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ABSTRACT. In this paper, we consider a new method for trajectory planning of two mo-
bile manipulators for cooperative transportation of a rigid body. The method consists
of constructing a graph on a portion of the configuration space that satisfies collision
and closure constraints and searching the graph for the shortest possible path using an
optimal graph search algorithm. Then, a sequence of time-optimal trajectories for move-
ment between the consecutive points of the path is calculated. This approach allows for
geometric constraints, such as joint limits and closed-chain constraints, along with dif-
ferential constraints, such as nonholonomic velocity constraints and acceleration limits
to be incorporated into the planning scheme. We also propose a heuristic method to keep
the system from colliding with moving obstacles by adjusting a time scaling factor based
on linear estimation of obstacles’ position. Simulation results illustrate the effectiveness
of the proposed method.

Keywords: Cooperative mobile manipulators, Nonholonomic motion planning, Velocity
adjustment, Collision avoidance, Moving obstacles

1. Introduction. Over the past few decades, various robotic systems with different
structural and computational complexities ranging from simple mobile robots [1-4] to
cooperative multi-robot systems, including multiple mobile robots [5-8], multiple manip-
ulators [9-11], multi-fingered hands [12-15] and multi-legged vehicles [16,17], have been
extensively studied in a variety of contexts focusing on motion planning. Among these
efforts, an interesting topic that has recently attracted a considerable amount of research
is the motion planning of cooperative mobile manipulators [18-31]. Despite the expanded
workspace and increased capability in carrying out more complicated and dexterous tasks,
the motion planning of these systems is complicated due to their high degrees of free-
dom and presence of several kinematic and dynamic constraints, including nonholonomic,
closed chain and obstacle avoidance constraints [32,33]. Thus far, two main approaches
for motion planning have been proposed: “Cartesian space method” and “joint space
methods”. Cartesian space planning methods [18-20] first compute a desired trajectory
for the manipulated object in Cartesian space and then, with regard to the constraints
of the system, compute the corresponding desired trajectory in the joint space for each
mobile manipulator system. However, since these methods need to solve the inverse kine-
matic problem, they may fall into singular states, which lead to increased complexity
in planning the trajectory of the object. Therefore, numerous methods in the literature
have been devoted to motion planning in the joint space [21-31], mainly categorized as
“complete method” and “probabilistically complete methods”.
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A complete planner [21-27] generates an exact collision free trajectory in a continuous
configuration space, if one exists. For example, methods based on optimal control theory
[21,22] attempt to find exact trajectories that optimize a cost function by defining neces-
sary conditions on the trajectories. However, a main drawback of these methods is that
the number of variables and the complexity of the formulation rapidly increase due to an
increase in the degrees of freedom and in the number of obstacles. In addition, the defined
necessary conditions are too complex for almost any robot system and cannot be solved
analytically. Therefore, numerical methods, such as the “nonlinear optimization method”,
have been proposed [23,24] to solve these problems by transforming the optimal control
problem to a finite dimensional parameter optimization problem. However, in some cases,
these methods cause the control parameter space to be littered with many local minima.
Hence, these methods require an initial guess and the solution reached depends heavily
on that guess. Additionally, while nonlinear optimization methods may result in rapid
convergence to a locally optimal trajectory, there are no guarantees that the solver will
be able to find any solution [34]. Other heuristic methods [25,26] and a method based on
artificial potential fields [27] have also been proposed to solve a part of these problems.
However, these methods can only be applied in a limited range of mechanisms with low
dimensional configuration spaces because of their high computational complexity.

