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Abstract. This paper presents an adaptive interval type-2 fuzzy sliding mode controller
for a class of unknown nonlinear discrete-time systems with training data corrupted by
noise or rule uncertainties involving external disturbances. Adaptive interval type-2 fuzzy
control scheme and sliding mode control (SMC) approach are incorporated to implement
the main objective of controlling the plant to track a reference trajectory and prevent big
chattering of the control effort. The Laypunov stability theorem has been used to testify
the asymptotic stability of the whole system and the free parameters of the adaptive fuzzy
controller can be tuned on-line by an output feedback control law and adaptive laws. The
overall adaptive scheme guarantees the global stability of the resulting closed-loop system
in the sense that all signals involved are uniformly bounded. The simulation example is
given to confirm validity and tracking performance of the advocated design methodology.
Keywords: Sliding mode control, Type-2 fuzzy control, Discrete time system, Adaptive
control, Lyapunov theorem

1. Introduction. Nowadays, active research has been carried out in fuzzy-neural control.
It has been proven that fuzzy logic system (FLS) can approximate any nonlinear function
with any desired accuracy because of universal approximation theorem [1-10]. A great
number of adaptive fuzzy neural control schemes have been proposed to get over the
difficulty of extracting linguistic control rules from experts and deal with the system
parameter uncertainties. Sliding mode control (SMC) as a general design approach for
robust control systems is well established. There are many advantages of the sliding mode
controller such as good transient, fast response, robustness of stability and insensitivity
to the variation of plant parameters and external disturbances [5-9].

However, several adaptive fuzzy sliding mode control systems have been developed for
continuous-time systems [11-15], but only a few of them are devoted to discrete-time sys-
tems [16-20]. Adaptive discrete-time fuzzy sliding mode control is proposed for anti-lock
braking systems [27]. A discrete version of SMC is important when the implementation
of the control is realized by computers with relative slow sampling period. It should be
noticed that, theoretically, discrete-time SMC cannot be obtained from their continuous
counterpart by means of simple equivalence.

Nevertheless, because of the environment changes and the associated uncertainties,
linguistic uncertainty and noisy training data, the chosen type-1 sets might not be ap-
propriate anymore. A type-2 fuzzy set is characterized by a fuzzy membership function
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[21-26]. For each element of this set is a fuzzy set in [0, 1], unlike a type-1 fuzzy set where
the membership grade is a crisp value in [0, 1]. A type-2 FLS is characterized by IF-THEN
rules, but its antecedent or consequent sets are type-2. Hence, type-2 FLSs can be used
when the circumstances are too uncertain to determine exact membership grades such as
when training data are corrupted by noise.
The type-2 FLS has been successfully applied to fuzzy neural network [28-33], VLSI

testing and fuzzy controller designs [34]. The Lyapunov stability theorem has been used to
testify the asymptotic stability of the whole system and the free parameters of the adaptive
fuzzy controller can be tuned on-line by an output feedback control law and adaptive laws.
It is proved that the overall control scheme can not only guarantee boundedness of the
input and output of the closed-loop system but also make the tracking error converge to
a small neighborhood of the origin.
The remaining of this paper is organized as follows. Problem formulation is given in Sec-

tion 2. Adaptive fuzzy sliding mode control scheme for a class of nonlinear discrete-time
system is presented in Section 3. The simulation example to demonstrate the performances
of the proposed method is provided in Section 4. Section 5 gives the conclusions of the
advocated design methodology.

2. Problem Formulation. Consider the discrete-time single-input single-output (SISO)
nonlinear systems having a state space representation in the form

x1(k + 1) = x2(k)
x2(k + 1) = x3(k)

...
xn−1(k + 1) = xn(k)
xn(k + 1) = f(x(k)) + u(k) + d(k)
y(k) = x1(k)

(1)

where x(k) = [x1(k), x2(k), · · · , xn(k)] is the state vector, u(k) ∈ R and y(k) ∈ R are
the input and the output of the system, respectively. f(x(k)) is unknown but bounded
function and d(k) is bounded external disturbance. Let the tracking error be

e1(k) = x1(k)− yd(k)

e2(k) = x2(k)− yd(k + 1)
...

