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Abstract. Data streams are utilized in an increasing number of real-time information
technology applications. Unlike traditional datasets, data streams are temporally ordered,
fast changing and massive. Due to their tremendous volume, performing multiple scans
of the entire data stream is impractical. Thus, traditional sequential pattern mining
algorithms cannot be applied. Accordingly, the present study proposes a new sequential
pattern mining model for predicting sequential pattern changes in data streams. The
experimental results show that the prediction performance of the proposed model is better
than that of two linear regression-based models.
Keywords: Data streams, Sequential pattern mining, Pattern changes, Prediction

1. Introduction. Real-time data processing is an important requirement in many fields
nowadays, including network monitoring and traffic analysis, web log and click-stream
mining, wireless sensor network (WSN) data analysis, dynamic stock fluctuation tracking,
manufacturing process analysis, weather data and power consumption mining, and so on.
The data streams in such applications are typically large, fast, unbounded and composed
of continuous data elements. As a result, achieving a real-time mining of the data set is
extremely challenging.

Traditional data mining techniques such as classification, clustering and association
rule finding are well-developed and have spurred extensive research into the development
of more advanced data mining techniques. Among the various advanced mining methods
which have been proposed, sequential pattern mining, a method based on association
rule mining, provides the means to identify frequently occurring orders or trends within
a data stream and detect (or make predictions about) anomalies in the data. Therefore,
sequential pattern mining algorithms have found use in a wide variety of applications,
including DNA sequence analysis [1], website navigation patterns finding [2,3], customer
purchase sequence analysis, hyponymy relation between Chinese terms extracting system
[4] and route suggestion systems [5].

Data streams are utilized in an increasing number of applications nowadays. Unlike
traditional data sets, data streams are temporally ordered, fast changing and massive.
Due to their tremendous volume, it is impractical to perform multiple scans of the entire
data stream. As a result, traditional sequential pattern mining algorithms cannot be eas-
ily applied to the analysis of most real-world data streams. Consequently, many advanced
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sequential pattern mining algorithms have been developed for data stream analysis. How-
ever, the problem of detecting (and predicting) changes in the sequential patterns within
a dataset has been largely ignored, despite the fact that such changes may lead to an
overdue mining model. Besides, the change status varies over time, and the degree of
change in the sequential patterns within a dataset is important for decision-makers to
give appropriate response to emerging trends.
Accordingly, this paper proposes a new sequential pattern mining model and a predictor

for analyzing sequential pattern changes in large-scale data streams and predicting changes
in these pattern types in accordance with their degree of change. The experimental results
show that the proposed approach enables a more accurate prediction of pattern changes
than that obtained using conventional linear regression-based models.
The major contributions of this study can be summarized as follows:

1. A sequential pattern mining model is proposed for identifying the sequential patterns
within a data stream.

2. A method is proposed for evaluating the degree of change of the sequential patterns
within a data stream based upon a root mean square (RMS) metric.

3. A mechanism is proposed for predicting future changes in the sequential patterns
within a data set in accordance with their degree of change properties.

The remainder of this paper is organized as follows: Section 2 describes previous work
in the sequential pattern mining field; Section 3 introduces the model proposed in this
study for predicting changes in the sequential patterns within a data stream; Section 4
describes the experimental design and presents the experimental results; finally, Section
5 provides some brief concluding remarks.

2. Related Work.

2.1. Sequential pattern mining over data streams. Räıssi et al. [6] proposed a
method, designated as SPEED, for mining maximal sequential patterns over data streams.
SPEED uses a titled window and finds the maximal sequential patterns by means of a
region lattice. SPEED has a simple input format, and is, therefore, straightforward
in use. However, it assumes the existence of only one item in each element, whereas in
most practical applications, each element includes many items. IncSPAM [7] performs the
mining of sequential patterns over a sliding window using a lexicographical tree and reflects
the greater importance of more recent information by means of a static decay function.
The mining performance is enhanced by storing the recent data stream information in the
form of a bitmap within a vertical database. However, the information associated with
each different customer is stored within a different window, and thus, a large memory
space is required. Furthermore, if a large number of items exist, the lexicographical tree
becomes large and unwieldy, and thus, the mining efficiency is reduced. DSM-PLW [8]
utilizes a forest structure to accomplish the single-pass mining of path traversal patterns
over streaming web click-sequences. However, for most real-world web click-sequences,
the forest structure is highly complex, and thus, mining involves a cumbersome and time-
consuming computational process. MILE [9,10] accomplishes the simultaneous mining
of multiple streams using a pattern-growth method known as PrefixSpan [11]. However,
PrefixSpan is a static mining approach, and therefore, requires the data to be scanned
multiple times. Consequently, MILE is inappropriate for the real-time mining of practical
data streams.

