International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 1(A), January 2012 pp. 329-345

A BINARY IMAGE HIDING-COMPRESSION METHOD USING BFT
LINEAR QUADTREE AND LOGIC-SPECTRA

Yu-AN Ho', YuNG-KuaN CHAN?*, CHWEI-SHYONG TSAI?
YEN-PING CHU! AND HsIEN-CHU WU3
!Department of Computer Science and Engineering
?Department of Management Information Systems
National Chung Hsing University
No. 250, Kuokuang Rd., Taichung 402, Taiwan
*Corresponding author: ykchan@nchu.edu.tw; { yaho; ypchu; tsaics }@nchu.edu.tw

3Department of Computer Science and Information Engineering
National Taichung Institute of Technology
No. 129, Section 3, San Min Rd., Taichung 404, Taiwan
wuhc@ntit.edu.tw

Received September 2010; revised January 2011

ABSTRACT. This paper proposes a binary image compression method, called QLS com-
pression. method, which integrates BFT linear quadtree and logic-spectra techniques to
losslessly compress a binary image. This method employs a breadth first traversal linear
quadtree to divide the image into nonoverlapping blocks, and then uses logic functions
and spectral techniques to encode the blocks. This paper also presents a QLS hiding-
compression method to encode a cover image and embed secret data in the cover image
during encoding the cover image. The stego image created by the QLS hiding-compression
method is quite similar to the cover image.

Keywords: Linear quadtree, Image compression, Data hiding, Logic function, Lossless
binary image compression method

1. Introduction. A digital image generally contains a large amount of data and needs
much memory space to hold the data. Due to the limitation of network bandwidth, it
indeed takes much time to transmit the data within or between computer networks. As
a result, it is undoubtedly necessary to develop a good image compression technique so
that the memory space required for storing digital images and the time needed for online
transmission can be effectively reduced [5,11,14,25].

Binary image is one of the commonly used image formats, such as FAX and document
images [21]. Some logic functions based lossless binary image compression techniques
have been proposed [8,12,23,29]. Chaudhary et al. [8] partitioned a binary image into
small blocks, and then the mixed blocks are converted to Boolean switching functions
and subjected to minimization for leading to a compact representation. Mateu-Villarroya
and Prades-Nebot [23] presented a lossless image compression algorithm based on ordered
binary-decision diagrams (OBDDs). This algorithm uses Gray code instead of sequential
binary code for finding an OBDD which can describe the image exactly and then it encodes
the OBDD. The coding algorithm of OBDDs can efficiently reduce redundant data in the
image and achieve a good compression result. A lossless image compression technique
based on coding schemes and patterns, including minterm, cube and coordinate data
coding, Walsh, triangular and ReedMuller weights based patterns, ReedMuller spectra
and reference row technique, has also been proposed [12,29]. In this technique, a two-
dimensional differencing operation is first applied on the image. The difference image is

329

330 Y.-A. HO, Y.-K. CHAN, C.-S. TSAI, Y.-P. CHU AND H.-C. WU

segmented and classified into all-black, all-white or mixed blocks. Each all-black or mixed
block in the non-overlapping blocks is represented by a variable block-size segmentation
and coding scheme. However, the main drawback of the above-mentioned methods is that
much memory space is required to hold the coordinates of the blocks.

Many researchers adopted quadtree structure to encode a binary image [16,20,36]. The
image region is recursively decomposed into quadrants until each quadrant includes either
all-black or all-white pixels. A quadtree can be entirely stored as a tree structure. Alter-
natively, one can store only the encodings of paths from the root quadrant to individual
subquadrants that contain all-black pixels or all-white pixels. The maximal quadtree
blocks or quadrants can be obtained through the regular hierarchical decomposition for
saving data storage.

This paper proposes a lossless binary image compression method which applies quadtree
structure to decomposing a binary image into blocks and then uses the coding techniques
[12,29] based on minterm coding, GPMPRM expansion, coordinate data coding, pattern
matching, and the reference row technique to encode the blocks. We call the binary image
compression method a quadtree and logic-spectra based image compressiom method (QLS
compression method). In most cases, the QLS compression method can provide a better
compression ratio than the compression methods proposed by Falkowski [12] and Wang
et al. [33].

Since the prevalence of the Internet and multimedia has increased exponentially in
recent years, people can exchange and transmit a large amount of data via computer
networks. However, the security mechanisms of an ordinary computer network, especially
a wireless one, are not so sufficient that data transmitted on it may be easily intercepted.
Thus, how to prevent data transmitted on a computer network from being hacked by
unauthorized users has become an interesting issue to many researchers. Most of the
technologies used currently [4,7,10,17,19,25,26,31,32,34,36] embed confidential data in a
certain digital medium, and then transmit the data to a receiver via this medium. Even if
the data are intercepted halfway, people who intercept the data can merely see the outer
appearance of the medium, rather than the initially embedded data.

Image hiding is to embed secret data in an image. In general, the image that carries
the secret data is called a cover image. After secret data are embedded, the cover image
becomes a stego image. This process of hiding is called embedding. Therefore, the purpose
of image hiding is to conceal secret data in a cover image by imposing imperceptible
changes on the stego image [6,18].

So far, numerous data hiding methods [4,19,31,35] have been proposed, but most of
them can embed the secret data only in a grey-level or a color image. In a binary image,
a pixel is generally described by only one bit. If one bit in an all-black or an all-white
region is changed, human eyes can easily detect the change. Hence, only the proximity
of edge can be used to carry secret data. Since not much space in a binary image can be
used to conceal secret data, it is much more difficult to hide secret data in a binary image
than in a gray-level or a color image.

