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ABSTRACT. This paper proposes a new technique using discrete wavelet transform (DWT)
and artificial neural networks for fault classification on single circuit transmission line.
Simulation and the training process for the artificial neural networks are performed us-
ing ATP/EMTP and MATLAB respectively. The mother wavelet daubechiesj (dbj) is
employed to decompose high frequency component from these current signals. Positive
sequence current signals are employed in faults detection decision algorithm. The varia-
tions of first scale high frequency component detecting faults are employed as an input for
the training process. Back-propagation (BP) neural network, Radial basis function (RBF)
neural network and Probabilistic neural network (PNN) are compared in this paper. The
results are shown that average accuracy vaelues obtained from PNN give satisfactory re-
sults with less training time.
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1. Introduction. Protecting transmission line is an important task to safeguard electric
power system. The precision protection scheme is necessary to be detected, classified and
located accurately, and cleared as soon as possible. The development in power system
protection technology has been progressed, especially in recent years. The method of
symmetrical components is based on fault analysis for over 60 years in various protective
relay applications. During 1980s, the several techniques used to detect and classify the
faults on transmission lines are discussed, such as the variation of the voltage and current
of the three phases [1], the ratio of the change in the magnitude of current to threshold
value [2] and a statistical method based on a discriminate value [3].

During 1990s, there were widespread applications of artificial neural networks in power
systems. Artificial intelligence (AI) has been reported in the literature for fault classifica-
tion [4-8]. A fault detection and classification scheme based on genetic algorithm based
neural networks is presented in [5]. A new approach to real-time fault detection and
classification in power transmission systems by using fuzzy-neuro techniques is presented
in [6]. In [7], this paper reports studies on five different neural network models applied
to classification of faults on complex transmission lines. However, there are still problems
associated with hardware such as the lack of good analog memories and the limited num-
ber of interconnections. By the end of the 1990s, the traditional method of signal analysis
was carried out based on Fourier transform, but the fault signals are non-stationary tran-
sient, so the signal analysis methods with Fourier transform are not quite efficient. The
development in the algorithm for detecting the faults on the transmission lines has been
progressed and resulted in transient based techniques [9]. The transient based protection
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has been found that the wavelet transform is capable of investigating the transient sig-
nals generated in power system [10]. The wavelet transform was initially proposed in the
literature for fault classification by O. A. S. Youssef [11]. The wavelet transform concept
and its value in classification techniques and feature detection schemes are presented in
[11]. In several research papers, the fault classification can be obtained by employing trial
and error method [12-15]. In previous research works [13], by considering the pattern of
the spectra, the comparison of the coefficients from first scale that can detect faults is
considered. The division algorithm between the maximum coefficients of DWT at 1/4
cycle of phase A, B and C is performed. For identifying the phase with fault appearance,
the comparisons of the maximum ratio obtained from division algorithm have been per-
formed so that the types of faults can be analysed. Although the wavelet transform is
very effective in detecting transient signals generated by the faults, the wavelet transform
may not be adequate to complete characterization.

In previous decade, several decision algorithms [16-25] for fault classification and iden-
tification have been developed, then to be employed in the protective relays. O. A. S.
Youssef et al. [16] presented a new approach of real-time fault classification in power
transmission systems using fuzzy-logic-based multi-criteria approach. Only the three line
currents are utilized to detect fault types such as LG, LL and LLG, and then to define the
faulty line. DWT integrated with a fuzzy logic system [17] is designed for fault classifica-
tion of a transmission line. The approach exploits information obtained from the wavelet
decomposition of current signals for faulty phase selection and section identification. In
[18], an approach for line protection based on fault characteristics extraction was pre-
sented. Analysis of the spectral energy of the phase voltage signals for different frequency
bands enables faults to be detected and classified. A novel method for transmission-line
fault detection and classification using oscillographic data is presented in [19]. An arti-
ficial neural network classifies the fault from the voltage and current waveforms pattern
recognition in the time domain.