As such, “probabilistically complete method” have been introduced as a substitute
scheme to overcome most of the deficiencies of the previous methods. In spite of complete
methods which consider the entire configuration space in finding a suitable path, these
methods utilize a discrete representation of the configuration space in the motion plan-
ning process by random sampling techniques. Due to the effectiveness of these methods
in cooperative manipulation systems, some recent efforts have been directed to gener-
alize them for cooperative mobile manipulators [28-31]. For instance, in [28] a single
query method based on the Rapidly-exploring Random Tree algorithm (RRT) has been
presented. This method constructs a randomized tree between the start and final configu-
rations and searches for an optimal path during the construction phase. A disadvantage of
this method is that the generated tree is only valid for certain configurations and, in case
of a new query, another tree must be constructed, limiting the range of applications that
can take advantage of this method [32]. Therefore, a multiple query, two-stage method
in which a graph, “Roadmap”, is first constructed based on the Probabilistic Roadmap
Method (PRM) by neglecting the presence of obstacles and assuming a fixed location for
the bases of mobile manipulators, has been proposed [29]. Then, the method populates
the environment with copies of the kinematic roadmap in random locations and connects
collision-free configurations of the same closure type to build the final roadmap. The
method is used more in real-time practical situation because of its higher speed in the
query phase and ability to change its goal configuration in an online manner. However,
in this method, the probability of satisfying loop closure equations in a randomly sam-
pled configuration is nearly zero and this fact lowers the performance of the algorithm.
To solve this problem, a simple and general geometric guided sampling algorithm called
Random Loop Generator (RLG) has been proposed [30,31] that notably increases the
probability of obtaining real solutions when solving the loop closure equations. However,
many deficiencies and problems still need to be considered.

A main deficiency of the methods presented for randomized motion planning of co-
operative mobile manipulators is that they ignore differential constraints in the motion
planning process [33]. However, these constraints should be considered in order to cal-
culate a reliable and efficient solution. Two approaches have been proposed to consider
differential constraints in motion planning: decoupled and direct approaches. The decou-
pled approach [35,36], involves first searching for a path in the configuration space and
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then finding a time-optimal time scaling for the path subject to the actuator limits. This
has the desirable benefit of decomposing the complexity of motion planning in two steps.
However, the path from the first stage might not be transformable into an executable
trajectory and the cost associated with the final trajectory could be high [42]. These
deficiencies motivated the development of the direct approach [37-44]. In this approach,
differential constraints are considered in the planning process, resulting in more reliable
and efficient solutions. However, the solutions are believed to be more difficult than those
of the decoupled approach.

Another significant challenge in randomized motion planning is to prevent the system
from colliding with moving obstacles, which considerably increases the complexity of the
motion planning process [45]. In this regard, various modified and combined versions
of RRT [46-48] and PRM [49,50] methods have been proposed that adapt to dynamic
environments, which update only the necessary portions of the corresponding graph that
are relevant to the moving obstacles. However, in these methods, when uncertainty in
the environment is found, a path is completely replanned using the updated graph and,
consequently, the computation time and memory requirements grow exponentially in the
dimension of the state space, making this approach impractical for high-dimensional sys-
tems.

In order to solve these challenges, we propose a novel two-stage scheme that considers
the trajectory planning problem of two mobile manipulators for cooperative transport
of a rigid body. The environment is a 3-D space including static and moving obstacles.
In addition, we only assume the robots have access to the position information of the
obstacles in the environment. An offline method has been presented as the first stage to
find an optimal trajectory in which nonholonomic and closed-chain constraints along with
the joint and acceleration limits can be easily dealt with in presence of static obstacles.
The method utilizes the advantages of the direct and decoupled approaches along with the
ability of probabilistic methods to handle high dimensional configuration spaces resulting
in a reliable and fast trajectory planning algorithm. Next, according to the prediction
of the moving obstacles, the avoidance process is designed based on defining a wvelocity
adjustment zone around the robots. When the obstacles move into this zone area, the
robots move forward following the designated trajectory and avoid the moving obstacles
by increasing or decreasing their motion velocity. This strategy has the desirable benefit
of avoiding replanning, which decreases computational complexity and makes our method
applicable in real-time implementation.

The paper is organized as follows: Section 2 introduces the model of the cooperative
system. The fundamentals of the existing algorithms utilized in this paper and their
extension to the proposed model of the mobile manipulator system are provided in Section
3. In Section 4, the details of our new method for trajectory planning of the cooperative
mobile manipulators under differential constraints in the presence of fixed and moving
obstacles are discussed. Finally, we present simulation results in Section 5 to show the
effectiveness of the algorithm, and provide concluding remarks in Section 6.

2. Model of the Cooperative System. Figure 1 shows our selected model including
a cooperative system of two-wheeled mobile manipulators transporting a common pay-
load. Each mobile manipulator module consists of a wheeled mobile robot with a 5-DOF
mounted, planar and revolute-joint manipulator. Two rotational joints have been con-
sidered at the bottoms and the tips of both manipulators with the aim of making the
system applicable to more practical situations. It is assumed that the motion of vehicles
is restricted to the horizontal plane and both of the end effectors catch the object tightly.
The assumption that the joints are rotational can be easily relieved, however, since the
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mixed use of both prismatic and rotational joints will complicate some analytical deriva-
tions. However, the authors feel they should preserve clarity in the presentation by using
one type only.