Some methods have been proposed to hide secret data in a binary image. Matsui
and Tanaka [23] embedded secret data in a dithered image by changing the dithering
patterns and in fax images by changing the run-lengths. However, this method cannot
be applied to general binary images. Maxemchuk and Low [2,21,24,37] proposed three
different methods for embedding secret data in text documents: line shift coding, word-
shift coding and feature coding. Although these methods can theoretically be defeated,
they require interactive human intervention and are not cost-effective in practice. Wu
and Liu [37] hid a moderate amount of data in a general binary image. Their method
manipulates “flippable” pixels to enforce specific block based relationship to embed a

BFT LINEAR QUADTREE AND LOGIC-SPECTRA 331

significant amount of data without causing noticeable artifacts. The method can hide
annotation labels or other side information and verify whether a binary document has
been tampered with or not. This technique determines the hidden capacity according to
the size of blocks.

This paper presents a QLS hiding-compression method to embed secret data in a cover
image during encoding the cover image. This method can not only provide a high hiding
capacity but also create a stego image quite similar to the cover image.

2. The QLS Compression Method. The QLS compression method contains two phas-
es: data encoding and data decoding phases. The data encoding phase is to compress a
binary image, while the data decoding phase is to reconstruct the original binary image
from the compressed data. This section will describe both phases in detail.

2.1. Data encoding phase. The data encoding phase comprises three stages: Exclusive-
OR, quadtree compressing and block coding. The Exclusive-OR stage is to make black
pixels appear only around the edge in the image with all the rest being white. In this
way, the entropy [1] of the image can be effectively lowered with enhanced data encoding
performance. Then, in the quadtree compressing stage, a breadth first traversal linear
quadtree (BFT linear quadtree) is used to partition the image, generated in the Exclusive-
OR stage, into blocks. The block coding stage further encodes the blocks.

2.1.1. FEzclusive-OR stage. According to Shannon [30], there is a fundamental limit on
lossless data compression [1,27]. This limit, called entropy, is terminologically referred to
as H. The exact value of H depends on the data more specifically, the statistical nature
of the data. It is possible to compress the data, in a lossless manner, with a compression
rate close to H. Assume that the data are statistically independent. Let k& be the number
of different items in the data, and P; be the occurrence probability of the i-th item in the
data. The entropy H of the data is defined as:

k
H = Zpi x log, (l>
i1 Di
According to Shannon, by entropy, the number of bits required to represent a pixel
is at least H bits/pixel, after removing the redundant data from the image. Therefore,
one may get higher efficiency in storage space for a digital image with low entropy. A
binary image is usually composed of big all-black areas and all-white areas. To enhance
the encoding efficiency, in the QLS compression method, the black pixels only exist near
the boundaries of objects with all the other pixels being white. In this stage, an image
fEn is created from fj by executing an Exclusive-OR logic operation for each two adjacent
pixels in fy. The compression method scans the whole image pixel by pixel. If the color of
the currently being visited pixel differs from the color of its predecessor, then the method
sets the color of the pixel in fg, that is in the same position as the currently visited pixel
in fy, to black; otherwise, it is set to be white. Each row of fg, can be created by the
following formula, where ‘0’ stands for a white pixel and ‘1’ a black pixel:

s\ fU(iaj)a lf jZO,

fenli) = { 7o(i,) ® foli,j — 1), otherwise, @)

where @ is the Exclusive-OR, logic operation, and fy(i,7) and fg,(i,j) are the pixels
located at the coordinates (i, 7) on fo and fgp.

Similarly, this method also scans each pixel in fg;, pixel by pixel to create an image fg,

by performing the Exclusive-OR logic operation between each two vertical neighboring

332 Y.-A. HO, Y.-K. CHAN, C.-S. TSAI, Y.-P. CHU AND H.-C. WU

Exclusive-OR stage
4..

Exclusive-OF. stage
—_— >

b o [P [P [Sy S | S

0] 0]
0] 0]
0] 0
) 0
7| 0]
H 0]
7| 7
K 0

Ss~Nosleslslss
IR

010111\
010111 |(A0)
011|011 |0
011|011 |(Ad)
310011 |40)
00011 |(A0)
31001600
04010101

S|lsslss|Iss]s
Ssoa~aos[s]S
Seslsslss]s]lSs

1|7
1|1
Ll
Lo
Ll
Lo
0l0]
0|0)

(@) /o (b) fen () fev
FIGURE 1. A binary image f, with 8 x 8 pixels and its fg;, and fg,

pixels in fg,. fgy can be constructed by the following formula:

oy fen(is), if =0,

Jris) = { Fonlin) @ fenli —1,), otherwise. 2)

For example, Figure 1(a) shows an 8 x 8 binary image fy. After the Exclusive-OR stage,

fo is changed into fgj, and then into fg,, as respectively shown in Figures 1(b) and 1(c).

In this example, the entropy of the image in Figure 1(a) is 0.99, while the entropy of the

image in Figure 1(c) is 0.54. As the lower entropy indicates, the image in Figure 1(c) is
capable of offering higher compression efficiency.

TABLE 1. The numbers of black and white pixels

Image Jo [

Black pixel | White pixel | Entropy | Black pixel | White pixel | Entropy
CCITT 1 155,591 3,950,137 | 0.2326 51,476 4,054,252 | 0.0972
CCITT 2 184,240 3,921,488 | 0.2642 28,552 4,077,176 | 0.0598
CCITT 3 337,052 3,768,676 | 0.4095 78,392 4,027,336 | 0.1363
CCITT 4 509,635 3,596,093 | 0.5411 204,154 3,901,574 | 0.2852
CCITT 5 317,707 3,788,021 | 0.3929 90,380 4,015,348 | 0.1526
CCITT 6 207,110 3,898,618 | 0.2883 46,010 4,059,718 | 0.0887
CCITT 7 356,850 3,748,878 | 0.4261 186,544 3,919,184 | 0.2667
CCITT 8| 1,766,467 2,339,261 | 0.9859 52,294 4,053,434 | 0.0984

Table 1 demonstrates the numbers of white and black pixels on f, and fg,, where
CCITT 1 to CCITT 8 are the test images [38] shown in Figure 9. Each of the test images
consists of 2376 x 1728 pixels. Table 1 also displays the entropies of each fy and fg,; that
is, the number of white pixels in fz, is much greater than that in fy. It also tells that the
entropies of fy are much larger than that of fg,.

