined by PRP |A(x) =∑

tr∈TR(P) {|PRP (tr)|tr ↑ A = x|}. For example, if the traces of the process P are {a.τ.b.0,
τ.a.b.0, a.τ.c.0}, and their execution probabilities are 0.2, 0.5 and 0.3, respectively, then
its projection on {a, b, c} is {a.b.0, a.c.0} and their execution probabilities are 0.7 and 0.3,
respectively.

Definition 4.5. Given the two processes P , Q ∈ PRO, and a set A of observable actions,
P and Q are weakly probabilistic trace equivalent, denoted P ∼= Q, iff ∀x ∈ ProjTrA(P)∪
ProjTrA(Q), lst(x) = 0.PRP |A(x) = PRQ|A(x).

Definition 4.6. A process P can implicitly leak information via weakly probabilistic trace
equivalence, iff P\H ̸∼= P/H.

Next, we give an example of implicit information leakage via weakly probabilistic trace
equivalence. The implicit information leakage via weakly probabilistic bi-simulation is
similar.

Example 4.2. Let P = [0.3]([0.6]([0.4]l0.0+[0.6]l0.l1.0)+[0.4]l0.l1.l2.0)+[0.7]([0.8]l0.h.l1.0
+[0.2]l0.l1.h.l2.0), and two kinds of users: LU (the set of his actions is {l0, l1, l2}) and
HU (his action is h).

The hiding operator can be used to model the process that LU cannot observe HU’s
action h, i.e., P/{h} = [0.3]([0.6([0.4]l0.0+[0.6]l0.l1.0])+[0.4]l0.l1.l2.0)+[0.7]([0.8]l0.τ.l1.0+
[0.2]l0.l1.τ.l2.0). That is, if HU executes its action h, then LU will observe the traces l0.0,
l0.l1.0 and l0.l1.l2.0 with probability 0.072, 0.668 and 0.26, respectively.

The restriction operator can be used to model the process that HU does not execute its
action h, i.e., P\{h} = [0.3]([0.6]([0.4]l0.0 + [0.6]l0.l1.0) + [0.4]l0.l1.l2.0) + [0.7]([0.8]l0.0 +
[0.2]l0.l1.0). That is, if HU does not execute its action h, then LU will observe the traces
l0.0, l0.l1.0 and l0.l1.l2.0 with probability 0.632, 0.248 and 0.26, respectively.

In this example, there exists a trace (for example, l0.0 and l0.l1.0) such that its execution
probability in P/{h} is not equal to its probability P\{h}, so that P/{h} ̸∼= P\{h}. We
assume that HU and LU have a prior agreement: if HU want to transmit bit 0, then he
will not execute his actions h, otherwise, he will execute his actions h. In this way, LU
can infer the transmitted bit by observing these traces. This means that P can implicitly
leak information.

262 D. SUN, Y. GUO, L. YIN AND C. HU

5. Estimation of Probabilistic Information Leakage. As mentioned in Section 1,
many different methods have been proposed to measure the information leakage, but
their accuracies vary. Even for a given method, its accuracy depends on its metric. In
this section, we discuss these methods and their metrics.

5.1. Method based on pure probability. In [23], the authors propose a metric, we
call it pure probability method, as follows.

Definition 5.1. 2 Given a process P and a set PRO of its derived processes, and R ⊆
PRO × PRO is equivalence relation such that (P\H, P/H) ∈ R, then the amount of
information leakage is defined by

ξA = inf
R

sup
(P ′,P ′′)∈R,π∈Act,S∈PRO/R

|PRP ′,S(τ
∗π)− PRP ′′,S(τ

∗π)|

where, sup and inf are the supremum and infimum of a set, respectively, and PRO/R is
the equivalence class introduced by equivalence relation R.