en(k) = xn(k)− yd(k + n− 1)

where yd(k) is the reference trajectory and the tracking error vector is denoted as e(k) =

[e1(k), e2(k), · · · , en(k)]T ∈ Rn. Then, the tracking error dynamic equation can be ex-
pressed as

e(k + 1) = Ae(k) +B [f(x(k)) + u(k)− yd(k + n) + d(k)] (2)

where

A =


0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 0 1
0 0 0 0 · · · 0 0

 , B =


0
0
...
0
1

 (3)

The sliding surface in the space of the tracking-error vector can be defined as

s(k) = c1e1(k) + c2e2(k) + · · ·+ cn−1en−1(k) + en(k) = Ce(k) (4)
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where C = [c1, c2, · · · , cn−1, 1] be selected so that h(z) = zn + cn−1z
n−1 + · · · + c2z + c1

is stable. The process of sliding mode control can be divided into two phases, i.e., the
approaching phase with s(k) ̸= 0 and the sliding phase with s(k) = 0. A condition to
guarantee that the trajectory of the error vector e(k) will translate from the approaching
phase to the sliding phase is select the control strategy such that [19]

s(k + 1)− s(k) = −εTs(k)− qT sgn(s(k)) (5)

where ε, q > 0 and T > 0 is the sampling period. In the sliding phase, if the function
f(x(k)) is known and the system is free of external disturbance, d(k) = 0, then the
equivalent control ueq(k) which will force the system dynamics to stay on the sliding
surface can be derived as follows.

From Equation (4), we have

s(k + 1) =
n−1∑
i=1

ciei(k + 1) + f(x(k))− yd(k + n) + u(k) (6)

and the incremental change in s(k) can be expressed as

∆s(k + 1) =
n−1∑
i=1

ciei(k + 1) + f(x(k))− yd(k + n) + ueq(k)−
n−1∑
i=1

ciei(k)− en(k) = 0 (7)

then

ueq(k) = −
n−1∑
i=1

ciei(k + 1)− f(x(k)) + yd(k + n) +
n−1∑
i=1

ciei(k) + en(k) (8)

However, f(x(k)) is unknown and d(k) ̸= 0, the ideal controller (7) cannot be imple-
mented.

In the approaching phase s(k) ̸= 0, in order to satisfy the sliding condition (5), a
switching type control usw(k) must be added

usw(k) = −εTs(k)− qT sgn(s(k)) (9)

In Section 3, in order to handle training data corrupted by noise or rule uncertainties,
we will use interval type-2 FLS described in [28-34] to approximate function f(x(k)) and
adaptive laws can be derived.

3. Robust Adaptive Fuzzy Sliding Mode Control Design. An adaptive fuzzy sys-
tem is a FLS equipped with a training algorithm to maintain a consistent performance
under plant uncertainties. The most important advantage of the adaptive fuzzy control
over conventional adaptive control is that adaptive fuzzy controllers are capable of incor-
porating linguistic fuzzy information from human operator, whereas conventional adaptive
controller is not. In this section, we will develop the adaptive interval type-2 fuzzy con-
troller that can incorporate with linguistic information to design an adaptive law for the
adjustable parameters in the controller, such that the closed loop output trajectory y(k)
follows the reference trajectory yd(k).

To begin with, we replace f(x(k)) by interval type-2 FLS, f(x(k)| θf ), described in
[28-34] as

f(x(k)| θf ) = θTf (k)ξ(k) =
θTfr(k)ξr(k) + θTfl(k)ξl(k)

2
(10)

where ξ(k) = 1
2
[ξr(k)ξl(k)]

T is the fuzzy basis function vector, θf = [θfr θfl]
T is the corre-

sponding adjustable parameter vector of each fuzzy logic system. The optimal parameter
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vector is defined as

θ∗f = arg min
θf∈Ωθf

{
sup
x∈Ωx

∣∣∣∣ f(x(k))− f(x(k)| θf )
}

(11)

where Ωθf and Ωx are compact sets of suitable bounds on θf and x, respectively and they
are defined as {θf | |θf | ≤ Mf} and Ωx = {x| |x| ≤ Mx} where Mf and Mx are positive
constants. Define the minimum approximation error as