Nowadays, the neural networks have been rapidly developed and successfully applied
in several fields [26-31]. Back-propagation neural network is a kind of neural networks,
which is widely applied today owing to its effectiveness to solve almost all types of prob-
lems. However, in practice, back-propagation neural network is partly limited by the
slow training performance. It should improve this drawback of back-propagation neu-
ral network otherwise the other types of neural networks should be developed instead.
Probabilistic neural network (PNN) has been successfully used to solve a diverse group of
classification problems. Even though the PNN has not been yet fully evaluated compared
with back-propagation neural network, the PNN approach offers major advantages, such
as rapid training and added or deleted data from training set without lengthy retaining.
Besides, Radial basis function (RBF) neural network is the most commonly-used type of
feed-forward network as well as the back-propagation neural network. As a result, the
objective of this paper is to consider studies of the artificial neural networks for classi-
fication of faults on single circuit transmission line. RBF neural network and PNN are
selected in order to be compared with back-propagation neural network, and the results
obtained from the decision algorithm are investigated in this paper. The simulations,
analysis and diagnosis are performed using ATP/EMTP and MATLAB on a PC Pentium
IV 2.4 GHz 512 MB. The discrete wavelet transform is employed in extracting the high
frequency component contained in the fault current. The coefficients of the first scale from
the DWT are investigated, and then are used as an input for a training process on the
neural networks. The construction of the decision algorithm is detailed and implemented
with various case studies based on Thailand electricity transmission systems.
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2. Power System Simulation Using EMTP. Artificial neural networks are an at-
tempt to simulate the human brain’s nonlinear and parallel processing capability for
many applications. ANNs, therefore, have necessitated learn relationships between cause
and effect of data into orderly and informative patterns. As a result, ANNs require fault
signal samples from simulations to training process and test process. The ATP/EMTP
[32] is used to simulate fault signals at a sampling rate of 200 kHz (depending on the
sampling time used in ATP/EMTP). The scheme under investigations is chosen based
on the Thailand’s transmission system as illustrated in Figure 1. Fault patterns in the
simulations are performed with various changes of system parameters as follows:

— Fault types under consideration are namely: single phase to ground (SLG: AG, BG,
CG), double-line to ground (DLG: ABG, BCG, CAG), line to line (L-L: AB, BC,
CA) and three-phase fault (3-P: ABC).

— Fault locations are varied from 10% to 90%, with the increasing of 10% of the
transmission line length measured from the bus MMa3.

— Inception angle on a voltage waveform is varied between 0°-330°, with the increasing
step of 30°. Phase A is used as a reference.

— Fault resistance is equal to 10 €.

325 km, 500 kV
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FIGURE 1. The system used in fault simulations [13,31,33]

The examples of original and ATP/EMTP simulated fault signals for phase A to ground
fault (AG) in each phase at the sending end (MM3) of the transmission line, are illustrated
in Figures 2(a) and 2(b), respectively. This is a fault occurring with phase A to ground
fault (AG) at the length of 35% measured from the bus MM3 as shown in Figure 1. The
similarity between the two waveforms can be seen by visually inspecting the original and
simulated fault signals. The fault signals generated using ATP/EMTP are interfaced to
the MATLAB/Simulink for a construction of fault diagnosis process.

The Clark’s transformation matrix is employed for calculating the positive sequence and
zero sequence of currents. Fault detection decision algorithm is processed using positive
sequence current signal. The mother wavelet daubechies4 (db4) [13,25,30,34] is employed
to decompose high frequency components from the signals. After applying the Wavelet
transform to the positive sequence currents, coefficients obtained using DW'T of signals are
squared. The comparison of the coefficients from each scale is under investigation. The
result is clearly seen that when fault occurs, the coefficients of high frequency components
have a sudden change compared with those before an occurrence of the faults as illustrated
in Figure 3. This abrupt change is used as an index for the occurrence of faults as shown
in Table 1.
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FIGURE 2. (a) Example of original fault signals for phase A to ground fault;
(b) example of ATP/EMTP simulated fault signals for phase A to ground
fault
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FIGURE 3. Wavelet transform from scale 1 to 5 for the positive sequence

of current signals shown in Figure 2(b)

TABLE 1. Results for fault detection from signals shown in Figure 3

Wavelet Positive Sequence Positive Sequence
scale Current (MM3) Current (TTK) Result
Max (pre) | Max (post) | Max (pre) | Max (post)
1 0.0020 9.0323 0.0094 66.2263 Fault
2 0.0004 94.5754 0.0021 387.3067 Fault
3 0.0043 2310.6 0.0234 994.7926 Fault
4 0.0236 1662.9 0.1485 1755.1 Fault
5 0.2306 31844 0.7545 31811 Fault