5.2. Methods based on relative entropy. Let Rest = {tr|tr ∈ ProjTrA(P\H) and
lst(tr) = 0} and Hiding = {tr|tr ∈ Pr ojTrA(P/H) and lst(tr) = 0}, and PR(P\H)|A
and PR(P/H)|A be probability mass functions of execution probability on sets Rest and
Hiding, respectively. Because it is possible that Rest ̸= Hiding, in order to use the
relative entropy to measure the information leakage, we need extend the two probability
mass functions from on Rest and Hiding to Rect ∪Hiding, as follows.

PRE
(P\H)|A(tr) =

{
PR(P\H)|A(tr) if tr ∈ Rest
0 otherwise

PRE
(P/H)|A(tr) =

{
PR(P/H)|A(tr) if tr ∈ Hiding
0 otherwise

Given PRE
(P\H)|A and PRE

(P/H)|A, the amount of information leakage is calculated as
follows:

ξKL = DKL

(
PRE

(P\H)|A, PRE
(P/H)|A

)
5.3. Methods based on (α-) mutual information. In order to use mutual infor-
mation to estimate information leakage, the probability of the events hiding and re-
striction is needed. For simplicity, let P//H be a set of events of process P obtained
by hiding all actions in H, let P\\H be a set of events of process P obtained by re-
stricting actions in H, and IN = {P//H, P\\H}. the probability of the event hid-
ing and restriction depends on the probability of the transmitted information. For ex-
ample, consider a binary file where bit 0 and bit 1 account for 45% and 55% respec-
tively. If the event restriction and hiding are used to transmit bit 0 and bit 1, then
the probability of executing P\\H and P//H will be 0.45 and 0.55, respectively. Let
OUT = {tr|tr ∈ ProjTrA(P/H) ∪ ProjTrA(P\H) and lst(tr) = 0}, which represents a
set of traces which can be observed by LU . Let IN and OUT be the random variables over
IN and OUT , respectively, then the information leakage based on mutual information is
measured as:

ξMI = DMI(IN ;OUT) =
∑

in∈IN ,tr∈OUT
p(IN = in,OUT = tr) log p(IN=in,OUT=tr)

p(IN=in)p(OUT=tr)

=
∑

in∈IN ,tr∈OUT
p(IN = in)p(OUT = tr|IN = in) log p(OUT=tr|IN=in)∑

in∈IN
p(OUT=tr|IN=in)p(IN=in)

where p(OUT = tr|IN = P\\H) = PR(P\H)|A(tr) and p(OUT = tr|IN = P//H) =
PR(P/H)|A(tr).

2The definition is slightly different from [34], because we only focus on fully probabilistic systems.

COMPARISON OF MEASURING INFORMATION LEAKAGE 263

Similarly, the measure based on α-mutual information is as follows.

ξαMI = DαMI(IN ;OUT) =
1

a− 1

∑
in∈IN

∑
tr∈OUT

log
p(IN = in,OUT = tr)a

(p(IN = in)p(OUT = tr))a−1

where p(OUT = tr|IN = P\\H) = PRP\H|A(tr) and p(OUT = tr|IN = P//H) =
PRP/H|A(tr).

5.4. Methods based on simple distance, Euclidean distance and contra-cosine
distance. Similarly to Section 5.2, the probability mass functions PR(P\H)|A over Rest
and PR(P/H)|A over Hiding should be respectively expanded to PRE

(P\H)|A and PRE
(P/H)|A

over Rest∪Hiding in order to measure the information leakage by using simple distance,
Euclidean distance or Contra-cosine distance.

A). Methods based on Simple Distance. In this method, the difference between one of
traces in hiding and that in restriction is used to estimate information leakage, as follows.

