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Abstract. This paper examines an integrated scheduling model for production and dis-
tribution operations. In this model, a set of jobs involving different amounts of storage
space in delivery trucks was processed by either one of two parallel machines and delivered
by a single truck to one customer area. The objective was to minimize the time required
for all jobs to be completed and delivered to the customer area, and the truck returned to
the factory; this variable was denoted as Cmax. This problem was shown to be NP-hard in
the strong sense. Previous related studies have focused on developing optimization-based
solutions; however, such optimization-based approaches require a significant amount of
computing time to produce an optimal solution. The time required to compute a pro-
duction schedule is very important in business practice, and thus, we need to develop an
effective heuristic to solve these problems. Two heuristics (H1 and H3) and a GA-based
algorithm were developed by this study, and simulation experiments were conducted to
evaluate the performance of the proposed approaches. The experimental results showed
that if transportation time is short or truck capacity is large, then the proposed heuristic
H3 should be the scheduling approach of choice; otherwise, the GA-based algorithm is the
optimal scheduling approach.
Keywords: Parallel, Machines scheduling, Heuristic, Genetic algorithms, Production-
distribution coordination

1. Introduction. Supply chain management has become one of the most important top-
ics in manufacturing research over the past decade. A supply chain includes all interaction
between suppliers, manufacturers, distributors and customers. The popularity of just-in-
time (JIT) concepts has created a trend in which interactions between the various stages
in a supply chain are considered increasingly important, especially, interaction occurring
between the job scheduling (production stage) and delivery of final products (distribution
stage). These concepts have also enhanced the practical value of coordinated models.
However, because traditional scheduling assumes an infinite number of available vehicles
to deliver products to customers and does not take into account the time required for
deliveries, such processes assume that goods can be delivered to customers without delay
[1-3]. Thus, in recent years, how to achieve optimal coordination of production and distri-
bution stages in the supply chain to produce ideal overall system performance has become
an increasing focus of attention for both industry practitioners and academic researchers.
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Wang and Cheng [4] studied parallel machine scheduling in terms of batch delivery cost.
They showed that the problem of minimizing the sum of total flow time and delivery cost
is NP-complete in the strong sense, and provided a dynamic programming algorithm to
solve the problem. Lee and Chen [5] analyzed the complexities of a category of scheduling
problems related to the coordination of machine scheduling and job transportation. They
demonstrated the computational difficulty of many of these problems and proposed poly-
nomial and pseudo-polynomial algorithms to solve some of the problems. Chang and Lee
[6] extended Lee and Chen’s work to situations in which each order occupies a different
amount of physical space in a delivery truck. Three different problems were discussed in
their work with the aim of minimizing the time required for all jobs to be completed and
delivered to the customer area and the truck returned: (i) single machine scheduling with
delivery of completed jobs to one customer area; (ii) parallel machine scheduling with
delivery of completed jobs to one customer area; and (iii) single machine scheduling with
delivery of completed jobs to two customer areas. They proved that these problems are
NP-hard in the strong sense, and presented three polynomial time heuristics to solve the
three problems: H1 with a worst-case ratio of 5/3 (problem (i)); H2 with a worst case
ratio of 2 (problem (ii)); and H3 with a worst case ratio of 2 (problem (iii)). He et al. [7]
presented a modification of H1 (MH1) by applying a fully polynomial time approximation
scheme (FPTAS) to the knapsack problem, with a worst-case ratio of 53/35. Addition-
ally, a modification of MH1 that leads to the optimal algorithm with a worst-case ratio
of 3/2 + ε (where ε is a positive number and can be arbitrarily close to 0) was proposed
by Zhong et al. [8]. Zhong et al. [8] also presented a modification of H2 (MH2) with
a worst-case ratio of 5/3; MH1 and MH2 both incorporated an FPTAS for the knap-
sack problem as a sub-procedure. Lu and Yuan [9] provided a heuristic with an optimal
worst-case performance ratio of 3/2 to solve the problem of single machine scheduling
with delivery of completed jobs to one customer area. Chen and Vairaktarakis [10] con-
sidered a two-stage scheduling problem in which the first stage consists of manufacturing
and the second stage is delivery to customers. Two machine configurations were included
in the processing facility – single machine and parallel machines. Their objective was
to combine customer service level and total distribution cost. Customer service level is
measured by a function of the times when jobs are delivered to customers. For each of the
problems studied, they provided an algorithm or a proof of intractability accompanied
by a heuristic algorithm with worst-case and asymptotic performance analysis. Li et al.
[11] considered a single-machine scheduling model that incorporated the route decisions
of a delivery truck driver serving customers at different locations, to minimize the sum
of time required for each order to reach the respective customer. Li et al. first demon-
strated that the problem under examination was NP-hard in the strong sense and then
developed polynomial time algorithms for a number of special problem cases. Another
set of scheduling problems somewhat related to those discussed in this study related to
two-stage scheduling models that took issues of job priority into account [12,13].
This study began by examining a simplified version of the two-stage scheduling problem