2.2. Change mining. Change is an important characteristic in real-time applications
and has therefore attracted considerable attention in the data mining field. Liu et al.
[12] argued that by knowing what is changing and how it is changing, a business can
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provide the products and services required to continuously satisfy changing market needs.
Chen et al. [13] identified changes in customer behavior by comparing the association
rules generated from two datasets acquired over different time periods. According to the
authors, the detection and prediction of changes in customer behavior is beneficial to
a business in developing long-term and pleasant customer relationships. However, the
sequential patterns which occur frequently in one time-period may not do so in another
[14]. In other words, a user’s recent behavior is not necessarily the same as his or her
previous behavior, and a pattern which occurred frequently in the past may seldom (or
indeed never) occur again in the present or future [15].

Despite the importance of change in many practical applications, the literature contains
no sophisticated methods for the rigorous change mining of the sequential patterns within
a data stream. Existing proposals for mining changes in the sequential patterns within a
data stream can be broadly categorized into two groups. In the first group, a static decay
function is used to assign greater importance to new elements within the data stream,
while a pruning mechanism is used to remove old elements. For example, IncSPAM [7]
uses a static decay function with a user-defined decay value of 0.999 and prunes any nodes
which occur only infrequently in the lexicographical tree. RSP-DS [16] and SS-MB [17]
perform a pruning operation at fixed time intervals. By contrast, GraSeq [18] uses the
static decay function of estDec [19], and therefore, considers only the timestamp when
performing the pruning process. The estDec, estWin [20] and eISeq [21] use the same
decay function which is based on a decay-base, a decay-base-life and a safety factor. The
safety factor represents the maximum number of the most recent consecutive transactions
containing a new itemset, where the itemset is infrequent. As a result, pruning can be
performed either periodically or whenever the current size of the monitoring lattice reaches
a pre-defined threshold value. In estDec, estWin and eISeq, a Coverage Rate CR(X) metric
was used to illustrate the speed of these methods in responding to information changes
in a data stream. In addition, the performance of the eISeq decay function was evaluated
using the T5.I4.D1000K-AB data set generated by Agarwal and Srikant [22]. The results
showed that the speed of eISeq in adapting to the transition of information between the
two subparts of the data set (i.e., subpart TA and subpart TB) increased as the value of
the decay-base-life parameter was reduced.

The second group of methods proposed in the literature for mining changes in the
sequential patterns within a data stream focus on the definition and identification of
significant change patterns. Li et al. [23] proposed a method for the online mining of item
changes over continuous append-only and dynamic data streams. Five different types of
item were considered, namely “frequent frequency changed items”, “sub-frequent frequency
changed items”, “infrequent frequency changed items”, “vibrated frequency changed items”
and “stable frequency changed items”. In [24], the authors extended the proposed method
to enable the detection of changes in user-centered musical query streams (MQSs). In
the proposed approach, designated as MQS-change, a landmark window was used to
store two musical melody structures, and four melody structure changes (positive burst,
negative burst, increasing change and decreasing change) were monitored using a new
data structure, MSC-list. Tsai and Shieh [14] proposed a method for detecting three
different types of change pattern, namely “emerging sequential patterns”, “unexpected
sequence changes” and “added/perished sequential patterns”. The method provides a
straightforward means of identifying changes in sequential patterns, but is not specific to
the change mining of data streams.

Liu et al. [25] proposed an event change detection (ECD) method based on a change
mining approach and a concept hierarchy for mining the change of environmental event
trends. In the proposed approach, association rule mining was performed initially to
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discover the event trend, and the ECD method was then applied to detect changes in
this trend in order to enable managers to respond rapidly to changes in the external
environment. In detecting event changes, five types of change pattern were considered,
namely emerging event patterns, added event patterns, perished event patterns, unexpected
consequent changes of event patterns and unexpected condition changes of event patterns.
The methods described above all concern the change mining of the sequential patterns

within a dataset. However, none of the methods consider the actual degree of change of
these patterns, or the detection and prediction thereof. Nonetheless, the degree of change
in the sequential patterns within a dataset is important since the change status varies over
time. Accordingly, this paper develops a model for mining sequential patterns in data
streams and for predicting changes in these patterns based upon their degree of change.

3. Model for Predicting Sequential Pattern Changes in Data Streams. Figure 1
illustrates the proposed model for predicting sequential pattern changes in data streams.
As shown, the model commences with a data preprocessing step, in which the data stream
information is collected in batches of a fixed size. The sequential patterns within the
current batch of data streams are mined and are then merged with the patterns detected
in the previous mining rounds. A search is then made for 6 different types of change
pattern. Having established the change type of each pattern, the degree of change of the
corresponding pattern is computed and used to predict the pattern type in the following
batch of data stream information. The entire process is then repeated as required. The
details of each step are described in the following sections.