Fi1GURE 1. Cooperative transportation by a dual mobile manipulator system

The problem is now as follows: given a group of two nonholonomic mobile manipulators
grasping a rigid body, we should find a trajectory to steer the system in a cooperative
manner between two configurations in an environment with fixed and moving obstacles
such that the acceleration of each variable in the configuration space remains within
certain bounds.

It should be noted that the combination of different types of constraints (including
holonomic, non-holonomic and dynamic constraints) in such a system makes the motion
planning problem complicated and requires careful evaluation to realize the payload ma-
nipulation task efficiently. Therefore, in the remainder of this section, we use the above
model to generate the constraint equations of the system.

2.1. Closed-chain constraints. When a collection of links is arranged so that it forms
a loop, the configuration space becomes much more complicated because the joint angles
must be chosen in a way that the loops remain closed. This leads to constraints in
which some links must maintain specified positions relative to one other. To derive these
constraints, we consider the cooperative system in more detail as shown in Figure 2.
Nomenclatures in this figure are defined as follows:

l;(i=1,...,6): The length of i*" link in the closed kinematic chain;

0; (i =1,...,6): The '™ joint angle rotating in the vertical plane in the closed kinematic
chain;
Opi (1 =1,...,4): The i joint angle rotating in the horizontal plane in the closed

kinematic chain;

lopj: The length of object between two end effectors;

Lpiys lpi (i = 1,...,4): The length of links attached to the i*" joint rotating in the hori-
zontal plane;

Op,, Op,: Platform orientations of the mobile manipulators.

From this figure and the assumptions mentioned above, one can conclude that the
mobile manipulator system is subject to holonomic constraints, expressed as:

f(01702793;04;0579679]7179]72701)3701)479b179b27d12;a12) - 6 (1)
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FiGURE 2. Cooperative system with its attached coordinate systems

Proof of this equation can be found in Appendix A. However, in order to lower the
computational cost of our method, we design the desired trajectory in a way that both
mobile bases have fixed positions and orientations relative to each other. To this end, we
define the following conditions:

di2 = gy
iz =0 (2)
9(,1 :91)2 — T = 91)
where g is a constant positive value. We also assume the mounted manipulators cooperate
in a single plane. By using Equation (2), this leads to the following desired trajectories:

Op, = Opy = bpy = bp, =0 (3)
Therefore, by substituting Equations (2) and (3) in Equation (1), and after further
manipulation, one gets:
0y + 0y + 03 = 04 + 05 + O
l3c123 + laciz + lict + lopjSase = laCase + l5C56 + l6C6 + b (4)

l3s123 + 19812 + lis1 — lopjCasg = l4Sase + 5556 + lgS6

in which, we define the following parameters:
Ciji = cos (0; +0; + 0;) , ¢;j =cos (6, +0;), ¢; =cos(6;) i,7,k € {1,2,3,4,5,6}
Sijk = sin (0; + 0; + 0y, ), s;; =sin(0; +0;),s; =sin (0;) 4,7,k € {1,2,3,4,5,6} ()
I3 =lpy, 4 lpyyy la = lpy, + 1y,
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2.2. Differential constraints. Differential constraints exist in every nonholonomic mo-
tion planning model and restrict admissible velocities and accelerations. Here, we consider
an upper limit on the acceleration of all joint space variables. In addition, because the
mobile platform used in this paper is a car-like mobile robot as shown in Figure 3, we
suppose that the wheels are rolling without skidding and slipping.

FIGURE 3. Base structure subsystem of the cooperative system

To derive the equations due to these constraints, we need to compute the velocity of
each wheel in its attached coordinate system (see Figure 3). In this regard, we can write
[51,52]:

v = G, XY A Gy 4 Oy, (2% % 1) (6)
where 3, and y,, denote the position and 6, represents the orientation of the i*" base
structure (i = 1,2) and [*/ is the position vector from the origin of {v;} to the contact

point of the wheel with the ground (see Figure 2). Hence, the velocity of each wheel can
be written as:

Ty, COS (Gbi + ij) + U, Sin (0,,1. + Gw].) — 01, (le cos ij)
v = | g, coS (Hbi + 9w].) — Ty, sin (Hbi + ij) + ébi (l;]j sin 9wj) (7)