in which the first stage is job production and the second stage is job delivery. Regarding
the case in which all jobs are processed by either one of two parallel machines and delivered
by a single truck to one customer area, the objective was to minimize the time required
for all jobs to be completed and delivered to the customer area and the truck returned;
this variable was denoted as Cmax. Each job occupies a different amount of physical space
in the delivery truck. In such a case, if several different jobs are combined into one batch
for delivery purposes, this reduces the number of individual deliveries; however, reduction
in number of individual deliveries may result in greater Cmax. Chang and Lee [6] and
Zhong et al. [8] proved that this problem is NP-hard in the strong sense. This implies
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that determining the optimal schedule using mathematical models may require much time
and computational resources. The time required to compute a coordinated schedule is
very important in business practice. Although the H2 proposed by Chang and Lee [6]
produces “good” solutions more quickly than the optimization model, its performance
is very sensitive to problem instance variability. Therefore, this paper first presents two
modified heuristics, based on H2, which lead to a better possible algorithm. Additionally,
this study developed a genetic algorithm (GA) based procedure in an attempt to provide
effective solutions within a reasonable amount of time. The meta-heuristic approach and
the two heuristics were compared with H2 in terms of solution quality. Experimental
results showed that the proposed heuristics performed remarkably well, which led to the
conclusion that these heuristics are significantly superior to H2 in terms of Cmax.

The remainder of this paper is organized as follows: problem formulation is described
in Section 2; in Sections 3 and 4, the mechanisms of the proposed algorithm are discussed;
some general observations are presented and the significance of the experimental results is
discussed in Section 5; in Section 6, we provide a summary of the results and suggestions
for future research.

2. Problem Statement and Notations. The problem of parallel machine scheduling
and job delivery can be described as follows: there are n jobs (J1, J2, ..., Jn) with each
job (Ji) having a processing time (pi) and a size of (si), which represents the physical
space Ji occupies when this job is loaded in the vehicle. These jobs are first processed
by one of the two parallel machines. The completed jobs are then delivered by a truck
with fixed capacity to one customer area. The truck is initially located at the factory,
is available to deliver finished jobs in batches, and has a capacity Q. That is, the total
physical space occupied by the jobs loaded into the truck at any given time cannot exceed
Q. Each delivery involves the same transportation time T . The purpose of this study was
to schedule jobs in such a manner so as to minimize Cmax.

2.1. Notations.
Bk: the set of all jobs in the kth delivery batch, k = 1, 2, ..., B.

B: the number of delivery batches,

⌈
n∑

i=1

si/Q

⌉
≤ B ≤ n.

Ctk: the time of delivery of Bk by the truck to the customer and return to the factory.

Mt
(1)
k : the completion time of processing of Bk by machine 1.

Mt
(2)
k : the completion time of processing of Bk by machine 2.

Stk: the time of departure of the truck to deliver Bk.
Xijk = 1, if job i is assigned to be processed by machine j and belongs to delivery

batch k;
0, if otherwise.

2.2. Problem formation. The following mixed integer programming (MIP) model rep-
resents the problem investigated in this paper. This model can be used to determine a
coordinated schedule of production and distribution with the goal of minimizing Cmax.

Min Z = Cmax (1)

s.t.