2.1.2. Quadtree compressing stage. A quadtree is a well-known data structure that de-
scribes the spatial information of an image. It has been amply depicted in a number of
publications [16,20,36]. A quadtree is obtained by recursively dividing a binary image into
NW, NE, SW and SE quadrants [16,20,36]. A leaf node in the tree stands for a quadrant
of the same color. Whether to assign the black or white color to the node depends on
whether the quadrant consists entirely of black or white pixels. Otherwise, the quadrant
is depicted by an internal node and further subdivided into four equally-sized subquad-
rants until each subquadrant is completely filled with black or white pixels. For example,
Figure 3 is the corresponding quadtree of the image in Figure 2 which is the fg, in Figure
1.

BFT LINEAR QUADTREE AND LOGIC-SPECTRA 333

e n

FIGURE 2. A binary image

0 (] () ‘)
Od o o s{m]uuly 0 0 000 ¢ 0
1] COROO0 OO0 1010 HiEEEN =

FI1GURE 3. The related quadtree of the binary image in Figure 2

LQ: (11111 0101 1000 1100 0011)

FI1GURE 4. The corresponding BFT linear quadtree of the quadtree in Fig-
ure 3

The QLS compression method uses a quadtree to partition fg, into blocks; in the block
coding stage, it then further compresses the blocks. A higher quadtree requires much
more memory space to hold the tree. To build a shorter quadtree, the QLS compression
method therefore repeatedly partitions fg, into quadrants so that each quadrant consists
of only white pixels or contains exact 8 x 8 pixels. Each of the 8 x 8 quadrants is called
a basic block. The QLS compression method first divides fg, into non-overlapping 8 x 8
blocks and each pixel in image fp stands for a basic block (one 8 x 8 pixels) in fg,. In
fB, pixel ‘0’ corresponds to one all-white block, and pixel ‘1’ maps to one block with at
least one black pixel in fg,.

About 90% of memory space required to store a quadtree is wasted on holding the
pointers in this quadtree [3,36]. Thus, the concept of linear quadtree is proposed to get
rid of the pointers. A linear quadtree can be considered to be a linear array of a certain
type of structure elements so that the tree structure can be implicitly preserved.

This paper proposes a breadth first traversal (BFT) linear quadtree LQ to segment fp
into small blocks. L() can be obtained by traversing its corresponding quadtree in the
breadth first traversal order. In L), ‘0’ denotes a leaf node and ‘1’ an internal node.
Figure 4 shows the corresponding L) of the quadtree in Figure 3. One can directly

334 Y.-A. HO, Y.-K. CHAN, C.-S. TSAI, Y.-P. CHU AND H.-C. WU

convert a binary image fg into L() by executing the following AlgorithmBFT_LQ).

Algorithm BFT_LQ)()
for (k=1to1)
scan the pixels on fp
for each four-pixels fp[2i][27], f5[21][2] + 1], fB[2i + 1][2]], fB[2i + 1][2] + 1]
f £[20][27] = fo(20][2) + 1] = fa(2i + 1[2]] = fa[2i + L][2j + 1] = 0’ then

1'li,j] =0
else f'[i,j] =1’
if k& £ [then
o L' = L'||fs[2i][25]| f5[2i][27 + 1]|| f8[2¢ + 1][24]1[f[2d + 1][2] + 1]
5=
LQ = L'||LQ
LQ =T||LQ

AlgorithmBFT _LQ constructs the LQ of a 2! x 2! input image fz from bottom to
top. The algorithm scans each pixel on fg. It first views each pixel as a quadrant,
then combines each four quadrants fp[2:][2j], fB[2¢][2 + 1], fB[2¢ + 1][2j] and fp[2i +
1][27 + 1] into one at the k-th level, and generates a 25! x 2¥~! image f’. If the colors
of all the four quadrants are ‘0’, then f'[i][j] = ‘0’; otherwise, f'[i][j] = ‘1’ and L' =
L' fs12:1][27]11 f8[2¢][27 + 1]|| fB[2¢ + 1][27]|| fB[2¢ + 1][2j + 1]. The operation A||B returns
the concatenation of A and B. The algorithm repeatedly extracts the data of the quadtree
at the (k — 1)-th level. L@ only records the information from level 0 to level [— 1 and
the internal nodes (representing by ‘1’) in level [— 1 will link to four leaf nodes in level [
each corresponding to one basic block. Figure 5 illustrates the steps of transforming fg
into its corresponding LQ). Figure 5(f) demonstrates the L@ of the image in Figure 5(a).

f ololo]1]1]e]0]0

ololo|o]olelelo I
o100 0000 glzl2lo
aio0ee 000 olilolo
Tlolelololoel > 7T1Telgl L@=(0101 1000 1100 0011)
aie0el0 000 olol11
ololo[o[1]o]0]0 ®)
ololojo|lo|o 1|0 -

() o

I]1
f: 17| L@=111 0101 1000 1100 0011)

(©

H
f': [1] LQ=(1 1111 0101 1000 1100 0011)

(d)

FI1GURE 5. The steps to transform the image fp into a BFT linear quadtree

Let n; be the number of ‘1’-bits and ng the number of ‘0’-bits in a quadtree. Since
each internal node in a quadtree connects to four children, ny = 3n; 4+ 1, each of the last
3ny +1 —ng . . . :

ol - 0 9 hits in L@ links to 4 leaf nodes (each of which respectively corresponds
to one basic block), where nj is the number of ‘0’-bits in L) and there are ny ‘1’-bits in

3 1—n|
L@Q. We call the last w ‘1’-bits in L@ are dangled bits since their children are

BFT LINEAR QUADTREE AND LOGIC-SPECTRA 335

4%8 4%8 axd | x4 ||| 4xd | 4x4
Block || 88

4%8 ||| 4x4 | 4x4 4x8 4x4 | 4x4
Tope | A | B C D E
TypeCode| <0’ | “10° q10° 1110 11110

FIGURE 6. The five types of basic blocks and their type codes

not written down in L. The ‘1’-bits in L) marked by underlines in Figure 5(d) are the
dangled bits.