Figure 1. Proposed model for predicting sequential pattern changes in
data streams

3.1. Data preprocessing and sequential pattern mining. The problem of mining se-
quential patterns was introduced in [26] and then extended in [27]. Let I = {i1, i2, . . ., im}
be a set of literals items. Furthermore, let an itemset be a non-empty set of items. Fi-
nally, let a sequence s be a set of elements ordered according to their timestamps, where
each element is an itemset containing ordered items. In other words, sequence s can be
denoted as ⟨s1 s2. . .sn⟩, where sj is an element, j ∈ 1. . .n. A sequence S1 = ⟨a1 a2 . . . an⟩
is a subsequence of another sequence S2 = ⟨b1 b2 . . . bm⟩ if there exists a set of integers,
1 ≤ i1 < i2 < . . . ij . . . < in ≤ im, such that a1 ⊆ bi1, a2 ⊆ bi2, . . ., an ⊆ bin. For example,
sequence ⟨A,C,D⟩ is a subsequence of ⟨A,(BC),(AD)⟩. If every element has only one item
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CID Timestamp Itemset
1 1 (abd)
2 2 (b)
1 3 (bcd)
2 4 (abc)
3 5 (ab)
2 6 (bcd)
3 7 (bcd)
4 8 (bd)
2 9 (ac)
1 10 (bc)
3 11 (abc)
2 12 (cd)
4 13 (ad)
3 14 (ad)
4 15 (cd)

Figure 2. Typical example of input streams

in a sequence, the sequence is referred to hereafter as an item sequence; otherwise, the
sequence is referred to as an itemset sequence.

In this study, the streams are modeled as a series of transactions. Let each transaction
T consist of a customer-ID (CID), a timestamp and an itemset (see Figure 2). In the data
preprocessing step, having collected all the stream information over a certain period, the
transactions relating to the same customer are grouped, sorted in ascending timestamp
order and designated as a data sequence. The system continues to collect stream infor-
mation until batch size data sequences have been generated, where batch size is a fixed
value representing the size of the batch. Note that since each data sequence is associated
with a particular CID, the number of customers within a batch is equal to the number
of sequences (see Figure 3 for example, in which batch size = 4). Thus, each data se-
quence extracted from the input stream includes three pieces of information, namely CID,
Batch-ID and the sequence itself. For each data sequence s, a support count (denoted
as count(s)) is generated to indicate the number of data sequences in the batch within
which s is contained. The support of a sequence s is the proportion of total sequences in
the dataset which contain s. Such as count (⟨(ab)(c)⟩) = 3 and the support of ⟨(ab)(c)⟩
is 0.75 (i.e., 3/4) in Figure 3.

CID Batch-ID Sequence
1 1 (abd)(bcd)(bc)
2 1 (b)(abc)(bcd)(ac)(cd)
3 1 (ab)(bcd)(abc)(ad)
4 1 (bd)(ad)(cd)

Figure 3. Example of data sequences extracted from Figure 2

A data stream, D, can therefore be modeled as a series of batches, i.e., D = D1+D2+
. . .+Di + . . ., where the related notations are as follows:

• Di: batch i of the data stream.
• |Di|: number of sequences in batch i.
• Di,j: sequences accumulated from batch i to batch j.
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• |Di,j|: number of sequences accumulated from batch i to batch j.
• cur cntt(p): current count of sequence p in batch t.
• cur supt(p) = cur cntt(p)/|Dt|: current support of sequence p in batch t.
• cum cntt(p): cumulative count of sequence p in D1t.
• cum supt(p) = cum cntt(p)/|D1,t|: cumulative support of sequence p in D1,t.

For each batch, sequential pattern mining is performed using the PrefixSpan algorithm
[11]. The mining results for the current batch are then merged with those for previous
batches in order to obtain a cumulative mining result. The sequential patterns identified
during the mining process are stored with a semi-buffer δ (0 < δ < 1), of which the support
is less than but near min sup. Figure 4 shows the generic pattern types considered in the
mining process. If the support of pattern p is less than δ∗min sup, p is considered to
be infrequent. Meanwhile, if the support of pattern p is less than min sup but equal to
or larger than δ∗min sup, p is considered to be semi-frequent. Finally, if the support of
pattern p is equal to or larger than min sup, p is considered to be frequent. In other
words, the proposed model involves a total of six different pattern types, namely current
infrequent patterns, current semi-frequent patterns, current frequent patterns (identified in
the Sequential Pattern Mining step) and cumulative infrequent patterns, cumulative semi-
frequent patterns and cumulative frequent patterns (constructed in the Result Merging
step, see the following section).