2∑
j=1

B∑
k=1

Xijk = 1, ∀i (2)

N∑
i=1

2∑
j=1

siXijk ≤ Q, ∀k (3)
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Mt
(1)
k ≥ Mt

(1)
k−1 +

n∑
i=1

piXi1k, ∀k, k > 1 (4)

Mt
(2)
k ≥ Mt

(2)
k−1 +

n∑
i=1

piXi2k, ∀k, k > 1 (5)

Stk ≥ Mt
(1)
k , ∀k (6)

Stk ≥ Mt
(2)
k , ∀k (7)

Ct1 ≥ St1 + T (8)

Ctk ≥ Ctk−1 + T, ∀k (9)

Ctk ≥ Stk + T, ∀k (10)

Cmax ≥ Ctk, ∀k (11)

Xijk ∈ {0, 1} , ∀i, j, k (12)

Mt
(1)
k ≥ 0, ∀k (13)

Mt
(2)
k ≥ 0, ∀k (14)

Stk ≥ 0, ∀k (15)

Ctk ≥ 0, ∀k (16)

1 ≤ i ≤ n (17)

1 ≤ j ≤ n (18)

The objective function (1) minimizes Cmax. Each order must be assigned to exactly
one machine and that order must be assigned to exactly one batch, as demonstrated in
Equation (2). Equation (3) ensures that the collective size of all orders placed in the same
batch does not exceed the truck capacity. Equations (4)-(7) require that the time of the
departure of the truck to deliver Bk exceeds the maximum time required for completion
of any order belonging to a batch on the machines. Equations (8)-(10) define the property
of the completion time of delivering of Bk by the truck. These equations indicate that
the truck may start to deliver one batch after the jobs of this batch have been processed
by the parallel machine and the truck has completed delivery of the previous batch and
returned to the factory. In terms of constraints, Equation (11) defines the properties of
decision variables Cmax and Ctk. Finally, Equations (12)-(18) are domain constraints for
the variables used in the formation.
The model assumptions are as follows.

• The loading and unloading times are included in the transportation times of the
jobs, and all transportation times are assumed to be job-independent.

• Preemption is disallowed, i.e., once the processing of a job has begun, it cannot be
stopped.

• The machines cannot process more than one job at any given time.
• Unlimited buffer for WIP.
• Resource storage and machine failure are not considered.
• All jobs are ready for processing at the beginning of each planning period.
• All jobs in Batch k precede each of those in Batch k + 1.

3. Heuristics. Although the MIP model provides the optimal solution, variables and
constraints increase drastically when the number of jobs increases. Therefore, Chang and
Lee [6] presented a heuristic (H2) with a worst case ratio of 2 to solve the coordinated
scheduling problem. The design of H2 can be described as follows.
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Step 1: Assign jobs to delivery batches using the First Fit Decreasing (FFD) algorithm.
Let the total number of the resulting batches be bH2.

Step 2: Calculate the sum of the processing times of the jobs in Bk and denote it as Pk,
for k = 1, 2, ..., bH2. Re-index these batches so that P1 ≤ P2 ≤ ... ≤ PH2

b .
Step 3: Beginning with B1, assign batches one by one to the machine that has the smaller

load before the batch is assigned. Within each batch, jobs are sequenced arbi-
trarily.

Step 4: Dispatch each completed but undelivered batch whenever the delivery truck be-
comes available. If multiple batches have been completed when the delivery truck
is available, then dispatch the batch with the smallest index.

The steps of the FFD algorithm can be described as follows [6].

Step 1: First sort the jobs in order of descending size.
Step 2: Assign the largest job to B1.
Step 3: If the ith largest job is considered then assign it to the lowest indexed batch, such

that the total job size of the corresponding batch does not exceed Q.

Although H2 produces “good” solutions more quickly than the optimization model, its
performance is very sensitive to problem instance variability. This study presents two
modified heuristics, H1 and H3, to improve the performance of H2. According to the
lemma of Chang and Lee [6], the makespan of the optimal schedule (C∗) is greater than
or equal to Max(u + K × T,C(M)∗ + T ), where u is the departure time of the jobs in
the first delivery batch, K is the number of delivery batches, and C(M)∗ is the point
in the optimal schedule when the machines have finished processing the last job. The
idea behind the proposed H1 is to schedule jobs to minimize Cmax as much as possible to
C(M)∗ + T . Hence, H1 allocates jobs to the machines based on the procedure proposed
by Sule [14], to achieve a minimum length of time on the optimal schedule required for
the machines to complete processing of the last job, C(M).