ω1(k) = f(x(k))− f(x(k)| θ∗f ) + d(k) (12)

If the closed-loop system the fuzzy control u(k) is chosen as

u(k) = −kds(k) + ueq(k) + usw(k) + u3(k) (13)

then substituting (10)-(13) into (6), after simple manipulation, we have

∆s(k + 1) = −kds(k) + usw(k) + u3(k) +
1

2
θ̃Tfr(k)ξr(k) +

1

2
θ̃Tfl(k)ξl(k) + ω1(k) (14)

where kd is a small positive real number, θ̃fr(k) = θ∗fr − θfr(k), θ̃fl(k) = θ∗fl − θfl(k) and
the robust controller u3(k) is employed to attenuate the external disturbance d given as

u3(k) = −sgn(s(k))

[
−1

2
B1(k) +

1

2

(
B2

1(k)− 4B2(k)
) 1

2

]
(15)

with

B1(k) = 2 |kds(k)|+ 2A0(k)− 2 |s(k)| (16)

B2(k) = [|kds(k)|+ A0(k)]
2 (17)

A0(k) = su2 + sfr ∥ξr(k)∥+ sfl ∥ξl(k)∥+ sw (18)

where sw, sfr, sfl and su2 are positive real constants and satisfy the following conditions.

|ω1(k)| ≤ sw,
∣∣∣θ̃Tfr(k)∣∣∣ ≤ sfr,

∣∣∣θ̃Tfl(k)∣∣∣ ≤ sfl, |usw(k)| ≤ su2 (19)

The main result of the robust adaptive interval type-2 fuzzy SMC scheme is summarized
in the following theorem.

Theorem 3.1. Consider the uncertain nonlinear discrete time system (1) with the robust
adaptive interval type-2 fuzzy controller given by (13). The parameter vectors θfr(k) and
θfl(k) can be adjusted by the adaptive laws given by (20) and (21). It ensures that all the
closed-loop signals are bounded and the tracking errors converge to zero.

∆θfr(k) = αrξr(k)s(k) (20)

∆θfl(k) = αlξl(k)s(k) (21)

where αr and αl are positive constants which determine the rates of adaptation.

Proof: First, the Lyapunov function candidate is chosen as

V (k) =
1

2
s2(k) +

1

2αr

θ̃Tfr(k − 1)θ̃fr(k − 1) +
1

2αl

θ̃Tfl(k − 1)θ̃fl(k − 1) (22)

Then, the incremental change in V (k) can be obtained as

∆V (k + 1) =V (k + 1)− V (k)

=
1

2
s2(k + 1)− 1

2
s2(k) +

1

2αr

θ̃Tfr(k)θ̃fr(k)−
1

2αr

θ̃Tfr(k − 1)θ̃fr(k − 1)

+
1

2αl

θ̃Tfl(k)θ̃fl(k)−
1

2αl

θ̃Tfl(k − 1)θ̃fl(k − 1)

(23)
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Let

∆θtfr =
1

2αr

θ̃Tfr(k)θ̃fr(k)−
1

2αr

θ̃Tfr(k − 1)θ̃fr(k − 1) (24)

and

∆θtfl =
1

2αl

θ̃Tfl(k)θ̃fl(k)−
1

2αl

θ̃Tfl(k − 1)θ̃fl(k − 1) (25)

By using (24) and (25), (23) can be rewritten as

∆V (k + 1) =
1

2
s2(k + 1)− 1

2
s2(k) + ∆θtfr +∆θtfl

=
1

2
(∆s(k + 1) + s(k))2 − 1

2
s2(k) + ∆θtfr +∆θtfl

=
1

2
∆s2(k + 1) + s(k)∆s(k + 1) + ∆θtfr +∆θtfl

=
1

2
∆s2(k + 1) + s(k)

[
−kds(k) + usw(k) + u3(k) +

1

2
θ̃Tfr(k)ξr(k)

+
1

2
θ̃Tfl(k)ξl(k) + ω1(k)

]
+∆θtfr +∆θtfl

=
1

2
∆S2(k + 1)− kdS

2(k) + usw(k)S(k) + u3(k)S(k) + ω1(k)S(k)