The front part of L@ (or called the pre-substring) is usually filled with ‘1’ bits, so
we call these ‘17 bits the 1 — presubstring. The remaining part (the post-substring) is
called postsubstring that has intertwined ‘0’ bits and ‘1’ bits. L) can be translated to
LQ) = Ny||postsubstring. Ny records the number of bits in 1 — presubstring. Hence, LQ
in Figure 5(d) can be described by 5/|°0101100011000011’.

2.1.3. Block compressing stage. Each dangled bit in L) links to four basic blocks, each
of which consists of 8 x 8 pixels. The block compressing stage is to compress the basic
blocks. This approach first categorizes each basic block into one of five types from A to
E. Figure 6 shows the five types of basic blocks and their type codes TypeCode. A type
A block is the whole basic block, called an 8 x 8-block. For type B, the basic block is
divided into two 4 x 8-blocks; we call the block a 4 x 8-block. The block in types C and
D is split into two 4 x 4-blocks and one 4 x 8-block; the block of type E is separated into
four 4 x 4-blocks. The flow chart in Figure 7 explains how to categorize each basic block
B. In this flow chart, NBP(B) is the number of black pixels in B.

To encode B into a block code BC, the type code of B is first assigned to BC' =
TypeCode. The detailed steps to encode an 8 x 8-, 4 x 8- and 4 x 4-block are described
in Table 2. Some functions used in this table will be introduced. The minterm of a ‘1’-bit
located at the coordinates (x,y) in a block B is z||y. Here z (y resp.) is described by 3
bits. The following Function Minterm(B) describes the minterm of the 1-bits in B.

Function Minterm(B)
If NBP(B) =1 then return (‘0’||m1)
else return (‘1’||m||ms)
/ = my is the minterm of the first 1-bit in B * /
/ * my is the minterm of the second 1-bit in B x /

The following function Coordinate(B) is applied to put down the coordinates of the
‘1’-bits in B.

Function Coordinate(B)
for each row in B
for each "1'-bit in this row
BC'" = BC'||'1’||m
if the last pixel of this row is ‘0'-bit then BC' = BC'||‘0’
return (BC")
/ * m described by log,|[m/] bits is the difference between the coordinates of the current
‘1'-bit and last ‘1'-bit in this row. x /

336 Y.-A. HO, Y.-K. CHAN, C.-S. TSAI, Y.-P. CHU AND H.-C. WU

NBP(B) < 9
No
NEP(up 4 x8-subblock)=9 &
NEP(down 4 x8-subblock)=9
No
NEP(up ¢ xi-subblock)=8 & Yes
NEP(down 4 x8-subblock) 2.5
No
NBP(up £ xb-subblodd) 29 &
NBP(down 4 xf-subblock)=9
No

Yes
* TypeE '_

{ Cutput :|

FiGure 7. The flow chart to categorize each basic block

An n-variable Boolean switching function can be expressed as a canonical ReedMuller
expansion [8,11,13] of 2" product terms as follows:

2n—1 n

f(xlax% o an*bxn) = ® a]HZEgZ’
=0 i=1

where) denotes the modulo-2 addition, a; € {0, 1} is called a ReedMuller coefficient, and
Ji € {0, 1} is called the power of x; so that (j; 7 ... j,) is equal to the binary representation
n

)
i=1

presented in the product term. When each literal (Z;, for i = 1,...,n — 1,n) throughout

above formula assumes either complemented or non-complemented but not both forms

simultaneously, it is known as the fixed polarity ReedMuller (FPRM) expansion [9,13,15].

of j. If j; = 0, the i-th literal is absent in the product term Hff] otherwise, it is

For each cube a; Hffl , if j; = 0, literal 7; is absent and then Z; is replaced by a “dont

=1
care” literal . Hence, a literal Z; can be x;, Z;, or 2 but can be only one of them. Table 3
shows the codes where each 7; will be replaced in the cube. In Table 3, if z; occurs most
frequently in the cube, the codes of the first row are used; if Z; occurs most frequently, the
codes of the second row are employed; otherwise, those of the third row are applied. The
code Prefix describes which of the three cases is in the cube. Function GPMPRM() is
used to depict a cube.

BFT LINEAR QUADTREE AND LOGIC-SPECTRA

TABLE 2. The detailed steps to code an 8 x 8-, 4 x 8- and 4 x 4-block

Block Condition Header

Algorithm

NBP(B)=0 0’

BC=BC|0".

The index of each I-bit in B is depicted

0=NBP(B)=3 ‘1107 |by a minterm:
BC=BC| 110’ ||Minterm(B).
2=NBP(B)=9 <10” BC=BC(|*10’|Coordinare(B).

The GPMPEM expansion
contains less than three| 1111’
8x8 |cubes.

The GPMPEM expansion is computed.

If the GPMPRM expansion contains less

than three cubes, then
BC=BC|f111I’|GPMPRM().

Not compressed by above

If B is divided into 4%8- or 4%4- blocks
and the memory space required to
record these 4%8- and 4%4- blocks is

approaches R more than that to hold B, then B is
directly written down. Hence BC=BC||
‘11107 |B.
NEBP(B)=0 ‘1107 BC=BC|*11%.
0=NBP(B)=7 ‘0’ BC=BC|*0’||Coordinate(B).

The GPMPEM expansion
contains at least ome and| ‘111’
%8 less than three cubes.

The GPMPEM expansion is computed.

If the GPMPRM expansion contains less

than three cubes, then
BC=BC|[110’||GPMPRM().