0
where 6, is the steering angle of the j* wheel (j =1,...,4) and also:

L = (=1)1y (8)
The non-skidding condition implies that the second term of the velocity vector in Equa-

tion (7) vanishes. Therefore, for each of the mobile manipulators these constraints can be
taken into account as:

—p, sin (0,,1. + ij) + U, COS (0,,1. + ij) + 01, (l;’j sin Gw].) =0 9)

Consequently, the steering angle of the wheels is uniquely determined through the
following equations:

y(, COS 91) — i‘(, sin 91)

. j=1,2
Iy cos by + ypsin O, — Oy 1)’
tan(f,,) = _ (10)
Uy cOS By — Ty sin By, + g0, .
j=3,4

iy cos Oy + U sin 0, + 0, 1
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and 6, becomes:

1 d < Uy cOS O — Ty sin By ) 1.9
. 1 + tan? (9%-) dt \ iy, cos 0y + 1, sin 0, — ébl;dj ! ,
6, = ; . ; (11)
i 1 d [ yycosby — iysinby, + gb 34
1 + tan? (Hw].) dt \ &, cos @, + i sin Oy, + t%lij / ,

Furthermore, defining r% as radius of the j® wheel, non-slipping constraints can be
written as [51,52]:

v = Wi X i (12)

Now, we can obtain the angular velocities corresponding to the driving torques as follows:
% Iy, COS (91, + Hw].) ~+ 9, sin (9(, + ij) — l;”ﬂ.b cos 0, j=1,2
rYj

Wy = 1 . . (13)
(x'b cos (0, + Hw].) + gy sin (6 + Hw].) + Bygsin b, + 1’ 0, cos ij>

Jj=3,4

r¥i

3. Preliminaries. The success of PRM approaches is mainly due to their great efficiency,
reliable performance, conceptual simplicity and applicability to many different types of
problems. The general methodology of PRMs is to construct a graph (roadmap) during
a preprocessing stage that represents the connectivity of the robot’s free configuration
space and then to query the roadmap using an optimal graph-search algorithm (e.g., A*)
in order to find the shortest possible path between start and final configurations. In this
section, we apply this method to our cooperative mobile manipulators system. Focusing
on the system’s model, we define a generalized coordinate vector as:

g=1lzp y O 0 -+ 0] (14)

where x;, and 1, denote the position of the first vehicle in the world coordinate system
{w} and 6, is its angular position about axis z*.

3.1. Roadmap construction. Some efforts have been recently made to apply the PRM
method to closed chain systems [28-31,53,54]. However, in the large workspace of a mobile
manipulator system, PRM methods require several hours of computation time to generate
a well-connected roadmap. To solve this problem, we fix the position and orientation of
both manipulator bases first, and construct a roadmap (fixed-base roadmap) that contains
n different self-collision-free closure configurations. Then, we populate the environment
with copies of the kinematic roadmap and connect configurations of the same closure type.
However, a main problem in the first stage is that too many samples may be tested
before finding a feasible configuration and too much computing time is spent in solving
closure equations, leading to imaginary values. To solve this problem, we utilize PRM
approach with a geometric guided sampling method called Random Loop Generator [30],
which notably increases the probability of obtaining real solutions when solving the loop
closure equations. The basic principle as stated in Algorithm 1 is grounded on separating
configuration variables into two sets: active variables (g,) and passive variables (g,).
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ALGORITHM 1. RLG method for guided random sampling in the roadmap construction
phase

1. specify active and passive subchains as ¢, and g,

2. for each active variable

3 compute an interval that closed-chain constraint equations have a solution in it.

4.  choose the active variable randomly from the computed interval

5. end for

6. solve the closed-chain constraint equations for passive variables after substituting
active variables.

. if there is a solution

8. use ¢, and g, to construct the closed-chain random configuration

(repeat until attaining a real solution)

~J

The only limitation is to require that the joint space variables in ¢, and g, correspond to
consecutive joints in the mechanism. In the remainder of this paper, we refer to active
and passive variables as follows:

o = [91; 027 96]T
qp — [937 947 95]T

The planner directly acts on the active variables while the passive ones are obtained by
solving loop-closure equations. One of the important parts of Algorithm 1 is to compute
an interval for each of the active variables, thereby increasing the probability of having
real solutions for the loop closure equations. Therefore, we should find a subset of values
for each active variable that makes its workspace reachable by the remaining chain of the
system. Because illustration of the workspace of the closed-chain, is a very complicated
task, we have proposed an approximate approach. A simplified model of our system is
shown in Figure 4.