TABLE 2. Results for fault detection from signal shown in Figure 4

Wavelet Positive Sequence Positive Sequence
scale Current (MM3) Current (TTK) Result
Max (pre) | Max (post) | Max (pre) | Max (post)
1 0.00003 0.00001 0.0001 0.00002 Normal
2 0.00005 0.00005 0.0001 0.00004 Normal
3 0.0001 0.0001 0.0003 0.0002 Normal
4 0.0015 0.0014 0.0037 0.0033 Normal
5 0.023 0.0226 0.0573 0.0555 Normal
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From Figure 4, the coefficient detail (¢cD1) in each scale of the wavelet transform does
not obviously change, so the result obtained from fault detection algorithm can presume
the normal condition of these signals as shown in Table 2. By performing many simulations
[13,25,31], the coefficient in scale 1 from DWT seems enough to indicate the fault inception
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FIGURE 4. Wavelet transform from scale 1 to 5 for the positive sequence
of current signal in normal condition

on the single circuit transmission line. Consequently, fault detection algorithm is assumed
that if coefficients of any scale are changed around five times before an occurrence of the
faults, there are faults occurring on transmission line and the coefficients in first scale
that can detect fault is investigated.

3. Neural Network Decision Algorithm and Results. From the fault detection
algorithm, DWT is applied to the quarter cycle of current waveforms after the fault
inception. The coefficients of scale 1 obtained using the discrete wavelet transforms are
used for training and test processes of the ANNs. A training process is performed using
MATLAB [35]. Before the training process, input data sets are normalized and divided
into 720 sets for training and 360 sets for tests. A structure of the artificial neural networks
consists of 4 neurons inputs and 1 neuron outputs. The input patterns are maximum
coefficients of DWT at 1/4 cycle of phase A, B and C, and zero sequence for post-fault
current waveforms as illustrated in Figure 5. The output variables of the artificial neural
networks are designated as value range from 1 to 10, which corresponds to various types
of fault as shown in Table 3.

3.1. Back-propagation neural networks. In this paper, back-propagation neural net-
work consists of three layers of neurons (input, two-hidden and output) interconnected by
weights and bias as shown in Figure 6. The inputs are fully connected to the first hidden
layer, each hidden layer is fully connected to the next layer and the last hidden layer is
fully connected to the output layer. In addition, hyperbolic tangent sigmoid functions are
used as an activation function in all hidden layers whereas linear function is used as an
activation function in output layers.
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FIGURE 5. Magnitude in scale 1 for post-fault all phase of current signal
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TABLE 3. Output of ANNs for classifying the fault types

Output of ANNs | Classification of fault type | Types of fault
1 Phase A to ground fault AG
2 Phase B to ground fault BG
3 Phase C to ground fault CG
4 Phase A and B to ground fault ABG
5 Phase B and C to ground fault CAG
6 Phase C and A to ground fault BCG
7 Three phase fault ABC
8 Phase A to phase B fault AB
9 Phase C to phase A fault CA
10 Phase B to phase C fault BC
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FIGURE 6. Back propagation with two hidden layers [35]
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FiGure 7. Flowchart for the training process

During training process [30,31], the weights and biases are adjusted, and there are
20,000 iterations taken to compute the optimum value of MAPE as expressed in Equation
(1). The number of neurons in both hidden layers is increased before repeating the cycle of
the training process. The training procedure is stopped when reaching the final number
of neurons for the first hidden layer, or the MAPE of test set is less than 0.5%. The
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training process can be summarized as a flowchart illustrated in Figure 7 while results
from the training process can be shown in Table 4.

n

1 i~ i
MAPE = =%y ofpanni = 0fPrarceri ggy, (1)
n 0/PTARGET:

i=1
where n is the number of test sets.