Not compressed by above

If B is divided into two 4%4-blocks and
the memory space required to record the

‘10’ |4%4- blocks is more than that to hold B,
AP RS then B is directly written down. Hence
BC=:1|| B
NBP(B)=0 ‘11100 BC=BC|*111%.
0=NBP(B)=3 10’ BC=BC|*10||Coordinate(B).
B matches one of possible
pattern combinations in ‘110° | BC=BC||110’|| Pattern_matching().
Figure 11.

The GPMPEM expansion
contains at least one and| 7111’
less than three cubes.

The GPMPEM expansion is computed.
If the GPMPREM expansion contains less
than three cubes, then

4x4 BC=BC|111I’||GPMPRM().

The total number of
different bits between the
first and the second rows, as| ., Sl Ry ;
well as the second and the| o EXSITl N Reeence Noigk)
fourth rows is less than or
equal to I bit

. cnny |B 1s directly written down; BC=

Otherwise o0 BCI[00°B.
TABLE 3. Cube encoding
Prefix T; T; X

00 0 10 11

01 11 0 10

10 10 11 0

Function GPMPRM()

if No. of cubes = 1 then
Return(‘0’ ||Prefix||the code of cube 1)
else

Return(‘1’||Prefix||the code of cube 1||the code of cube 2)

337

338 Y.-A. HO, Y.-K. CHAN, C.-S. TSAI, Y.-P. CHU AND H.-C. WU

A 4 x 4-block B is compared with a set of four frequently occurring patterns shown in
Figure 8. The possible combinations are that B.

(1) Exactly matches with one of the patterns.

(2) Exactly matches with the transpose of one pattern.

(3) Matches with one of the patterns or the transpose of one pattern except only one
pixel.

0q1 1|0 10 il
Partern i1 J\da 210 iy
naai 1|0 10 il
a1 Haaa 240 o
Pattern code 00 01 10 11

FIGURE 8. Four 4 x 4-block patterns and their patterns codes
Function Pattern_matching(B) gives the code for these blocks mentioned above.

Function Pattern_matching(B)

if B is exact one of the 4 x 4-block patterns then
return(‘1'||Pattern code||'0)

else if B is a 4 x 4-block pattern except one bit
return(‘1'||Pattern code||'1’||k)

else if the transpose of B is exact one of the 4 x 4-block patterns then
return(‘0'||Pattern codel||'0")

else if the transpose of B is one of the 4 x 4-block patterns except one bit then
return(‘0'||Pattern code||'1'||k)

/ * k is the coordinates of the difference bit * /

The second and the fourth rows are compared with the first and the third rows, respec-
tively. The possible situations are processed by Function Reference_Row(B):

Function Reference_Row(B)
if FR= SR and TR = OR then
return(‘00'|| FR||TR)
if there is only one different bit between F'R and SR, and TR = OR in B then
return(‘01'|| FR||TR||k)
if there is only one different bit between F'R and SR, and FR = SR in B then
return(‘10’|| F'R||T R||k)
if FR= SR and TR = OR but there is one different bit between SR and OR
return(‘11'||FR||T R||k)
/ = F'Ris first row, SR the second row, TR the third row, OR the fourth row of B x
/ * k means that the k-th bit is the different bit * /

After the block compressing stage, the compressed image f; is transformed into one
L@ and a set of BC's, each BC' corresponding to a basic block.

2.2. Decoding phase. To reconstruct fy, the left most integer Ny of L() is removed and
N; ‘1’-bits are appended to the front of the remaining of L{). The following algorithm
Decode_LQ)() can be used to transform L@ into image f’. In recovering fp, each ‘0’-bit
in f’ corresponds to 2 x 2 white pixels in f and each of the 2 x 2 white pixels maps to
one 8 x 8 all-white basic block in fg,. Each ‘1’-bit (dangled bits) in f" will be succeeded

BFT LINEAR QUADTREE AND LOGIC-SPECTRA 339

by 2 x 2 pixels in fg, each of the 2 x 2 pixels corresponding to one basic block which
will be decoded by one block code BC'. The TypeCode and header of BC' can be used to
identify the block type and coding method of a basic block B; then the ‘1’-bits in B can
be decided by the remaining code of BC.

Algorithm Decode LQ(LQ)
remove the left most bit b from L()
f'10,0] =b
for k = 20 to 2!-2
for i = 20 to 2!2
forj=0tol—1
if f'[i, 7] =1 then
remove the left most 4 bits by byb3bs from L()
£o124,2] = b fol20, 2] + 1] = bos fy[20 + 1,24] = by; fo[2i + 1,2 + 1] = by;
else
fo126,2] = fo126,25 + 1] = fl2i +1,2)] = f[20 +1,2j + 1] = 0;
fr=1
After that, fg, can be constructed by using f, and BC's. To generate fg, from fg,,

fEn is scanned, pixel by pixel. For each visited pixel fg,(i,7), fen(i,j) is computed by
the following formula:

o fee(i,), for =0,
fEh(Za])—{ fiu(i,j)@va(i_lyj); for i#0. (3)

Then, each pixel of fy(7,j) can be obtained by the following formula:

CoN f (Z,]), for ‘7:0’
fU(Z,])—{ fﬁZ(i,j)@fEh(i—l,j), for j #0. (4)

3. The QLS Hiding-Compression Method. Due to the constraint on bandwidth,
a user often hopes to compress the stego-image first for reducing the data size before
transmitting the compressed data over the Internet. The QLS hiding-compression method
compresses the cover image fy by the QLS compression method and embeds the secret
data in the intermediate goods fg, when encoding the cover image. The major difference
between the QLS hiding-compression method and the QLS compression method is that
the QLS hiding-compression method embeds the secret data in fg;,. This section therefore
only describes the approach.