(15)

FIGURE 4. A simplified model of the fixed base system to be used in RLG algorithm

Therefore, we can express the reachable workspace for each active variable as the in-
tersection area illustrated in Figure 5. The external and internal radii, re;; and 7, in
the figure correspond to the maximum and minimum extensions of the chain respectively
and are approximated as follows:

k
Text = E Lz
i=1

e 2Lmax — Text 2Lmax > Tegt
mt 0 0.w.

(16)

where L; and L.y are the lengths of the i*" and the longest link in the chain, respectively.
The proof of this equation can be found in Appendix B.
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FIGURE 5. Subset of values for an active joint to be reachable by the re-
maining chain of the system

After choosing each active variable in its computed interval, we solve the closed-chain
constraint equations for the passive variables. Now, the configuration vector of the fixed-
base system, which is a minimal set of parameters defining the location of the system in
the world frame, is written as:

0=1[q"q"]" (17)

In the second stage, we consider the base structure mobility, utilizing Algorithm 2,
and populate the entire workspace with randomly selected parts of the initial roadmap.
Towards this end, we choose the base configuration, g.,, as a random vector including the
position and orientation of the first truck relative to the world frame:

9ub = (b, Yb, Ob) (18)

ALGORITHM 2. Populating the environment with copies of the fixed-base roadmap

1. generate random base configuration g,

2. choose random vertex 6 repeatedly from the fixed-base roadmap until attaining
a collision-free configuration (g,;, ¢)

3. if there exist a collision-free configuration

4. retain (g, #) as a roadmap vertex

5 for each neighbor of  , say 0, in the fixed-base roadmap

6. if (gup, 0) is collision-free

- "

8

9

retain (g.p, #) as a roadmap vertex
retrieve the path 6(t) connecting 6 and 6 from the fixed-base roadmap
if (gup, 0(t)) is collision-free for all intermediate configurations along the path

10. add an edge between (g, ) and (gup, 0)
(repeat as desired)

Then, we sample a node, #, randomly from the initial roadmap and check the combined
vector of (g,, 0) for collision. If the node is collision-free, we add it to the new roadmap.
This routine continues for all neighbors of # and is repeated for m different positions to
cover the entire workspace. We collect all roadmap nodes with the same closed configura-
tion in a set and use PRM connection method to connect the nodes in the set as illustrated
in Figure 6. Finally, we search the graph for the shortest possible path between the start
and final configurations with an optimal graph search algorithm.
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FIGURE 6. (a) Initial roadmap without base structure mobility and (b)
distributing the initial roadmap to consider the base structure mobility

3.2. Collision detection. Sampling-based planners must perform many collision checks
in order to build a roadmap and spend most of their running time performing such checks.
Therefore, their collision detection method must be very fast without missing any collisions
or incorrectly detecting collisions, even when the workspace has complex geometry.

We use two types of collision checks in our motion planner: static checks, which are
used to test whether a sampled configuration in the roadmap is in the free space, and
dynamic checks to test its local paths, which are continuous sets of configurations. In
static methods, a common approach is to break complex objects (robot link, obstacle,
etc.) down using a bounding volume hierarchy (BVH), which is a hierarchy of BVs (e.g.,
spheres) that approximates the geometry of the object at successive levels of detail [55].

BVH Model of the Cooperative System. The choice of the type of bounding
volume for a given application is a trade-off between the “tightness of fit” and the speed
of operations between two such volumes. Therefore, to build a BVH for the cooperative
mobile manipulator system we use bounding spheres, which quickly test for collision with
each other in conjunction with a more precise but expensive type of bounding volume
according to Figure 7.

el

FicUrRE 7. A BVH model for the mobile manipulator system
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Static Collision Checking. This method checks two objects for collisions by search-
ing their BVHs from the top down, making it possible to quickly discard large subsets of
objects contained in disjoint BVs. In other word, if the BVs at the top level are in colli-
sion, then their children are also checked to determine if they are in collision. Otherwise,
the algorithm will not search any of the children.