Heuristic 1 (H1)

Step 1: Arrange the jobs in descending order of processing time.
Step 2: The lower bound of the minimum achievable makespan is given by the sum of the

processing times divided by 2.
Step 3: Begin allocating the jobs to one machine until one of the following occurs:

(a) The sum of the processing times of the jobs assigned to the machine un-
der consideration becomes equal to the lower bound. If this happens, begin
assigning jobs to the next available machine.

(b) The sum of the processing times of the jobs allocated to the machine exceeds
the lower bound. If this happens, then the job that has caused the sum to
exceed the lower bound is allocated in the following manner: If the sum of
the processing times on the other machine is less than the lower bound, and
the allocation of the job will not cause the cumulative processing time of the
machine to exceed the lower bound, the job is assigned to this machine. If
the assignment of the job will increase the sum beyond the lower bound in
both machines, the job is assigned to the machine in which such increase will
be minimal.

Step 4: In each machine, jobs are sequenced in SPT order.
Step 5: Calculate the first delivery time (ρ1). The ρ1 is defined as Max(C1, C(M)mod T ),

where C1 is the point in time when the machines complete processing of the first
job. The set of all possible delivery times is {ρ1, ρ1 + T, ρ1 + 2T, ..., ρ1 +KT}.

Step 6: Assign the jobs to batches using the FFD algorithm with the constraint that each
job must be finished at or before its delivery time.
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The Heuristic 3 (H3) is presented below. One point prevents further enhancement of
the performance of H2. In H2, machine loads may sometimes become unbalanced, which
can cause problems in minimizing Cmax, because H2 assigns delivery batches one by one to
the machine that has a smaller load before the batch is assigned (all jobs in the same batch
are assigned to the same machine). By contrast, after grouping jobs into delivery batches,
H3 allocates jobs one by one to the machines while considering the existing machine loads
prior to job assignment, in order to achieve a minimum Cmax.
Heuristic 3 (H3)

Step 1: Assign jobs to batches using the FFD algorithm. Let the total number of resulting
batches be bH3.

Step 2: Calculate the sum of the processing times of the jobs in Bk and denote it as Pk,
for k = 1, 2, ..., bH3. Re-index these batches so that P1 ≤ P2 ≤ ... ≤ PH3

b .
Step 3: Within each batch, jobs are sequenced according to the LPT (Longest Processing

Time) rule. Beginning with B1, assign jobs one by one to the machine that has
a smaller load before the job is assigned (all jobs in the same batch may not be
assigned to the same machine).

Step 4: Dispatch each completed but undelivered batch whenever the truck becomes avail-
able. If multiple batches have been completed when the truck becomes available,
deliver the one with the smallest batch index k.

4. GA-based Algorithm. The genetic algorithm (GA), which was first introduced by
Holland [15], has proven to be particularly useful for solving complex combinational prob-
lems. This paper considers the case in which a GA is used to determine a coordinated
schedule. First, the GA chromosome structure must be defined. In this study, a chro-
mosome was divided into three segments: job sequence, job-to-machine assignment, and
job-to-batch assignment. If we consider an example problem of six jobs, then the coordi-
nated schedule can be represented as illustrated in Figure 1.

Figure 1. The chromosome structure of the proposed GA

where Yi1 denotes the index of the job in position J of the job sequence (J ∈ [1, ..., 6]). If
a job is assigned to machine 1, the gene Yi2 is set to zero; if assigned to machine 2, it is
set to one. If a job is the last job of a batch, Yi3 is set to one; otherwise it is set to zero.
The following operations describe one generation of a GA. A fixed number of chro-

mosomes are generated to create the initial population of the GA. Let the size of the
initial population be PS chromosomes. The fitness of each chromosome is obtained from
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Equation (19).