Figure 4. Pattern types

3.2. Result merging. One of the most important steps in the mining of data streams
is that of calculating the support of a pattern based on both the current mining results
and the previous results. In the present study, a decay mechanism similar to that used in
[7,18-21] is applied to assign new data in the data stream a greater importance than old
data within the stream. Thus, the cumulative count of sequence p in D1,t and the total
number of cumulative sequences from the first batch to batch t are given respectively as
follows:

cum cntt(p) = cur cnt1(p), for t = 1
cum cntt(p) = cur cntt−1(p) ∗ d+ cur cntt(p), for t > 1

(1){
|D1,t| = |D1|, for t = 1
|D1,t| = |D1,t−1| ∗ d+ |Dt|, for t > 1

(2)

where d denotes the decay rate.
Moreover, as there is no information stored about an infrequent sequential pattern

of previous results in data streams mining, in accordance with the method proposed in
[20,21], the previous cumulative count of the infrequent sequential pattern p from the first
batch to batch t− 1 is estimated as:

cum cntt−1(p) = δ ∗min sup ∗ |D1,t−1| − 1 (3)

If cum supt(p) ≥min sup, then p is a cumulative frequent sequential pattern. Meanwhile,
if min sup > cum supt(p) ≥ δ∗min sup, p is a cumulative semi-frequent sequential pattern.
Finally, if cum supt(p) < δ∗min sup, p is a cumulative infrequent sequential pattern.
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3.3. Change pattern finding. Due to the huge size of real-world data streams, it is
impossible to store all of the data in the stream for mining purposes. Thus, in practice,
only the most recent data is stored, and as new data sequences are added, old sequences
are discarded. The concepts describing the stored streaming data may change as new data
sequences are added. Thus, this paper proposes the following definition for the change in
the sequential patterns within a data stream.

Definition 3.1. The change in the sequential pattern mined from a data stream is defined
as the difference between two sets of cumulative sequential patterns generated from two
datasets obtained over different time periods.

The problem of detecting sequential pattern changes in data streams has received ex-
tensive attention in the literature. However, previous studies have not provided a detailed
description of the types of changes which may occur. Therefore, as shown in the following,
the present study defines six specific types of change pattern which may occur within a
data stream over time.

Definition 3.2. A cumulative semi-frequent sequential pattern p is called an ISCP change
pattern, if:

(1) min sup× |D1,t| > cum cntt(p) ≥ δ ∗min sup× |D1,t| and
(2) cum cntt−1(p) < δ ∗min sup× |D1,t−1|,
where t is the index of the current batch.

In other words, an ISCP change pattern is said to occur when pattern p transits from
an in-frequent pattern to a semi-frequent pattern.

Definition 3.3. A cumulative frequent sequential pattern p is called an IFCP change
pattern, if:

(1) cum cntt(p) ≥ min sup× |D1,t| and
(2) cum cntt−1(p) < δ ∗min sup× |D1,t−1|.

In other words, an IFCP change pattern is said to occur when pattern p transits from
an in-frequent pattern to a frequent pattern. The change pattern is dubbed an adding
pattern.

Definition 3.4. A cumulative frequent sequential pattern p is called an SFCP change
pattern, if:

(1) cum cntt(p) ≥ min sup× |D1,t| and
(2) min sup× |D1,t−1| > cum cntt−1(p) ≥ δ ∗min sup× |D1,t−1|.

In other words, an SFCP change pattern is said to occur when pattern p transits from
a semi-frequent pattern to a frequent pattern. The change pattern is dubbed an adding
pattern.

Definition 3.5. A cumulative semi-frequent sequential pattern p is called an FSCP change
pattern, if:

(1) min sup× |D1,t| > cum cntt(p) ≥ δ ∗min sup× |D1,t| and
(2) cum cntt−1(p) ≥ min sup× |D1,t−1|.

In other words, an FSCP change pattern is said to occur when pattern p transits from
a frequent pattern to a semi-frequent pattern.

Definition 3.6. A cumulative in-frequent sequential pattern p is called an FICP change
pattern, if:

(1) cum cntt(p) < δ ∗min sup× |D1,t| and
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(2) cum cntt−1(p) ≥ min sup× |D1,t−1|.

In other words, an FICP change pattern is said to occur when pattern p transits from
a frequent pattern to an in-frequent pattern. The change pattern is dubbed a vanishing
pattern.

Definition 3.7. A cumulative in-frequent sequential pattern p is called an SICP change
pattern, if:

(1) cum cntt(p) < δ ∗min sup× |D1,t| and
(2) min sup× |D1,t−1| > cum cntt−1(p) ≥ δ ∗min sup× |D1,t−1|.

In other words, an SICP change pattern is said to occur when pattern p transits from a
semi-frequent pattern to an in-frequent pattern. The change pattern is dubbed a vanishing
pattern.