ξS = DS

(
PRE

(P\H)|A, PRE
(P/H)|A

)
= PRE

(P\H)|A(tr)− PRE
(P/H)|A(tr)

where tr ∈ Rest ∪Hiding.
B). Methods based on Euclidean Distance. In this way, Euclidean distance is used to

estimate information leakage, defined as:

ξEu = DEu

(
PRE

(P\H)|A, PRE
(P/H)|A

)
=

√ ∑
tr∈Rest∪Hiding

(PRE
(P\H)|A(tr)− PRE

(P/H)|A(tr))
2

C). Methods based on Contra-Cosine Distance. In this way, contra-cosine distance is
used to estimate information leakage, defined as:

ξCC =DCC(PRE
(P\H)|A, PRE

(P/H)|A)

= 1−

∑
tr∈Rect∪Hiding

PRE
(P\H)|A(tr)PRE

(P/H)|A(tr)√ ∑
tr∈Rect∪Hiding

PRE
(P\H)|A(tr)

2
√ ∑

tr∈Rect∪Hiding

PRE
(P/H)|A(tr)

2

6. Comparison of Metrics for Information Leakage. We qualitatively and quanti-
tatively compare these measures, respectively.

6.1. Qualitative analysis. Now we discuss the qualitative relationship among these
measures.

Proposition 6.1. ξA = 0 ⇒ ξKL = 0.

Proof: According to [23], ξA = 0 if and only if P\H is weakly probabilistic bi-
simulation equivalent to P/H, that is, ξA = 0 iff P\H ∼ P/H. Similar to the proof
of [35], we can prove that if P\H ∼ P/H, then P\H ∼= P/H. If P\H ∼= P/H, then
∀x ∈ ProjTrA(P\H) ∪ ProjTrA(P/H) and lst(x) ≡ 0.PRP\H|A(x) = PRP/H|A(x). Ac-
cording to the definitions of PRE

P\H|A and PRE
P/H|A, we have that if P\H ∼= P/H, then

∀x ∈ ProjTrA(P\H) ∪ ProjTrA(P/H) and lst(x) ≡ 0.PRE
P\H|A(x) = PRE

P/H|A(x).
So, if P\H ∼= P/H, then ξKL = DKL(PRE

(P\H)|A, PRE
(P/H)|A) = 0 (because DKL(p, q) =

0 iff p = q, where p and q are probability mass function), that is, ξA = 0 ⇒ ξKL = 0.
Similarly, we have the following propositions.

Proposition 6.2. ξKL = 0 ⇔ ξEu = 0 ⇔ ξCC = 0 ⇔ ξMI = 0 ⇔ ξαMI = 0.

Proposition 6.3. ξKL = 0 ⇒ ξS = 0 and ξS = 0 ̸⇒ ξKL = 0.

264 D. SUN, Y. GUO, L. YIN AND C. HU

Propositions 6.1 – 6.3 show that most of measures are consistent when being used to
determine whether there exists information leakage.

6.2. Simulation. The qualitative analysis of these methods has been given in the Section
6.1, next we design a simulation scheme to discuss their accuacy 3. In this scheme, we
assume that HU transmits a binary file F to LU by scheduling a process P which can
implicitly leak information. Let ξ be P ’s actual leakage amount of leakage each scheduling,
N be scheduling times, and S be the size of file F . Then TER (Transmission Error Rate)
is equal to 1 − ξ×N

S
if ξ×N

S
≤ 1, otherwise TER = 0. In the following experiment, we

always make 1 ≥ TER > 0 by selecting appropriate N and S. In this case, because
TER = 1− ξ×N

S
, the leakage amount should be inversely proportional to the actual TER.

6.2.1. Simulation scheme. In order to simulate the TER, we need a probabilistic process
P . Let P = [p3]([p2]([p1]l0.0+ [1−p1]l0.l10)+ [1−p2]l0.l1.l2.0)+ [1−p3]([p4]l0.h.l1.0+ [1−
p4]l0.l1.h.l2.0). HU transmits a binary file to LU by scheduling P . They agree that (1)
HU schedules the process N (N ≥ 1) times for transmitting every bit; (2) HU executes
P\{h} to transmit bit 0 and P/{h} to transmit bit 1. LU receives bit x (x = 0 or 1) by
the following approach (Here, we take relative entropy as an example).