FVc =
MAX − Zc +MIN

AV E
, ∀c = 1, . . . , PS (19)

where FVc is the fitness value of the cth chromosome, MAX is the maximum objective
value of the same generation, Zc is the objective value of the cth chromosome, MIN is the
minimum objective value of the same generation and AV E is the average objective value
of the same generation. Once the fitness value of each chromosome has been assessed,
the best θ% of the population is transferred from the previous generation to the current
generation. A total of PS × (100− θ)% new chromosomes must now be generated. The
Roulette Wheel Selection, which selects members from the population of chromosomes in
a manner proportional to their fitness, is implemented to select chromosomes from the
previous generation for the crossover operation. Under this scheme, the fitter chromo-
somes have a higher probability of being chosen. Two chromosomes are selected, which
are commonly referred to as parents. A feasible subset of genes is swapped between two
parents, producing two new chromosomes, referred to as offspring. After a few iterations
of crossover operations, the objective of each chromosome in the population often tends
to reach some common value. To mitigate this, mutation is used to propagate offspring
with more diverse characteristics. Hence, after the crossover operation, mutation is ap-
plied subject to the probability of introducing new genes within the selected chromosome.
After the offspring are created, their fitness values are assessed. The performance of the
crossover and mutation operations depends mainly on the representation of results used.
In the representation of results in this study, a chromosome was divided into three seg-
ments: job sequence, job-to-machine assignment and job-to-batch assignment. Under this
representation, row-based crossover (RX) and row-based mutation (RM) could be applied
to the coordinated scheduling problem. In order to implement RX, a random row index
was generated. The genes in the rows were interchanged with two chromosomes to form
two new offspring. Figure 2 shows that the genes in the third row were exchanged between
Parent 1 and Parent 2. In this study, the RM operation was implemented and defined as
the re-generation of the Yij values in randomly selected row i. Figure 3 shows a mutation
operation in the example described above. Figure 3 shows that the genes in the fourth
row were mutated. This procedure was repeated until the terminating criteria were met.

Figure 2. Crossover operation of the proposed GA



560 C.-H. LIU, B.-Y. LEU AND S.-Y. HSU

Figure 3. Mutation operation of the proposed GA

As the genes used in both crossover and mutation operations were randomly generated,
the feasibility of the resulting offspring was not known in advance. It is evident that
both crossover and mutation operations do not always produce a feasible solution. Hence,
an additional feasibility checking routine was performed after an offspring was generated.
This correction mechanism was designed to move jobs from batches in which capacity had
been exceeded to other batches with surplus capacity. This correction mechanism can be
algorithmically stated as follows:

For each Batch Bk

{
If Size(Bk) > Q Then
{

If Size(Bk)−Q+ Size (Bk+1) 6 Q Then
Select the job J∗ that occupies a minimum amount of storage space in the
truck;
Bk+1 = Bk+1 ∪ J∗;

Else
Insert a new batch in position (k + 1);
Bk+1 = Bk+1 ∪ J∗;

Bk = Bk − J∗;
}

}

5. Experimental Design and Results. This study conducted computational exper-
iments to verify the effectiveness of the proposed heuristics H1, H3 and the GA-based
algorithm. These methods were coded in eM-Plant 4.6, a simulation package developed
by Tecnomatix Technologies Ltd., and implemented in a PC with a Pentium III 1300
MHz CPU and 384 MB RAM. In the experiments, job size and processing time were both
uniformly distributed over the integer set [1, 9]. The factors to be evaluated were the
number of jobs (n), transportation time (T ) and truck capacity (Q). The first factor was
the number of jobs with four levels (10, 20, 30, 50). The experiments were also conducted
to evaluate different scheduling approaches in consideration of the three different levels
of T (5, 10, 15) when Q is set as a constant (Q = 20). This study also investigated the
effects of the different levels of Q (15, 20, 25) on the performance of the scheduling ap-
proaches when T = 10. Thus, 24 different treatments were produced for every scheduling
approach studied. For each combination of number of jobs, transportation time and truck
capacity, researchers randomly generated 10 problem scenarios. In each scenario, the Cmax

yielded by H1, H3 and the GA-based algorithm were compared with the solution value of
algorithm H2 as proposed by Chang and Lee [6].
After some preliminary tests, the GA parameters were set as follows: maximum number

of iterations (GEN) = 500, population size (PS) = 100, crossover rate = 0.8 and mutation
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Table 1. Makespan average for experiments when Q = 20

Number of Jobs (n) Transportation Time (T ) Method Cmax Improved %
50 15 H1 204.8 −1.14