+
1

2
θ̃Tfr(k)ξr(k)S(k) + ∆θtfr +

1

2
θ̃Tfl(k)ξl(k)S(k) + ∆θtfl

(26)

From (24) and (25), ∆θtfr and ∆θtfl can expressed by

∆θtfr =
1

2αr

(
θ̃Tfr(k)θ̃fr(k)−

[
θ̃fr(k)−∆θ̃fr(k)

]T [
θ̃fr(k)−∆θ̃fr(k)

])
= − 1

αr

θ̃Tfr(k)∆θ̃fr(k)−
1

2αr

∆θ̃Tfr(k)∆θ̃fr(k)

(27)

and

∆θtfl =
1

2αl

(
θ̃Tfl(k)θ̃fl(k)−

[
θ̃fl(k)−∆θ̃fl(k)

]T [
θ̃fl(k)−∆θ̃fl(k)

])
= − 1

αl

θ̃Tfl(k)∆θ̃fl(k)−
1

2αl

∆θ̃Tfl(k)∆θ̃fl(k)

(28)

Substituting (27) and (28) into (26), we can obtain

∆V (k + 1) =
1

2
∆s2(k + 1)− kds

2(k) + usw(k)s(k) + u3(k)s(k) + ω1(k)s(k)

+
1

2
θ̃Tfr(k)ξr(k)s(k) + ∆θtfr +

1

2
θ̃Tfl(k)ξl(k)s(k) + ∆θtfl

=
1

2
∆s2(k + 1)− kds

2(k) + usw(k)s(k) + u3(k)s(k) + ω1(k)s(k)

+ θ̃Tfr(k)

[
1

2
ξr(k)s(k)−

1

αr

∆θ̃fr(k)

]
− 1

2αr

∆θ̃Tfr(k)∆θ̃fr(k)

+ θ̃Tfl(k)

[
1

2
ξl(k)s(k)−

1

αl

∆θ̃fl(k)

]
− 1

2αl

∆θ̃Tfl(k)∆θ̃fl(k)

(29)
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From the adaptive laws (20) and (21), we get

∆V (k + 1) =− kds
2(k) +

1

2
∆s2(k + 1) + usw(k)s(k) + u3(k)s(k)

+ ω1(k)s(k)−
1

2αr

∆θ̃Tfr(k)∆θ̃fr(k)−
1

2αl

∆θ̃Tfl(k)∆θ̃fl(k)
(30)

According to (14), we have

|∆s(k + 1)| ≤ |kds(k)|+ |usw(k)|+ |u3(k)|+
∣∣∣∣12 θ̃Tfr(k)ξr(k)

∣∣∣∣+ ∣∣∣∣12 θ̃Tfl(k)ξl(k)
∣∣∣∣+ |ω1(k)|

≤ |kds(k)|+ su2 + sfr ∥ξr(k)∥+ sfl ∥ξl(k)∥+ sw + |u3(k)|
≤ |kds(k)|+ A0(k) + |u3(k)|

(31)

By taking square from both sides of (31), one can get

|∆s(k + 1)|2 ≤
(
|kds(k)|2 + 2A0(k) |kds(k)|+ 2 |kds(k)| |u3(k)|+ 2A0(k) |u3(k)|
+A2

0(k) + |u3(k)|2
)

≤
(
[|kds(k)|+ A0(k)]

2 + [2 |kds(k)|+ 2A0(k)− 2 |s(k)|] |u3(k)|
+2 |s(k)| |u3(k)|+ |u3(k)|2

)
≤
[
−B1(k) +

(
B2

1(k)− 4B2(k)
) 1

2

]
|s(k)|

(32)

Therefore, (30) can be expressed as

∆V (k + 1) =− kds
2(k) + ω1(k)s(k) + usw(k)s(k)−

1

2αr

∆θ̃Tfr(k)∆θ̃fr(k)

− 1

2αl

∆θ̃Tfl(k)∆θ̃fl(k)

(33)

Since usw(k)s(k) < 0, ∆θ̃Tfr(k)∆θ̃fr(k) > 0, kds
2(k) > 0, ∆θ̃Tfl(k)∆θ̃fl(k) > 0 and the

term ω1(k)s(k) should be very small if not equal to zero in the adaptive interval type-2
FLS. So, we have

∆V (k + 1) ≤ 0 (34)

By using the Barbalat’s lemma [23] we can easily show that S(k) will be decreased,
and s(k) → 0 as k → ∞, i.e., lim

k→∞
e(k) = 0. The proof is completed.