When a pixel in an all-white area is changed into a black one or a pixel in an all-black
area is changed into a white one, the human eyes can easily detect the change. In data
hiding, embedding secret data in a cover image usually distorts the cover image. The
binary image hiding techniques generally hide secret data near the boundaries of objects
in fy. Hence, the QLS hiding-compression method also attempts to conceal secret data in
the boundaries of objects in the cover image. In the Exclusive-OR stage, f; is transformed
into fpp and then into fg,. If the colors of the (i — 1)-th and the i-th pixels in fy are the
same, the i-th pixel in fg, is given a ‘0’-bit; otherwise, the ¢-th pixel in fgj, is a ‘1’-bit.
The ‘1’-bits in fg;, are located near the boundaries of objects in fy. Therefore, the QLS
hiding-compression method embeds secret data in the pixels nearby the ‘1’-bits in fg,.

Converting the color of the i-th pixel in fg;, will make the colors of all the pixels be
altered after the i-th pixel in the decompressed fy; while the colors of both the i-th and
the j-th pixels in fg;, are changed, only the colors of all the pixels between the i-th pixel
and the j-th pixel in f; decompressed from fg, are changed. Based on this property,

340 Y.-A. HO, Y.-K. CHAN, C.-S. TSAI, Y.-P. CHU AND H.-C. WU

the QLS hiding-compression method considers each row in fg, to be a big binary string
and partitions the big binary string into 4-bit units. Each unit containing at least one
‘1’-bit will be used to carry one secret data bit since the QLS hiding-compression method
engages in embedding the secret data near the boundary of objects in the cover image.
We call the unit with at least one ‘1’-bit an embedding unit.

TABLE 4. The replaced 4-bit units in ‘0’-group and ‘1’-group

U 0-group 1-group
1111 0011 1111
0011 0011 0101
1100 1010 1100
1001 1001 0101
0101 0011 0101
1010 1010 1100
0110 1010 0110
0111 0111 0001
1101 1101 0001
1110 1000 1110
1011 1000 1011
0001 0010 0001
0010 0010 0001
1000 1000 0100
0100 1000 0100

The QLS hiding-compression method categorizes all the possible 4-bit embedding units
into two groups: ‘0’-group and ‘1’-group. Each secret bit b corresponds to one embedding
unit U. If b = ‘0’ (resp. b = ‘1), one embedding unit U’ in O-group (resp. ‘1’-group) is
used to replace U. If the two different bits between U and U’ are located more closely to
each other, the distortion of the stego image compared to the cover image can be reduced
more. Table 4 shows the replaced 4-bit embedding units, where there are exactly 0 or 2
different bits between U and U’, and the different bits are more closely located. After
that, the QLS compression method continues to encode the fg, which carries the secret
data.

It is easy to transform digital data into binary codes. In this paper, we assume that the
secret data SD is a big binary string and |SD] is the size of SD. Before hiding, the QLS
compression method first concatenates |SD| and SD into a binary string SD’. To prevent
the secret data from unauthorized access, this method uses a private key PK (over 512
bits) as the seed of a random number generator G to generate a big binary string K,
where |K| = |SD’'|. The method then computes SD" = K @& SD' and hides SD" in the
embedding units bit by bit.

To extract the secret data from the stego image, the QLS hiding-compression method
transforms the stego image fg into fg, by Formula (1). The QLS hiding-compression
method considers each row in fgj, to be a big binary string and partitions the big binary
string into 4-bit units in order. Next, the method takes out each embedding unit U’; one
‘0’-bit is appended to the rear of SD” if U’ is in ‘0’-group, and else one ‘1’-bit is appended
to the rear of SD". The proposed method then uses the same private key PK as the seed
of the random number generator G to generate a big binary string K, where |K| = |SD"|.
Besides, the proposed method computes SD' = K ® SD". It removes the leftmost integer
of SD'; the removed integer is |SD|. The leftmost |SD| bits of SD are the embedded

BFT LINEAR QUADTREE AND LOGIC-SPECTRA 341

secret data. The secret data extracted by the QLS hiding-compression method is lossless.
Since the secret data are embedded only near the boundaries of objects in the cover image,
the stego image is quite similar to the cover image.

4. Experiments. This section is to investigate the performances of the QLS compression
method and the QLS hiding-compression method by experiments. Eight document images
in Figure 9 are used as the test images each with 1728 x 2376 pixels. There are many
big all-black areas or big all-white areas in images CCTTT2 and CCTTTS, while images
CCTTT4 and CCTTT7 have fewer big areas consisting of all-black pixels or all-white
pixels. In this paper, compression rate C'r is employed to measure the performance of an
image compression method, where C'r is defined as:

The number of bytes needed to store original binary image
C, = - - .
The number of bytes needed to store compressed binary image

(2) CCITT 1 (b) CCITT 2 (¢) CCITT 3 (d) CCITT 4
I-l"I L
: L‘f‘i:’i’mw
il
e ASKED
il LRl roRIT!
() CCITT 5 (f) CCITT 6 () CCITT 7 (h) CCITT 8

Ficure 9. CCITT standard images

The purpose of the first experiment is to scrutinize the performance of the QLS com-
pression method and compare it to the compression methods proposed by Wang et al. [35]
and Falkowski [12]. Table 5 shows the results of this experiment, where LFS and QSBBIC
respectively stand for the methods proposed by Wang et al. [12] and Falkowski [35]. The
experimental results tell that the QLS compression method can give a better Cr than
the LF'S compression method. The QLS compression method is mostly superior to the
QSBBIC compression method in Cr, too, except for the images CCTTT2 and CCTTTS;
the QSBBIC compression method can provide a better compression rate than the QLS
and LFS compression methods only if the compressed images are mainly made of fewer
big areas consisting of all-black pixels or all-white pixels.