H2 202.5 −
H3 199.3 1.58
GA 197.0 2.72

10 H1 143.8 3.55
H2 149.1 −
H3 138.8 6.91
GA 137.9 7.51

5 H1 130.8 9.10
H2 143.9 −
H3 130.5 9.31
GA 130.4 9.38

30 15 H1 128.0 −0.87
H2 126.9 −
H3 123.3 2.84
GA 120.2 5.28

10 H1 92.9 4.72
H2 97.5 −
H3 88.9 8.82
GA 88.5 9.23

5 H1 81.9 11.46
H2 92.5 −
H3 81.6 11.78
GA 81.6 11.78

20

15

H1 94.2 1.46
H2 95.6 −
H3 90.9 4.92
GA 87.4 8.58

10 H1 67.7 3.97
H2 70.5 −
H3 62.4 11.49
GA 60.9 13.62

5 H1 55.3 14.40
H2 64.6 −
H3 55.2 14.55
GA 55.2 14.55

10 15 H1 58.4 −1.04
H2 57.8 −
H3 53.5 7.44
GA 50.2 13.15

10 H1 41.5 3.94
H2 43.2 −
H3 37.3 13.66
GA 36.7 15.05

5 H1 31.1 18.37
H2 38.1 −
H3 30.8 19.16
GA 30.5 19.95
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Table 2. Makespan average for experiments when T = 10

Number of Jobs (n) Truck Capacity (Q) Method Cmax Improved %
50 15 H1 181.3 −1.85

H2 178.0 −
H3 175.6 1.35
GA 175.2 1.57

20 H1 143.8 3.55
H2 149.1 −
H3 138.8 6.91
GA 137.9 7.51

25 H1 137.6 7.34
H2 148.5 −
H3 133.7 9.97
GA 133.6 10.03

30 15 H1 112.0 −3.13
H2 108.6 −
H3 107.0 1.47
GA 106.3 2.12

20 H1 92.9 4.72
H2 97.5 −
H3 88.9 8.82
GA 88.5 9.23

25 H1 87.0 9.94
H2 96.6 −
H3 84.1 12.94
GA 84.1 12.94

20 15 H1 80.0 -3.23
H2 77.5 −
H3 74.7 3.61
GA 72.9 5.94

20 H1 67.7 3.97
H2 70.5 −
H3 62.4 11.49
GA 60.9 13.62

25 H1 60.7 10.34
H2 67.7 −
H3 58.8 13.15
GA 58.6 13.44

10 15 H1 52.5 −3.14
H2 50.9 −
H3 46.7 8.25
GA 45.1 11.39

20 H1 41.5 3.94
H2 43.2 −
H3 37.3 13.66
GA 36.7 15.05

25 H1 38.6 9.81
H2 42.8 −
H3 36.6 14.49
GA 36.4 14.95
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rate = 0.05. The results of the factorial experiment are summarized in Tables 1 and 2.
Each item in these tables is an average of the 10 problem scenarios. Boldface and italic are
used to indicate the best result for each factor combination. The “Improved %” column
in the table indicates the percentage difference between the average objective value as
obtained by the current heuristic and that obtained by H2.

Table 1 displays the Cmax for four heuristics under Q = 20 for different levels of T .
Table 1 shows that in the special problem scenario in which transportation time (T )
decreases, the performance of the H2 proposed by Chang and Lee [6] grows poorer. The
performance of the H3 and GA-based algorithm proposed in this study was surprisingly
strong, and surpassed the H2 in all design factor combinations. When T decreased, the
performance difference between H1 and H2 became clear. When n = 50 and T = 15,
H2 was superior to H1 by 1.14%. When T decreased, H1 tended to outperform H2 by
9.10%. The average relative gaps between H1, H3 and the GA-based algorithm closely
approached 0 when T = 5. Similar trends were observed from Table 2, in which H3 and
the GA-based algorithm remain the more effective approaches overall. The advantages of
H1, H3 and the GA-based algorithm over H2 increased as the given capacity of the truck
(Q) increased.

The main objective of this study was to investigate the relative effects of H1, H2, H3
and the GA-based algorithm on different design factor combinations. Because common
random-number streams were used to generate the 10 observations in each factor com-
bination, the sample observations were not independent. As a result, it was essential to
use the paired t-test to detect any significant statistical differences in the performance
of every pair of approaches. To achieve a confidence level of 95%, this study used the
Bonferroni approach to control the confidence level for each comparison. Tables 3 and 4
show the results of the paired t-tests. The approaches are listed in descending order of
performance and are grouped into homogeneous subsets, which are labeled with a differ-
ent letter if the difference between the means of measuring the performance of the two
approaches in the subset did not significantly exceed the prescribed level. Based on the
compared measures, the approach with “A” was significantly superior to the approach
with “B” and the approach with “B” was significantly superior to the approach with
“C”. Based on Tables 3 and 4, the tests suggest that the GA-based algorithm and H3 are
significantly superior to H2. As Q increased to 25 or T decreased to 5, the test results
indicated that H1 significantly outperforms H2.