The overall Robust adaptive fuzzy sliding mode control scheme is as shown in Figure
1.
To summarize above analysis, the design algorithm for adaptive interval type-2 fuzzy

sliding mode control is proposed as follows:

[Step 1]: Specify the desired coefficients ci, such that h(z) is a Hurwitz polynomial and
obtain the sliding surface.

[Step 2]: Define the membership functions µF l
i
(x) for i = 1, 2, · · · ,M and compute the

fuzzy basis function vector ξ(x).
[Step 3]: Suitably select the adaptive parameters sf , sfl, sfr, sw, su2, ε, q.
[Step 4]: By using the adaptive laws (20) and (21) to adjust the parameter vectors θfrθfl,

then control input u(k) of the system can be constructed as (13).

4. Simulation Example. In this section, we will apply our adaptive interval type-2
fuzzy SMC to control a second-order discrete-time nonlinear system to track a desired
trajectory.
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Figure 1. The overall robust adaptive fuzzy sliding mode control scheme

Example 4.1. Consider the second-order discrete-time nonlinear system
x1(k + 1) = x2(k)

x2(k + 1) =
1− e−x1(k)

1 + e−x1(k)
− 0.1x1(k) sin(t) + u(k) + d(k)

y(k) = x1(k)

(35)

where d(t) = 0.1 cos(0.3t) is the external disturbance. yd(t) = sin(0.1t) + cos(0.3t) is the
reference trajectory.

According to the design procedure, the design is given in the following steps:

[Step 1]: The feedback gain matrix is chosen as C = [c2 c1] = [1 0.1] and the sliding
surface is obtained as s = (c1e1 + c2e2).

[Step 2]: Specify the design parameters sf = sfr = sfl = 0.09, sw = 0.05, su2 = 0.12,
ε = 1.666, q = 3.333 in adaptive laws (20) and (21), simulation time tf = 150
second and the step size h = 0.06.

[Step 3]: The following type-1 and interval type-2 fuzzy membership functions for xi,
i = 1, 2 are selected as F j

i , j = 1, . . ., 7 shown in Table 1. Also, the footprint
of uncertainty of the type-2 membership function for xi, i = 1, 2, is as shown in
Figure 2.

µF 1
i
(xi) =

1

1 + 0.1 exp(5(xi +mi1))
, µF 2

i
(xi) = exp(−3(xi +mi2)

2),

µF 3
i
(xi) = exp(−3(xi +mi3)

2), µF 4
i
(xi) = exp(−3(xi +mi4)

2),

µF 5
i
(xi) =

1

1 + 0.1 exp(5(xi +mi5))
.

[Step 4]: The control law is expressed as u(k) = −kds(k) + ueq(k) + uSW (k) + u3(k).

The simulation results are described as following two cases: free of internal noise case
and training data corrupted by White Gaussian Noise (WGN) with signal-to-noise (SNR)
= 20 dB case for both type-1 and interval type-2 adaptive fuzzy SMCs.
A. Free of internal noise case:

(I). Adaptive type-1 FNN SMC:
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Table 1. Type-1 and interval type-2 fuzzy membership functions for xi,
i = 1, 2

Variance (σ)
Mean (m)

m1 m2 m (type-1)
µF 1

i
(xi) 1 2.5 1.5 2

µF 2
i
(xi) 1 1.5 0.5 1

µF 3
i
(xi) 1 0.5 –0.5 0

µF 4
i
(xi) 1 –0.5 –1.5 –1

µF 5
i
(xi) 1 –1.5 –2.5 –2

Figure 2. The FOU of the type-2 membership function for xi, i = 1, 2

The tracking performance of the output trajectory y(k) and the reference trajectory
yd(k) is as shown in Figure 3 and Figure 4 shows control input u(k). Trajectory of the
sliding surface and mean square of the tracking error are shown in Figure 5 and Figure 6,
respectively.