3.4. Change degree calculation. Since the ISCP and SICP change patterns do not
belong to frequent patterns, the degree of change computation is based only on the FICP,
IFCP, SFCP and FSCP patterns. In the model proposed in this study, the degree of
change is based on the root mean square (RMS) metric (discrete distribution mode). In
general, the RMS of a variable x, denoted as R(x), is calculated as:

R(x) =


√∑n

i=1 x
2
i

n
, for a discrete distribution√∫

P (x)x2dx∫
P (x)dx

, for a continuous distribution

(4)

In calculating the degree of change of the sequential patterns in a data stream, let A
be a change pattern set from the set FICP, IFCP, SFCP and FSCP, t be the current
batch index, and ai be a change pattern i from the set FICP, IFCP, SFCP and FSCP.
Furthermore, let dai represent the difference ratio of the cumulative support of ai in
two continuous batches. Here, dai corresponds to variable x in Equation (4). Let the
numerator of the radical in Equation (4) be denoted as DiffA. dai and DiffA are given
respectively as:

DiffA =

|A|∑
i=1

d2ai ai ∈ A (5)

dai =
|cum supt−1(ai)− cum supt(ai)|

max
{
cum supt−1(ai), cum supt(ai)

} (6)

Note that dai in Equation (6) has a value in the range 0 ≤ dai ≤ 1. From Equations (5)
and (6), the Change Degree (CD) can be calculated as:

CD = max

{√
DiffSFCP

|SFCP |
,

√
DiffFSCP

|FSCP |
,

√
DiffIFCP

|IFCP |
,

√
DiffFICP

|FICP |

}
(7)

As shown in Equation (7), the CD is based on the RMS values of the number of FICP,
IFCP, SFCP and FSCP change patterns. Specifically, the CD is taken as the maximum
RMS value among the four counts. A large CD indicates a larger variation in support of
the corresponding change pattern between the previous batch and the current batch.
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3.5. Change prediction. Prediction methods are generally based on stored historical
data. Moreover, the prediction accuracy increases as the amount of historical data avail-
able increases. However, due to the sheer volume of real-world data streams, most data
stream mining models store only the current results, and thus, the prediction accuracy is
inevitably degraded. Accordingly, in the present study, the number of historical batches
considered in the Change Prediction step is specified by a parameter α, where the value
of α represents a compromise between the prediction accuracy and the corresponding
storage space requirement.

In the proposed model, the types of the patterns in the next batch are predicted on
the basis of the CD metric. Through the user-defined steady threshold γ and change
threshold τ (0 < γ < τ < 1), the value of CD can be divided into three regions according
to the degree of change, i.e., (1) CD ≥ τ , (2) τ > CD ≥ γ and (3) CD < γ. In the
model proposed in this study, a different change prediction method is used in each region,
as discussed in the following sections. These methods generate a predicted cumulative
support for each pattern, and the pattern type of each pattern can be found. The details
are as follows.
(a) Direct Prediction Method

If CD ≥ τ , a significant difference exists between the patterns in the current batch and
those in the previous batch, and thus, the past results are not relevant in predicting the
pattern types in the following batch. Accordingly, the past results for the support infor-
mation are discarded, and the prediction process is performed on the basis of the current
support information alone. Specifically, the model predicts the type of each pattern in
the following batch using a direct prediction model. That is, the predicted cumulative
support of each pattern in the following batch is simply set equal to the current cumu-
lative support of the corresponding pattern (i.e., the number of historical batches used
equals one). Other history of all patterns about support information will be deleted from
memory.
(b) Linear Regression Prediction Method

If τ > CD ≥ γ, a regular difference exists between the patterns in the current batch
and those in the previous batch. In this case, the cumulative support of each pattern in
the following batch is computed using the following linear regression model:

y = w0 + w1x (8)

w1 =

∑|D|
i=1(xi − x̄)(yi − ȳ)∑|D|

i=1(xi − x̄)2
, (9)

w0 = ȳ − w1x̄ (10)

In Equation (8), x represents the Batch ID for predicting, and y is the predicted cu-
mulative support of the patterns in batch x. Moreover, in Equations (9) and (10), xi is
Batch ID i, x̄ is the average of all xi, yi is the cumulative support of the patterns in batch
i, ȳ is the average of all yi, and D is the total number of referred historical batches (i.e.,
D = α).
(c) Average Prediction Method

If CD < γ, a steady difference exists between the patterns in the current batch and
those in the previous batch. In this case, the proposed model uses the average prediction
method to predict the cumulative support of each pattern in the following batch. That
is, the support information of each pattern in the α historical batches is averaged, and
the resulting average cumulative support is taken as the predicted cumulative support of
the corresponding pattern in the following batch.
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Table 1. Support of pattern ⟨(A)(BC)⟩