TABLE 4. Comparison results of training process

Information for comparison BP | RBF | PNN
Number of neurons input 4 4 4
Number of neurons in hidden 1 11 611 611
Number of neurons in hidden 2 10 - -
Spread — 0.004 | 0.0022
Number of neurons output 1 1 1
Number of Training set 720 | 720 720
Number of Test set 360 360 360
[terations 20000 | 611 611
Total time of training process (minute) | 20 50 1

3.2. Radial basis function neural networks. A structure of a RBF neural network
consists of three layers, which are an input layer, a hidden radial basis layer and an output
linear layer as illustrated in Figure 8. Each layer is connected with weight and bias while
radial basis function and linear function are activation function in hidden radial basis
layer and output linear layer respectively. Generally, RBF neural network has only hidden
radial basis layer for which the combination function is based on the Euclidean distance
between the input vector and the weight vector. The only fundamental difference is the
way in which hidden units combine value coming from preceding layers in the network
— BP neural network uses inner products, whereas RBF neural network uses Euclidean
distance. In addition, the number of neurons in radial basis layer is always equal to the
number of training sets.

Input Radial Basis Layer Linear Layer

S'aR

FIGURE 8. Radial basis function neural networks [35]

During training process [31,35], RBF neural network begins with the random initial
weight and bias in all layers. The number of neurons in hidden radial basis layer is
equal to the number of iterations. RMS error goal is determined as 0.01 in each iteration
while increasing spread in hidden radial basis layer, which corresponds to bias value
(b _0.8326

~ Spread

) from 0.0001 to 0.004. The appropriate step of increasing spread is 0.001
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in order to compute the minimum value of MAPE. This procedure is repeated until the
number of spread is reached, or the MAPE of test set is less than 0.5% then stop training
process. The training process can be summarized as a flowchart illustrated in Figure 7
while results from the training process can be illustrated in Table 4.

3.3. Probabilistic neural networks. Probabilistic neural network (PNN) is developed
by Donald Specht, to perform pattern classification using Gaussian potential functions
and Bayes decision theory [36]. The PNN consists of three layers, which are an input layer,
a hidden radial basis layer and a competitive layer as illustrated in Figure 9. Each layer is
interconnected by weights. Radial basis function and competitive function are activation
function in hidden radial basis layer and competitive layer respectively. Moreover, the

number of neurons in radial basis layer is always equal to the number of training sets
similarly to RBF neural network.

Input Radial Basis Layer Competitive Layer

FIGURE 9. Probabilistic neural network [35,37]
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During the training process [35,37], PNN begins with the random initial weight and
0.8326 )

Spread
from 0.0001 to 0.1. The step of increase is 0.0001 to compute the number of mji)nimum
error. This procedure is repeated until the maximum number of spread is reached, or the
number of minimum error is equal to zero then stop training. The training process can be
summarized as a flowchart illustrated in Figure 7 while results from the training process
are illustrated in Table 4.

increasing spread in the radial basis layer, which corresponds to bias value (b =

3.4. Results. After the training process, the results obtained from the proposed decision
algorithm are shown in Table 4. Case studies are varied so that the decision algorithm ca-
pability can be verified. The total numbers of the case studies are 360. In addition, various
case studies are performed with various types of faults on the single circuit transmission
line including the variation of fault inception angles and locations at each transmission
line as shown in Figure 10 and Table 5. Table 5 shows the comparison of average ac-
curacy between decision algorithm using ANNs and the comparison of the coefficients

TABLE 5. Comparison of average accuracy of fault classification for various
lengths of the transmission lines that fault occurs

In case of 10 20 30 40 50 60 70 80 90 |Accuracy
BPNN | 100% | 100% | 100% | 100% | 100% |100%| 100% | 100% | 100% 100%
RBF | 8.33% (58.33%(41.67%(91.67%| 100% [100% | 100% | 100% | 100% | 77.78%
PNN | 100% | 100% | 100% | 100% | 100% |100% | 100% | 100% | 100% 100%

gﬁ?&? 100% | 100% | 100% | 100% | 100% |100% | 100% | 100% | 100% | 100%

BPNN | 100% | 100% | 100% | 100% [91.67%]|100%(91.67%|91.67%| 100% | 97.22%
RBF  [75.00%(75.00%| 100% | 100% | 100% |100%| 100% | 100% | 100% | 94.44%
PNN | 100% | 100% | 100% | 100% | 100% [100%| 100% | 100% | 100% 100%
g:;gi ?1n3d] 83.33%|83.33%)| 8.33% [25.00%| 0.00% |8.33%| 8.33% |83.33%|83.33%| 42.59%
BPNN (91.67%| 100% | 100% | 100% | 100% |100%191.67%| 100% | 100% | 98.15%
RBF  [58.33%(91.67%(75.00%| 100% [91.67%|100%| 100% | 100% | 100% | 90.74%