x =

{
0 if DKL(PRE

(P\H)|A, O) < DKL(PRE
(P/H)|A, O)

1 otherwise

where O is the probability mass of the traces observed by LU. Because TER depends on
many factors, the most important of which is distance function, we simulate the different
distance functions and select the minimal TER as an actual TER. The other simulation
environment is as follows. CPU: Pentium 4 3.4GHz, RAM: 512MB, Operating system:
Window XP Home. A binary file Source.bin with size 232 Bytes is transmitted, of which
bit 1 accounts for 49.95% and bit 0 accounts for 50.05%. In this simulation, we fix p1 = 0.1,
p2 = 0.2, p3 = 0.7 and N = 20. In order to have better accuracy, each experiment is
independently repeated three times and its average is taken.

6.2.2. Simulation analysis. For the sake of clarity, two figures are used to compare the
TERs. Figures 3 and 4 show the TER with the change of p4 (Parts of the data are from
our previous work [29]).

Figure 3. TER of differ-
ent methods (except the
simple method)

Figure 4. Comparison
of TER based on αMI
and simple distance

As shown in Figures 3 and 4, we can know that: (1) TER based on Euclidean (Contra-
Cosine, simple distance, relative entropy and Aldini) is high, (2) TER based on the (α-)
MI is the lowest. Thus, we have shown that the (α-) MI as a distance function is more

3In fact, this scheme is indirect. It is very difficult to design an experiment to directly demonstrate
which metrics are more accurate, because a direct demonstration is closely correlated to optimal coding
algorithms, however, none of the known algorithms come close to achieving this goal [30].

COMPARISON OF MEASURING INFORMATION LEAKAGE 265

Figure 5. Comparison
between the least TER
and theoretical leakage
amount of different meth-
ods (except the relative
entropy and contra-
cosine)

Figure 6. Comparison
between the least TER
and theoretical leakage
amount based on the
relative entropy and
contra-cosine

accurate than the others. We therefore select the TER based on αMI (α = 0.5) as an
actual TER.

Figures 3 and 4 show the relationship between the actual TER and the computed
leakage amount. As shown before, when TER = 1 − ξ×N

S
, the leakage amount should

be inversely proportional to the actual TER. From Figures 3 and 4, we know that the
methods based on (α-) MI accurately reflect this trend, so the methods based on (α-) MI
are more accurate.

As shown in Section 5.3, however, a necessary condition to adopt the (α-) mutual
information is to obtain the probability mass of the transmitted information. In many
situations, this condition cannot easily be satisfied. In these cases, the method based on
the relative entropy should be adopted, because this method closely reflects this trend
(i.e., for the measure based on relative entropy, the computed leakage amount is almost
inversely proportional to the actual TER).

Now we give some intuitive explanations for the accuracy of these methods. For the
simple distance, only a single trace (l0 of P in simulation) rather than all traces (for
example, l0.l1 and l0.l1.l2 of P) is considered. In fact, the other traces (for example, l0.l1
and l0.l1.l2) may cause information leakage, so the method based on the simple distance is
less accurate. The (α-) mutual information is used to measure the amount of information
that one random variable contains another, which is the amount of shared information by
the two variables, so the methods based on (α-) mutual information are more accurate.

7. Conclusions and Future Work. Quantifying the implicit information leakage is of
great importance, especially for an FPS. Although many quantitative methods have been
proposed, there has been little work to analyze their consistency and accuracy. Compared
with the related work, the major novelty of our work is that: (1) some existing measure
methods, which can be used to estimate the implicit information leakage, are uniformly
and formally modeled using PPA-Lite; (2) we analyze the consistency and accuracy of
these methods. The results show that (1) most of measures are consistent when being
used to determine whether there exists information leakage, (2) methods based on (α-)
mutual information are the most accurate if the probability of information has been
known; otherwise, the methods based on relative entropy becomes more accurate.