Batch ID 1 2 3
Cumulative Support 0.3 0.4 0.5

Example 3.1. To illustrate how the three different change prediction methods works, we
assume that the cumulative support values used to predict the type of pattern ⟨(A)(BC)⟩
in batch 4 are shown in Table 1. Assuming that min sup = 55%, δ = 72% and α = 3,
three possible scenarios arise:
(a) CD ≥ τ : the direct prediction method is used, the predicted cumulative support of

⟨(A)(BC)⟩ in batch 4 is set equal to its cumulative support in batch 3. In other words,
the predicted cumulative support of pattern ⟨(A)(BC)⟩ in batch 4 is set to 0.5. And all
patterns’ support information of Batch IDs 1 and 2 will be deleted from memory. Referring
to the pattern types shown in Figure 4, pattern ⟨(A)(BC)⟩ is predicted to be semi-frequent
in batch 4 (i.e., 0.72 ∗ 0.55 < 0.5 < 0.55).
(b) τ > CD ≥ γ: the predicted cumulative support of ⟨(A)(BC)⟩ in batch 4 is calcu-

lated using the linear regression method in Equations (8)-(10). The derivation processes
are shown in Equations (11)-(15). In this case, the predicted cumulative support is equal
to 0.6, and thus, pattern ⟨(A)(BC)⟩ is predicted to be frequent in batch 4 (i.e., 0.55 < 0.6).

x̄ =
1 + 2 + 3

3
= 2 (11)

ȳ =
0.3 + 0.4 + 0.5

3
= 0.4 (12)

w1 =
(1− 2)(0.3− 0.4) + (2− 2)(0.4− 0.4) + (3− 2)(0.5− 0.4)

(1− 2)2 + (2− 2)2 + (3− 2)2
= 0.1 (13)

w0 = 0.4− 0.1× 2 = 0.2 (14)

y = 0.2 + 0.1× 4 = 0.6 (15)

(c) CD < γ: the average prediction method is used, the predicted cumulative support
of ⟨(A)(BC)⟩ in batch 4 is set equal to the average cumulative support of the pattern over
batches 1 to 3. In other words, the predicted cumulative support is equal to 0.4 (i.e.,
(0.3 + 0.4 + 0.5)/3), and thus pattern ⟨(A)(BC)⟩ is predicted to be semi-frequent in batch
4 (i.e., 0.72 ∗ 0.55 < 0.4 < 0.55).

4. Experimental Design and Results. The performance of the proposed model was
evaluated by performing a series of simulations. In each simulation, the prediction ac-
curacy was defined as the number of correct pattern predictions divided by the total
number of pattern predictions. The prediction accuracy (from the third batch onwards)
of the proposed method was compared with that of two linear regression methods based
on a limited number of recent batches and an unlimited number of historical batches, re-
spectively. Most experimental mining studies only consider synthetic datasets containing
item sequences. However, in the present study, the experiments also considered synthetic
datasets comprising itemset sequences (mentioned in Subsection 3.1). The simulations
were conducted using two itemset sequences datasets, designated as C200T2.5S10I1.25
and C200T2S8I1.25, respectively, which generated using the IBM Quest Synthetic Data
Generator [28]. Note that: C denotes how many thousands of customers exist within
the database; T denotes the average transaction length; S denotes the average sequence
length; and I denotes the average number of itemsets in the maximal frequent sequential
pattern. Note that both datasets comprised a total of 1000 items.
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An appropriate setting of parameter τ , was obtained by performing a pretest on
C200T2.5S10I1.25 and C200T2S8I1.25 both datasets. In performing each test, the value
of τ was set initially to 0.32, and was then reduced by 1% in each iteration. The results
showed that a value of τ = 0.2 was appropriate for both datasets. Specifically, the pre-
diction accuracy obtained when using a value of τ = 0.2 was 5 ∼ 10% higher than that
obtained when using τ = 0.32.

In the first simulation, the prediction accuracy was calculated for two different values of
min sup, i.e., 0.75% and 1.0%. The corresponding results are presented in Figure 5. Note
that the results relate to the C200T2.5S10I1.25 dataset and are based on the following
parameter settings: δ = 70%, d = 0.995, τ = 0.2, γ = 0.05 and α = 3. Note also that
each of the 20 batches comprised 1000 sequences. From inspection, the average prediction
accuracy for min sup = 1% is found to be 0.93, while that for min sup = 0.75% is equal
to 0.88. Since more patterns are generated, the smaller value of min sup results in a lower
accuracy. However, the prediction accuracy (i.e., 0.88) is still acceptable.