The next experiment is to explore the performance of the QLS hiding-compression
method and compare it to the performance of the pair-wise logical computation (PWLC)
hiding method [22]. Table 6 demonstrates the results of this experiment. In this exper-
iment, a random number generator GG is applied to generate M DHC bits of secret data
and then the QLS hiding-compression method is used to hide the generated M D H C-bits

342

Y.-A. HO, Y.-K. CHAN, C.-S. TSAIL Y.-P. CHU AND H.-C. WU

TABLE 5. The Cr of the LFS, QSBBIC and QLS compression methods

Image LFS QSBBIC QLS
CCITT 1 16.3 15.77 16.56
CCITT 2 24.40 28.53 25.25
CCITT 3 10.90 9.60 11.09
CCITT 4 4.30 4.19 4.34
CCITT 5 9.60 8.49 9.69
CCITT 6 18.60 15.69 19.11
CCITT 7 5.00 4.80 5.05
CCITT 8 14.60 15.73 15.11

TABLE 6. MDHC and SD obtained by the PWLC hiding method and the
QLS hiding-compression method

PWLC QLS -Hiding

Images MDHC SD (%) MDHC SD (%)
CCITT 1 29431 98.92 42598 99.49
CCITT 2 23916 99.12 25079 99.70
CCITT 3 51322 98.12 71188 99.13
CCITT 4 95560 96.50 165323 97.98
CCITT 5 53141 98.05 81074 99.01
CCITT 6 34544 98.73 47635 99.42
CCITT 7 77279 97.17 133074 98.37
CCITT 8 45733 98.32 49041 99.41

secret data in a W x H cover data, where M DHC is the maximal number of bits which
can be embedded in the cover image by the QLS hiding-compression method. Here, the
distortion degree SD is adopted to measure the distortion between the cover image and
the stego image. S'D can be defined as:

SD = <W120H> f:i(l = (bij = 1,)")

i=1 j=1

where b;; is the color of the pixel located at (i, j) in the cover image, and b;; the color of
the pixel located at (i, 7) in the stego image.

Table 6 demonstrates that the QLS hiding-compression method can obtain better
MDHC and SD than the PWLC hiding method. Figure 10(a) (resp. Figure 10(b))
is one region on CCITT 1 (resp. CCITT 2), Figure 10(c) (resp. Figure 10(d)) and Figure
10(e) (resp. Figure 10(f)) are its corresponding regions on the stego images respectively
generated by the PWLC hiding method and the QLS hiding-compression method. Figure
10 shows that the PWLC hiding method gives a much worse quality of stego image than
the QLS hiding-compression method, especially near the boundaries of objects.

5. Conclusions. In this paper, the QLS compression method is proposed to encode a
binary image. It first uses the BF'T linear quadtree to decompose the image into blocks and
employs logic functions and spectral technique to encode the blocks. The experimental
results show that the QLS compression method is more effective in compression rate than
the LFS compression method. In most cases, it gives a better performance than the

FI1GurE 10. Two regions respectively on CCITT 1 as well as CCITT 2 and
their corresponding regions on the stego images obtained by the PWLC

BFT LINEAR QUADTREE AND LOGIC-SPECTRA

Our Ref. 350/PJC/EAC

Dr. P.N. Cunﬂall,
Mining Surveys Ltd.,

1

Holroyd Road, é
Reading, =
Berks. 32 }"F I \00ng
Dear Pete, -
Permit me to introduce w«

transmission.

@ (b)
Qur Ref. 350/PIC/EAC

T

Pr. P.H. Cundall,
Mining Surveys Ltd.,
Holreyd Eoad,

e =0
Berke. 32}4F I 100’“‘%
Bear Pete, -:

Fermit me to introduce y *
transmigsion.

© (d)
Qur Ref. 350/PJC/EAC
pr——

Dr. P.N. Cundall,
Mining Surveys Ltd.,

i n == 100.:1%
Beading,
hﬁ:’.l! 32}"-‘: I S
Dear Pete, T'-h
Permit me to introduce y #
transmission.
O] 83]

hiding method and the QLS hiding-compression method

343

QSBBIC compression method too, especially when the compressed image is mainly made
of some all-black and all-white areas.

This paper still provides a QLS hiding-compression method by which secret data are
embedded in the cover image while the cover image is being encoded by the QLS com-
pression method. The experimental results demonstrate that the QLS hiding-compression

method can give much better MDHC and SD than the PWLC hiding method.

REFERENCES

[1] T. Batu, S. Dasgupta, R. Kumar and R. Rubinfeld, The complexity of approximating entropy, Proc.
of the 17th Annual IEEE Conference on Computational Complexity, Montreal, Canada, pp.678-687,

2002.

344 Y.-A. HO, Y.-K. CHAN, C.-S. TSAI, Y.-P. CHU AND H.-C. WU

[2] J.Brassil, S. Low, N. Maxemchuk and L. O’Gorman, Electronic marking and identification techniques
to discourage document copying, IEEE Journal on Selected Areas in Communications, vol.13, no.8,
pp.1495-1504, 1995.

[3] Y.-K. Chan and C.-C. Chang, An efficient data structure for storing similar binary images, in Infor-
mation Organization and Databases: Foundation of Data Organization, K. Tanaka and S. Ghande-
harizadeh (eds.), Massachusetts, Kluwer Aeademic, 2001.

[4] C. K. Chan and L. M. Cheng, Hiding data in images by simple LSB substitution, Pattern Recognition,
vol.37, no.3, pp.469-474, 2004.

[5] Y.-K. Chan, P.-Y. Pai, R.-C. Chen and C.-C. Chang, A VQ compression method based on the
variations of the image block groups, International Journal of Innovative Computing, Information
and Control, vol.6, no.10, pp.4527-4537, 2010.

[6] C.-C. Chang, T. S. Chen and L. Z. Chung, A steganographic method based upon JPEG and quan-
tization table modification, Information Sciences, vol.141, no.1, pp.123-138, 2002.

[7] C.-C. Chang, K.-N. Chen and Z.-H. Wang, Hiding secret information in modified locally adaptive
data compression code, ICIC Ezpress Letters, vol.4, no.5(B), pp.1887-1892, 2010.

[8] A. K. Chaudhary, J. Augustine and J. Jacob, Lossless compression of image using logic minimization,
Proc. of IEEE International Conference on Image Processing, Lausanne, Switzerland, pp.77-80, 1996.