With respect to the future work, our analysis only focused on a fully probabilistic
system, while a timed probabilistic system may implicitly leak information. Therefore,

266 D. SUN, Y. GUO, L. YIN AND C. HU

we will try to quantify the information leakage of a timed probabilistic system. In addition,
because, as shown in Figures 3 and 4, the TER based on α-Mutual information (α = 0.5)
is less than that based on the others, it is worthy of further study that TER reaches a
minimum when α varies. Moreover, we do not study the attacking ability. In fact, Jonsson
[36] shows that different adversaries may have different attacking abilities, and even for
a given adversary, its attacking ability changes with the phases of the attacking process.
Therefore quantifying the attacking ability for a probabilistic/timed probabilistic system
is planned in our future work.

Acknowledgments. This work is partially supported by National Basic Research Pro-
gram of China (973 Program) (2007CB311100), the National High Technology Research
and Development Program of China (863 Program) (2000AA01Z438), the National Nat-
ural Science Foundation of China (61070186, 61063002 and 60903079).

REFERENCES

[1] S.-H. Chen, P.-C. Chang, Q. Zhang and C.-B. Wang, A guided memetic algorithm with probabilistic
models, International Journal of Innovative Computing, Information and Control, vol.5, no.12(B),
pp.4753-4764, 2009.

[2] J. Park, W. Liang, J. Choi, A. A. El-Keib and J. Watada, Probabilistic production cost credit
evaluation of wind turbine generators, International Journal of Innovative Computing, Information
and Control, vol.5, no.11(A), pp.3637-3646, 2009.

[3] J. Park, S. Jeong, J. Choi, J. Cha and A. El-Keib, A probabilistic reliability evaluation of Korea
power system, ICIC Express Letters, vol.2, no.2, pp.137-142, 2008.

[4] Y. Jiang and S. Wang, Measurement and quantitative analysis of human visual interpolation ability
for partially erased objects, ICIC Express Letters, vol.2, no.1, pp.7-13, 2008.

[5] B. Fang, Y. Guo and Y. Zhou, Information content security on the Internet: The control model and
its evaluation, Science in China Series F: Information Sciences, vol.53, no.1, pp.30-49, 2010.

[6] J. Rutkowska, The implementation of passive covert channels in the Linux kernel, Chaos Commu-
nication Congress, pp.1-9, 2004.

[7] S. Qin, Covert channel analysis in secure operating systems with high security level, Journal of
Software, vol.15, no.12, pp.1837-1849, 2004.

[8] S. H. Son, R. Mukkamala and R. David, Integrating security and real-time requirements using covert
channel capacity, IEEE Transactions on Knowledge and Data Engineering, vol.12, no.6, pp.865-879,
2000.

[9] K. G. Lee, J. H. Choi, K. S. Lim and S. Lee, Novel methodologies to detect covert databases,
International Journal of Innovative Computing, Information and Control, vol.6, no.3(B), pp.1313-
1324, 2010.

[10] S. Cabuk, C. E. Brodley and C. Shields, IP covert timing channels: Design and detection, Proc. of
the 11th ACM Conference on Computer and Communications Security, pp.178-187, 2004.

[11] S. Cabuk, C. E. Brodley and C. Shields, IP covert channel detection, ACM Transactions on Infor-
mation and System Security, vol.12, no.4, pp.1-29, 2009.

[12] S. Zander, G. Armitage and F. Branch, A survey of covert channels and countermeasures in computer
network protocols, IEEE Communications Surveys and Tutorials, vol.9, no.3, pp.44-57, 2007.

[13] G. Shah, A. Molina and M. Blaze, Keyboards and covert channels, Proc. of the 15th USENIX
Security Symposium, pp.59-75, 2006.

[14] D. E. R. Denning, Cryptography and Data Security, Addison-Wesley Longman Publishing Co., Inc.,
Boston, 1982.