Figure 3. The output trajec-
tories of y(k) and yd(k)

Figure 4. Control input u(k)

(II). Adaptive interval type-2 FNN SMC:
The tracking performance of the output trajectory y(k) and the reference trajectory

yd(k) is as shown in Figure 7 and Figure 8 shows control input u(k). Trajectory of the
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Figure 5. Trajectory of the
sliding surface s(k)

Figure 6. Mean square of the
tracking error

sliding surface and mean square of the tracking error are shown in Figure 9 and Figure
10, respectively.

Figure 7. The output trajec-
tories of y(k) and yd(k)

Figure 8. Control input u(k)

Figure 9. Trajectory of the
sliding surface s(k)

Figure 10. Mean square of
the tracking error

B. Training data corrupted by WGN with SNR = 20 dB noise: In order to show
that interval type-2 FNN SMC can handle numerical uncertainties associated with inputs
and outputs of the FLC, the noisy training data is corrupted by WGN with SNR = 20
dB.

(I). Adaptive type-1 FNN SMC:
The tracking performance of the output trajectory y(k) and the reference trajectory

yd(k) is shown in Figure 11 and Figure 12 shows control input u(k). Trajectory of the
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sliding surface and mean square of the tracking error are shown in Figure 13 and Figure
14, respectively.

Figure 11. The output tra-
jectories of y(k) and yd(k)

Figure 12. Control input u(k)

Figure 13. Trajectory of the
sliding surface s(k)

Figure 14. Mean square of
the tracking error

(II). Adaptive interval type-2 FNN SMC:
The tracking performance of the output trajectory y(k) and the reference trajectory

yd(k) is as shown in Figure 15 and Figure 16 shows control input u(k). Trajectory of the
sliding surface and mean square of the tracking error are shown in Figure 17 and Figure
18, respectively.
It is observed that the tracking performance of the interval type-2 fuzzy SMC is much

better than that of the type-1 fuzzy SMC. Meanwhile, in order to deal with noisy training
data, type-1 fuzzy SMC must expend more control effort. For different internal noise
levels, the mean square tracking errors of the type-1 and interval type-2 fuzzy SMCs
are indicated in Figure 19. The comparison of tracking performance and control effort
between type-1 and interval type-2 fuzzy SMCs are given in Table 2.

Remark 4.1. From Figure 19 and Table 2, it is observed that for low internal noise
levels (large SNR values), the tracking performance and control effort for both type-1 and
interval type-2 fuzzy SMCs are almost the same. Nevertheless, for high internal noise
levels (small SNR values), the tracking performance of the interval type-2 fuzzy SMC is
much better than that of the type-1 fuzzy SMC and type-1 fuzzy SMC must expend more
control effort.
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Figure 15. The output tra-
jectories of y(k) and yd(k)

Figure 16. Control input u(k)

Figure 17. Trajectory of the
sliding surface s(k)

Figure 18. Mean square of
the tracking error

Figure 19. Mean square of the tracking errors for different noise levels of
type-1 and interval type-2 fuzzy SMCs

Table 2. The comparison of tracking performance and control effort be-
tween type-1 and interval type-2 FNN SMCs

Name Type-2 Type-1
Mean square Square sum Mean square Square sum
tracking error of control u tracking error of control u

Noise Free 4.81 731.43 3.83 761.64
Noise 40 dB 5.2 732.01 4.2 761.61
Noise 30 dB 7.8 731.66 7.44 763.53
Noise 20 dB 38.65 740.05 81.04 778.78
Noise 15 dB 118.9 746.92 1179.10 1090.30
Noise 10 dB 339.5 786.21 2787 1777.8
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5. Conclusions. In this paper, we propose an adaptive interval type-2 fuzzy SMC for a
class of unknown nonlinear discrete-time systems corrupted by internal noise and external
disturbance. The simulation results show that the interval type-2 fuzzy SMC overcomes
the limitations of type-1 fuzzy SMC. Especially, as in high level of uncertainties the type-2
fuzzy SMC has given better and smoother responses that have outperformed their type-1
fuzzy SMC counterparts.
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