Dynamic Collision Checking. The classical approach to perform dynamic checks is
to sample each path at some fixed resolution and statically check each sampled configu-
ration for collision. This approach is approximate and can miss collisions. Therefore, we
use a newly presented dynamic checker [56] that exactly determines whether a path lies in
free space by choosing an adaptive sampling resolution along the local path. This checker
automatically decides whether a path segment between two collision-free configurations
needs to be bisected further using the following methodology:

A;(q) denotes an object A; from a collection of rigid objects (including each of the mobile
manipulators, payload, obstacles, etc.) at configuration ¢g. We define n;;(¢) to be any non-
trivial lower bound on the Euclidian distance between A;(¢) and A;(¢). Ai(¢a, @) is an
upper bound on the lengths of the curves traced by all points in A; between configurations
¢, and ¢, along a path segment. A sufficient condition for two objects A; and A; not to
collide along a path in configuration space is [56]:

i (Qas @) + Aj (o @) < i (ga) + 15 (gs) (19)

If this inequality is verified for all pairs of objects A; and A;, then the path segment
is collision-free; otherwise, it must be bisected. Furthermore, to compute a lower bound
on the distance between two objects, a classical BVH collision checker is used. However,
instead of testing if two BVs intersect, we compute the distance between them to find the
closest distance.

3.3. Distance metric. In addition to collision detection, which is an important primitive
operation in any motion planner, all PRMs make heavy use of distance computations. As
it would be infeasible to attempt to connect all possible pairs of nodes, distance metrics
are used to determine which pairs we should try to connect when building the roadmap.
Similarly, to obtain fast query items, it is necessary to limit the number of connection
attempts from the start and final configurations to the roadmap nodes. Thus, it should
be noted that the connectivity of the roadmap and the success of the queries depends
largely on the correct selection of an efficient and fast distance metric. Assuming that c¢;
and ¢, are two configurations in the configuration space, we use a metric in the form of
Manhattan formulation as follows [57]:

dlci,e)= Y Pok)+ > Qu(k) (20)
k=zp,yp k=0,01,05,...,06
where:
Q2 (k) =l (k) —cr (k)], k€ {0p01,...,06}
Pia (k) =nizea (k) —er (B)], k€ {xp, un}

and nys is a weighing factor. It should be noted that choosing the weighing factor involves
a tradeoff between the path smoothness of the joint space variables and that of the x-y-z
position of the object towards the final configuration.

(21)

4. Design of the Trajectory under Closed-chain and Differential Constraints.
Most of the motion planning techniques for closed chain mechanisms could not directly
account for differential constraints, which could render the planned trajectory infeasible.
In this section, we find a trajectory between intermediate points generated during the path
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planning process, considering constraints in the form of differential equations. A heuristic
method is also proposed to keep the system from colliding with moving obstacles.

4.1. Trajectory generation without moving obstacles. A challenging problem dur-
ing the planning process is that the differential constraints must be satisfied with regard
to the closed-chain constraints. Here, we present an extension of the RLG algorithm to
solve such a trajectory planning problem. First, we describe the trajectory of each ac-
tive variable between the sequential pairs of intermediate points by 3™ order polynomial
equations, which are expressed in a normalized interval of time as follows:

_ 2 3
Gk (S) = oik + A1ikS + A2iiS” + agiks

) (22)
Ze{xbaybaebaelaebefi}ak:1727"';nsegao§3§1
where ng., is the number of path segments and s is defined as:
t
s2 (23)

Lyik

where ;. is the time required to traverse the k'™ segment of the path. We use the position
and velocity values at the endpoints of the path segment to calculate the coefficients of
¢ir. in Equation (22) as follows:

aoir = qik (0)

o dqiy
1ik dS —
dgir, dgir (24)
Aoy, = 3 (C]z'k (1) — ik (0)) - (2 )
ds |, ds |,_;
dgir dgir
ok ds |9 ds |,_; (g (1) = g (0)

In this regard, to find the velocity vector between intermediate points of the path, we
use the following simple approach: if the slope sign of the straight lines between each
point and the previous and next ones changes, the velocity is equal to zero, otherwise it
is computed as the average of the two slopes. In the second step, utilizing loop closure
equations we extract a closed form to find passive variables from Equation (4):

( I — 1)+l 12— 52—
sin (¢ + ;) = B F oy £ 52 E
2l5 \/lobj2 + (I3 — 1)

{ 03 = atan2 (é, —1> — atan2 (ﬁ, il) (25)