Figure 5. Prediction performance of proposed method for different
min sup values

Figure 6. Prediction performance of different methods given a batch size
of 20
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The second set of simulations evaluated the effect of the batch size on the prediction
accuracy. The simulations were performed using the C200T2.5S10I1.25 dataset with pa-
rameter settings of δ = 70%, min sup = 0.75%, d = 0.995, τ = 0.2, γ = 0.05 and α = 3.
Two different batch sizes were considered, namely 20 batches with 1000 sequences per
batch, and 10 batches with 2000 sequences per batch. Moreover, the prediction perfor-
mance of the proposed approach was compared with that obtained using the two linear
regression methods described above. The results presented in Figure 6, corresponding to
a batch size of 20, show that the average prediction accuracies of the proposed model, the
linear regression model with no storage limitation, and the linear regression model with a
finite storage are 0.88, 0.77 and 0.81, respectively. In other words, the prediction accuracy
of the proposed model is around 7 ∼ 11% higher than that of the two linear regression
models. In Figure 7, corresponding to a batch size of 10, the average prediction accuracies
of the three models are 0.88, 0.75 and 0.75, respectively. In other words, the prediction
accuracy of the proposed model is 13% higher than that of the linear regression models.
Overall, the two figures show that the proposed method outperforms the linear regression
models irrespective of the batch size. The superior prediction performance of the pro-
posed method is attributed to the use of different prediction methods in accordance with
the degree of change of the sequential patterns (i.e., the value of CD).

Figure 7. Prediction performance of different methods given a batch size
of 10

The prediction performance of the three methods was also examined when applied to
the C200T2S8I1.25 dataset. The content of the C200T2S8I1.25 dataset with smaller “T”
and “S” is simpler than that of the C200T2.5S10I1.25 dataset, and thus, all three methods
were found to achieve a prediction accuracy of more than 96% for values of min sup in
the range 0.5 ∼ 1%. Figure 8 shows the prediction performance of the three methods for
min sup = 0.25%. The proposed model achieves an average prediction accuracy of 0.88,
while both linear regression models achieve an average prediction accuracy of 0.75. These
results are identical to those obtained for the C200T2.5S10I1.25 dataset (see Figure 7).
Thus, the general applicability of the proposed method is confirmed.
A third set of simulations was performed using the C200T2.5S10I1.25 dataset in order

to investigate the effect of α (i.e., the number of batches considered in the prediction step)
on the prediction performance. In every case, the model settings were specified as follows:
δ = 70%, d = 0.995, min sup = 0.75%, τ = 0.2, γ = 0.05 and batch size = 10. The results
presented in Figure 9, corresponding to α = 2, show that the average prediction accuracies
of the proposed model, the linear regression model with no storage limitation and the
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Figure 8. Prediction performance of different methods for C200T2S8I1.25 dataset

Figure 9. Prediction performance of different methods given α = 2

Figure 10. Prediction performance of different methods given α = 4
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linear regression model with a finite storage are equal to 0.92, 0.75 and 0.68, respectively.
Since just two batches are considered in the prediction process, the linear regression model
with a finite storage inevitably yields low prediction accuracy. By contrast, the proposed
method yields high average prediction accuracy (0.92) since the proposed method using
different prediction methods in accordance with the degree of change of the sequential
patterns.
Figure 10 shows that when the number of batches considered in the prediction process

is increased to α = 4, the average prediction accuracies of the three methods are 0.88, 0.75
and 0.75, respectively. Theoretically, the value of α increases, i.e., a greater volume of
historical information is used in the prediction process, the prediction performance of the
proposed method converges toward that of the linear regression method with no storage
limitation.
Finally, the three methods were applied to the FoodMart2000 database (extracted

from SQL Server 2000). The database consists of two datasets, namely Sales Fact 1997
and Sales Fact 1998. Sales Fact 1997 contains 20,522 transactions collected from 5581
customers in 1997, while Sales Fact 1998 contains 34,015 transactions collected from 7824
customers in 1998. Overall, the transactions involve a total of 1559 product items. Figure
11 shows the prediction performance of the three methods. Note that the results presented
for the proposed model relate to parameter settings of δ = 70%, d = 0.995, τ = 0.2,
γ = 0.05 and α = 3. Moreover, the datasets were divided into 24 batches by per month
and min sup was assigned a value of 0.5%. Thus, each of the 24 batches comprised a
different number of sequences. (The average number of sequences per batch per month
was found to be 2826.5.) The results presented in Figure 11 show that the average
prediction accuracies of the three methods are 0.96, 0.94 and 0.95, respectively. The
simulations were repeated using a min sup value of 1.0%; resulting in an average number
of sequences per batch per quarter of 16666.75. The corresponding results are presented
in Figure 12. From inspection, the prediction accuracies of the three methods are found
to be 0.90, 0.85 and 0.86, respectively.