[15] D. Clark, S. Hunt and P. Malacaria, A static analysis for quantifying information flow in a simple
imperative language, Journal of Computer Security, vol.15, no.3, pp.321-371, 2007.

[16] J. K. Millen, Covert channel capacity, Proc. of IEEE Symposium on Security and Privacy, pp.60-66,
1987.

[17] J. W. Gray III, Toward a mathematical foundation for information flow security, Journal of Computer
Security, vol.1, no.3, pp.255-294, 1992.

[18] S. McCamant and M. D. Ernst, Quantitative information flow as network flow capacity, ACM SIG-
PLAN Notices, vol.43, no.6, pp.193-205, 2008.

COMPARISON OF MEASURING INFORMATION LEAKAGE 267

[19] J. Newsome, S. McCamant and D. Song, Measuring channel capacity to distinguish undue influence,
Proc. of the ACM SIGPLAN on Programming Languages and Analysis for Security, pp.73-85, 2009.

[20] M. Boreale, Quantifying information leakage in process calculi, Automata, Languages and Program-
ming, vol.4052, pp.119-131, 2006.

[21] M. R. Clarkson, A. C. Myers and F. B. Schneider, Belief in information flow, Proc. of the 18th IEEE
Workshop Computer Security Foundations, pp.31-45, 2005.

[22] A. D. Pierro, C. Hankinb and H. Wiklickyb, Approximate non-interference, Journal of Computer
Security, vol.12, no.1, pp.37-81, 2004.

[23] A. Aldini and A. D. Pierro, A quantitative approach to noninterference for probabilistic systems,
Electronic Notes in Theoretical Computer Science, vol.99, pp.183-203, 2004.

[24] A. Aldini and A. D. Pierro, Estimating the maximum information leakage, International Journal of
Information Security, vol.7, no.3, pp.219-242, 2008.

[25] G. Lowe, Quantifying information flow, Proc. of IEEE Computer Security Foundations Workshop,
pp.18-31, 2002.

[26] P. Malacaria and H. Chen, Lagrange multipliers and maximum information leakage in different
observational models, Proc. of the 3rd ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, pp.135-146, 2008.

[27] G. Smith, On the foundations of quantitative information flow, Lecture Notes in Computer Science,
vol.5504, pp.288-302, 2009.

[28] I. S. Moskowitz and M. H. Kang, Covert channels-here to stay? Computer assurance, Proc. of the
9th Annual Conference on COMPASS, pp.235-243, 1994.

[29] Y. Guo, L. Yin, Y. Zhou and B. Fang, Quantifying information leakage for fully probabilistic systems,
Proc. of the 10th IEEE International Conference on Computer and Information Technology, pp.589-
595, 2010.

[30] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-Interscience, 2006.
[31] E. Oubel, H. Neemuchwala, A. Hero, L. Boisrobert, M. Laclaustra and A. Frangi, Assessment of

artery dilation by using image registration based on spatial features, Proc. of SPIE Medical Imaging,
pp.1283-1291, 2005.

[32] N. López and M. Nunez, An overview of probabilistic process algebras and their equivalences, Vali-
dation of Stochastic Systems, pp.89-123, 2004.

[33] A. Giacalone, C. C. Jou and S. A. Smolka, Algebraic reasoning for probabilistic concurrent systems,
Proc. of IFIP TC2 Working Conference on Programming Concepts and Methods, pp.1-14, 1990.

[34] A. Aldini, M. Bravetti and R. Gorrieri, A process-algebraic approach for the analysis of probabilistic
noninterference, Journal of Computer Security, vol.12, no.2, pp.191-245, 2004.

[35] I. Christoff, Testing equivalences and fully abstract models for probabilistic processes, CONCUR’90
Theories of Concurrency: Unification and Extension, pp.26-138, 1990.

[36] E. Jonsson and T. Olovsson, A quantitative model of the security intrusion process based on attacker
behavior, IEEE Transactions on Software Engineering, vol.23, no.4, pp.235-245, 1997.