SLG

DLG

L-L —5 NN T100% [ 100% | 100% | 100% | 100% [100%] 100% [ 100% | 100% | 100%
;I;r;gi ?f?j 100% | 100% | 100% | 100% | 100% |100%| 100% | 100% | 100% | 100%
BPNN | 100% | 100% | 100% | 100% | 100% |100%]| 100% |75.00%|75.00%)| 94.44%

5 p |_RBF | 100% | 100% | 100% | 100% | 100% |100%| 100% | 100% | 100% | 100%
PNN | 100% | 100% | 100% | 100% | 100% |100%]| 100% | 100% | 100% | 100%
;I;rlfgi ?513? 100% | 100% |75.00%| 100% | 100% |100%| 100% | 100% | 100% | 97.22%

TABLE 6. Percentage accuracy of test set for classification of fault type

Classification of Number of Wa:;zllf:a?r:i t:'(l):;i;i{cml Trial and error
the fault types case studies BP | RBF | PNN method [13]
Single line to ground fault 108 100.00%| 77.78% [100.00% 100.00%
Double line to ground fault 108 96.30% | 94.44% |1100.00% 42.59%
Line to line fault 108 98.15% | 90.74% [100.00% 100.00%
Three phase fault 36 94.44% (100.00%1100.00% 97.22%

Average 98.06% | 88.89% [100.00% 83.33%
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DWT, which is developed by Markming et al. [13] at various lengths of the transmission
lines that fault occurs. The comparison between an average accuracy in fault classifica-
tion obtained from the ANNs algorithm proposed in this paper and that of the former
wavelet algorithm [13] is shown in Table 6. The result is shown that the accuracy of fault
classification from the proposed decision algorithm in this paper is highly satisfactory.

From Tables 6, the result can be seen that the PNN decision algorithm can give a better
performance in predicting the fault types, so PNN is selected in the decision algorithm.
This is an improvement of the fault classification which is detected using the trial and
error method developed by Markming et al. [13]. In addition, the decision algorithms
provide good responses of output values to new input data (different fault resistances)
without training as shown in Table 7.

TABLE 7. Results of different fault types for different fault resistances (fault
at 30% of transmission lines and at inception angle of 90°)

Fault Type
Fault Rea.l Fiault Wavelet and artificial | Trial and error
Location Resistance
type (km) () neural network method [13]
BP RBF PNN Result

0 AB AB AB AB
10 AB AB AB AB
AB 7.5 100 AB | AB AD AB
500 AB AB AB AB
0 ABG ABG ABG ABG
10 ABG ABG ABG ABG
ABG 7.5 100 ABG | ABG | ABG ABG
500 ABG ABG ABG AB
0 AG AG AG AG
10 AG AG AG AG
AG 975 100 AG | AG | AG AG
500 AG AG AG AG
0 ABC ABC ABC ABC
10 ABC ABC ABC ABC
ABC 975 100 ABC | AB | ABC ABC
500 ABC CA ABC AB

4. Conclusions. This paper proposed a technique using discrete wavelet transform and
artificial neural networks to classify fault type on single circuit transmission line. Daubech-
ies4 (db4) is employed as mother wavelet to decompose high frequency components from
fault signals. Coefficients of positive sequence current signals are calculated and employed
in fault detection decision algorithm. By performing many simulations, the result is found
that the fault detection decision algorithm can detect fault with the accuracy of 100% by
using scale 1 only. The maximum coefficients from the first scale at 1/4 cycle of phase A,
B and C, and zero sequence of post-fault current signals obtained by the discrete wavelet
transforms have been used as an input for the training process of an artificial neural
network in a decision algorithm. In addition, the results issued from BP neural network,
RBF neural network and PNN are compared. Various case studies have been carried out
by taking into account the variation of fault inception angles and fault types. The result
is shown that an average accuracy obtained from PNN is more satisfactory and has less
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training time, compared with BP and RBF neural networks. The PNN is finally a better
choice for high speed and accuracy in real-time application. The further work will be the
investigation of the PNN for the instance loop circuits or complicated system.
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