In summary, H2 is not applicable to problem instances in which the truck is a non-
bottleneck, such as when transportation time (T ) is reduced or the given capacity of the
truck (Q) increases. The reason for these trends may be the fact that when T = 5 or
Q = 25, minimizing Cmax is equivalent to minimizing the time required for the machines
to complete processing of the last job, C(M). The heuristics proposed in this study,
H1 and H3, both clearly consider balance of the machine loads when assigning jobs to
the machines in order to minimize C(M), so as to minimize Cmax. In addition, both H3
and the GA-based algorithm demonstrated significant performance improvement over H2,
regardless of which levels T and Q were set to. Both approaches performed comparably if
the truck was a non-bottleneck (T ≤ 10 or Q ≥ 20). The average computing time was 55s
for the GA-based algorithm when the problem size was increased to 50 jobs; H3 required
on average less than 1s to find a heuristic solution to a 50-order problem example. This
means that if the truck is a non-bottleneck, then the proposed heuristic H3 should be
the optimal scheduling approach; otherwise, the GA-based algorithm is the scheduling
approach of choice.
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Table 3. Results of paired t-test when Q = 20

Number of Jobs (n) Transportation Time (T ) Method Significance
50 15 GA A

H3 B
H2 C
H1 C

10 GA A
H3 A
H1 B
H2 B

5 GA A
H3 A
H1 A
H2 B

30 15 GA A
H3 B
H2 C
H1 C

10 GA A
H3 A
H1 B
H2 B

5 GA A
H3 A
H1 A
H2 B

20 15 GA A
H3 B
H1 C
H2 C

10 GA A
H3 A
H1 B
H2 B

5 GA A
H3 A
H1 A
H2 B

10 15 GA A
H3 B
H2 C
H1 C

10 GA A
H3 A
H1 B
H2 B

5 GA A
H3 A
H1 A
H2 B
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Table 4. Results of paired t-test when T = 10

Number of Jobs (n) Truck Capacity (Q) Method Significance
50 15 GA A

H3 A
H2 B
H1 B

20 GA A
H3 A
H1 B
H2 B

25 GA A
H3 A
H1 A
H2 B

30 15 GA A
H3 B
H2 C
H1 C

20 GA A
H3 A
H1 B
H2 B

25 GA A
H3 A
H1 A
H2 B

20 15 GA A
H3 B
H2 C
H1 C

20 GA A
H3 A
H1 B
H2 B

25 GA A
H3 A
H1 A
H2 B

10 15 GA A
H3 A
H2 B
H1 B

20 GA A
H3 A
H1 B
H2 B

25 GA A
H3 A
H1 A
H2 B
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6. Conclusions and Future Research. This study examined a production-distribution
system with one supplier and one or more customers located in close proximity to each
other (defined as a customer area). The goal was to optimize an objective function
that considered the length of time required for the truck to complete delivery of the last
batch to the customer(s) and return to the factory. We assumed a problem instance
in which jobs were processed by either one of two parallel machines and delivered by
a single truck to one customer area. In particular, this study addressed a situation in
which every job occupied a different amount of storage space in the truck. We presented
two simple heuristics (H1 and H3) as well as a GA-based algorithm for this coordinated
scheduling problem. Computational tests showed that the GA-based algorithm was the
optimal approach overall. However, there was no significant difference between the GA-
based algorithm and H3 when the truck was a non-bottleneck. Thus, H3 is the optimal
scheduling approach when transportation time is short or the truck capacity is large;
otherwise, the GA-based algorithm is the scheduling approach of choice.
This study did not consider shipments that can serve more than one customer. Such a

problem would include route decisions for each shipment, and new algorithms/heuristics
would be required to solve such a problem. In future research, problems involving different
performance measures, such as deadline-related criteria, could be considered. We are
currently conducting research on these topics.
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