Figure 11. Prediction performance of different methods for Food-
Mart2000 month dataset given min sup = 0.5%

A detailed observation of the FoodMart2000 database revealed that the data within
the two datasets have a near uniform distribution. In other words, the database contains
very few (if any) frequent patterns, and each element consists of only one item (i.e.,
item sequence) in all frequent patterns. Thus, the proposed model can achieve high
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Figure 12. Prediction performance of different methods for Food-
Mart2000 quarter dataset given min sup = 1.0%

Table 2. Change pattern examples from batch 2 to batch 4 of Food-
Mart2000 month database

``````````````Pattern
Batch

FoodMart 1997 2FoodMart 1997 3FoodMart 1997 4

Washington Cream Soda FSCP SICP N/A
Tell Tale Corn on the Cob ISCP N/A N/A

Excellent Berry Juice IFCP N/A FSCP
High Top Lemons N/A N/A SICP

Denny C-Size Batteries SFCP FICP N/A
Golden Lime Popsicles SICP N/A N/A

prediction accuracy, especially for the small average number of sequences with per month
(0.96).

Table 2 presents typical examples of the change patterns within batches 2-4 of the
FoodMart2000 database in 1997. Note that the notation N/A indicates that the batch
contains no change pattern for the corresponding product. Note also that most of the
mined sequential patterns include only one item (i.e., equates in product here) since the
items in the FoodMart2000 database are sparsely distributed. As shown, the pattern
“Washington Cream Soda” exhibits an FSCP change pattern in February 1997, an SICP
pattern in March 1997 and no change pattern in April 1997. The proposed model al-
lows the pattern type of each product to be predicted in advance, and therefore enables
decision-makers to formulate a timely and appropriate response to emerging trends.

Figure 13 reveals the average historical batches used (denoted as p) with different
methods for all datasets given α = 3. And the average number of patterns in each batch
(denoted as q) of the four datasets are found to be 2463.88, 7379.50, 27.29 and 1344.83,
respectively. Assume that the memory size for storing the support information of one
pattern is 4 bytes. Therefore, the average memory size for keeping history data is p ∗ q ∗ 4
bytes. The average memory size with different methods for all datasets given α = 3
and the corresponding average accuracy from previous simulations are shown in Table 3.
Obviously, the proposed model can use little memory for storing history data to achieve
higher accuracy than the other two compared methods. Moreover, the more the batches,
the more memory been saved in the proposed model.
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Figure 13. Average historical batches used for different methods with
given α = 3

In summary, the model proposed in this study provides a robust means of predicting
the sequential pattern types within a data stream. The experimental results show that
the proposed method consistently achieves a prediction accuracy of more than 88% and
outperforms conventional linear regression-based prediction models. The average predic-
tion accuracy of the linear regression model based on a specified number of historical
batches is close to, but less than, that of the proposed model. However, even though
the regression model achieves a good performance when the degree of change exceeds the
change threshold τ , it requires a greater number of historical batches than the proposed
model. The results have shown that the linear regression model based on all the historical
batches achieves lower prediction accuracy than the proposed model or the regression
model based on a limited number of recent batches. This is because the changes may lead
to an overdue mining model. Overall, the experimental results demonstrate the impor-
tance of utilizing the change information within a data stream to achieve a real-time and
reliable prediction capability.

Table 3. The average memory size and the average accuracy (in paren-
theses) for α = 3

XXXXXXXXXMethod
Dataset

C200T2.5S10I1.25C200T2S8I1.25FoodMart2000 monthFoodMart2000 quarter

proposed model
25920 bytes 77632 bytes 302 bytes 11673 bytes

(0.88) (0.88) (0.96) (0.90)

linear regression
without limitation

on α

59133 bytes
(0.75)

191867 bytes
(0.75)

1474 bytes
(0.94)

29587 bytes
(0.85)

linear regression 29567 bytes 88554 bytes 328 bytes 16138 bytes
with α (0.75) (0.75) (0.95) (0.86)

5. Conclusions. This study has proposed a model for predicting changes in the sequen-
tial patterns within a dataset in accordance with their degree of change. The experimental
results have shown that the proposed model achieves higher prediction accuracy than lin-
ear regression methods based on either a limited number of recent batches or an infinite
number of historical batches. Thus, the proposed method provides an effective means of
mining the sequential patterns within real-world applications such as WSNs or web logs.
The scalability problem of data stream mining for processing an enormous amount of

data on a single CPU is still an issue. In the future study, the prediction speed of the
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proposed method will be further enhanced by means of parallel or cloud computing tech-
niques. Moreover, the current study inspects literal items data only, complex sequences
such as hybrid sequential patterns [29], or numeric data sequences like stock or sales
volume will be considered.
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