[9] M. Davio, J. P. Deschamps and A. Thayse, Discrete and Switching Functions, McGraw-Hill, New
York, USA, 1978.

[10] I. Echizen, Y. Suzuki and X. Niu, Special issue on information hiding and multimedia signal pro-
cessing, International Journal of Innovative Computing, Information and Control, vol.6, no.3(B),
pp-1207-1208, 2010.

[11] B. J. Falkowski, Lossless compression of binary images using logic methods, Proc. of the South East-
ern Europe Workshop on Computational Intelligence and Information Technologies, Nis, Yugoslavia,
pp.111-116, 2001.

[12] B. J. Falkowski, Lossless binary image compression using logic functions and spectra, Computers
and FElectrical Engineering, vol.30, no.1, pp.17-43, 2004.

[13] B. J. Falkowski and C. H. Chang, Hadamard-Walsh spectral characterization of Reed-Muller expan-
sions, Computers and FElectrical Engineering, vol.25, no.2, pp.111-134, 1999.

[14] B. J. Falkowski and L. S. Lim, Gray scale image compression based on multiple-valued input binary
functions, Walsh and Reed-Muller spectra, Proc. of the 30th International Symposium on Multiple-
Valued Logic, Portland, Oregon, pp.279-284, 2000.

[15] D. H. Green, Modern Logic Design, Addison-Wesley, MA, USA, 1986.

[16] S. Hanan, Data structures for quadtree approximation and compression, Communications of the
ACM, vol.28, no.9, pp.973-993, 1985.

[17] D.-C. Huang, Y.-K. Chan and J.-H. Wu, An agent-based LSB substitution image hiding method,
International Journal of Innovative Computing, Information and Control, vol.6, no.3(A), pp.1023-
1038, 2010.

[18] N. F. Johnson and S. Jajodia, Steganography: Seeing the unseen, IEEE Computer, pp.26-34, 1998.

[19] S. L. Li, K. C. Leung, L. M. Cheng and C. K. Chan, A novel image-hiding scheme based on block
difference, Pattern Recognition, vol.39, no.6, pp.1168-1176, 2006.

[20] T. W. Lin, Compressed quadtree representations for storing similar images, Image and Vision Com-
puting, vol.15, no.11, pp.833-843, 1997.

[21] S. H. Low, N. F. Maxemchuk, J. T. Brassil and L. O’Gorman, Document marking and identification
using both line and word shifting, Proc. of Infocom, Boston, MA, USA, pp.853-860, 1995.

[22] K. Matsui and K. Tanaka, Video-steganography: How to secretly embed a signature in a picture,
Proc. of IMA Intellectual Property Project, vol.1, no.1, pp.187-206, 1994.

[23] P. Mateu-Villarroya and J. Prades-Nebot, Lossless image compression using ordered binary-decision
diagrams, Flectronics Letters, vol.37, no.3, pp.162-163, 2001.

[24] N. F. Maxemchuk and S. Low, Marking text documents, Proc. of the 1997 International Conference
on Image Processing, vol.3, 1997.

[25] M. Nelson and J. L. Gailly, The Data Compression Book, 2nd Edition, M&T Books, New York,
USA, 1996.

[26] A. Nishimura, Audio data hiding that is robust with respect to aerial transmission and speech
codecs, International Journal of Innovative Computing, Information and Control, vol.6, no.3(B),
pp.1389-1400, 2010.

BFT LINEAR QUADTREE AND LOGIC-SPECTRA 345

[27] G. Pandurangan and E. Upfal, Can entropy characterize performance of online algorithms, Proc. of
the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, Washington D.C., USA, pp.727-
734, 2001.

[28] P.-Y. Pai, C.-C. Chang, Y.-K. Chan and C.-C. Liao, Meaningful shadow based multiple gray level
visual cryptography without size expansion, International Journal of Innovative Computing, Infor-
mation and Control, vol.7, no.3, pp.1457-1465, 2011.

[29] G. R. Robertson, M. F. Aburdene and R. J. Kozick, Differential block coding of bi-level images,
IEEFE Transactions on Image Processing, vol.5, no.9, pp.1368-1370, 1996.

[30] C.E. Shannon, A mathematical theory of communication, The Bell System Technical Journal, vol.27,
no.3, pp.379-423, 1948.

[31] C. C. Thien and J. C. Lin, A simple and high-hiding capacity method for hiding digit-by-digit data
in images based on modulus function, Pattern Recognition, vol.36, no.12, pp.2875-2881, 2003.

[32] P. Tsai, Data hiding for index-based images using overlapping codeword clustering and run length
concept, International Journal of Inmovative Computing, Information and Control, vol.6, no.6,
pp.2701-2713, 2010.

[33] C. L. Tsai, K. C. Fan, C. D. Chung and T. C. Chuang, Reversible data hiding and lossless reconstruc-
tion of binary images using pair-wise logical computation mechanism, Pattern Recognition, vol.38,
no.11, pp.1993-2006, 2005.

[34] C.-C. Wang, Y.-T. Hwang, C.-C. Chang and J.-K. Jan, Hiding information binary images with
complete reversibility and high embedding capacity, International Journal of Innovative Computing,
Information and Control, vol.6, no.11, pp.5143-5161, 2010.

[35] J. Wang and L. Ji, A region and data hiding based error concealment scheme for images, IEFEE
Transformations on Consumer FElectronics, vol.47, no.2, pp.257-262, 2001.

[36] C. L. Wang, S. C. Wu, Y. K. Chan and R. F. Chang, Quadtree and statistical model-based lossless
binary image compression method, Imaging Science Journal, vol.53, no.2, pp.95-103, 2005.

[37] M. Wu and B. Liu, Data hiding in binary image for authentication and annotation, IEEE Transac-
tions on Multimedia, vol.6, no.4, pp.528-538, 2004.

[38] CCITT Standard Fax Images at ftp://nic.funet.fi/pub/graphics/misc/test-images/.