(07 (0% a

\05:014_92—1_03_94_06

where:
( _—
& = arctan ls = Iy
obj
f =g+ lgcos (0g) — 1y cos (01) — Iy cos (61 + 6)
< Y= lg sin (96) — ll sin (01) — lg sin (01 —+ 92) (26)

a = \/[%+ 2
d—= (l3 — l4) COS (91 + 92) + lo(,j sin (91 + 92) - l5 COS (91 + 92 - 94)
dl = — (13 — l4) sin (91 + 92) + lobj COS (91 + 92) + l5 sin (91 + 92 — 94)

\
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Now, we calculate the minimum time to go from one intermediate point to the next with
regard to the maximum allowed acceleration. Towards this end, the following theorem
establishes a lower limit for the trajectories in the form of cubic polynomials such as those
in Equation (22).

Theorem 4.1. Consider the cubic polynomial given by the following equation:

it (8) = Qoir + Qrips + azs” + azys®, 0<s <1 (27)
) At d2qik ) .
with szt and | = a;i. The lower bound on try, that satisfies the acceleration
fik
limits of q; 18:
2max (|agik| , |2k + 3a3ik
. \/ o ) )
ik

Proof: Since the second derivative of a cubic polynomial is a line, its maximum value
occurs in one of the corresponding endpoints:

d2 i 2 7 2 i
Qik < d”qi , ' (29)
ds? ds? |,_, | ds? |,_,
In other words:
d?q;
‘ dg;k < max(|2agik] , |2a2ik + 6asik)) (30)
By using i = L@ we have:
de2 1%, ds?’ '
d2qz' 2
2'“ < 5 max(|ag], |agik + 3azik|) (31)
dt t2,,
. d>qir
Furthermore, in view of the constraint o < g, the following condition shall be
satisfied:
2
—— max(|agk |, |azir + 3asi|) < (32)

fik
and Equation (28) is concluded.

However, due to the nonlinearity and complexity of the equations for the wheel ve-
locities and the passive variables, solving the acceleration condition for the exact lower
bound on t;; can be prohibitively expensive and, furthermore, pose numerical problems.
Therefore, utilizing Equations (11), (13) and (25), we compute a linear approximation for
the acceleration and write the following condition:

dgje|  dgjk
ds ds

t2~ > ins s=1 5:0,

Fik = P o (33)

j € {037 94; 057 9&11,27 %,2, 9w3,47 1?3,4} ) k= 17 27 <oy Nseg

where «y, is the maximum allowed acceleration and f3;,s > 1 is an insurance factor that
compensates for the approximation error and maintains the actuator acceleration in a
safe bound. Obviously, increasing the number of path segments lowers the corresponding
deviation from the exact value of the acceleration. Consequently, the total lower bound
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on the time to move between adjacent points in each section of the trajectory would be
the maximum of the lower bounds computed in Equations (28) and (33):

L = HZ!E;X (tfik> tpik) (34)

To find these lower bounds, due to the lack of time response information, we utilized
an approximation of dg;x/ds in place of the actual velocities. In other words, we assumed
that:

dg;p. _ dqi(k41) (35)
ds |,_, ds |,_,
Hence, from Equation (23) we can write:
dqix dqi(k-i—l)
tik = tf(hr1) (36)
T it |,

which shows that with this assumption there are discontinuous velocities when we move
between adjacent segments of the path. Therefore, we apply the bounds computed in
Equation (34) to find an approximated velocity in each intermediate point through the
previously mentioned numerical approach. Then, we can write:

dqiy
aoik = Gir (0),  arip = tpp
dt =0
dgir dgir
a2ik = 3 (qik (trr) — @i (0)) — tpi | 2 + 37
dt |y dt t=t gy (37)
dq; dq;
asik = Lk ;]k + gk — 2 (qir (tsx) — @ik (0))
t =0 ol

Finally, by substituting Equation (37) into Equation (28) and using Equations (33) and
(34) we can compute new values for ¢ .

4.2. Avoiding moving obstacles based on velocity adjustment. In this section,
to solve the problem of collision avoidance of dynamic obstacles, a heuristic method is
proposed in which the pattern of human behavior in driving is modeled. When a typical
driver considers the probability of a crash on the road, he/she usually prefers to reduce
his/her speed instead of changing his/her path, and after the obstacle, he/she increases
his/her speed to the previous rate. Moreover, if the delay due to crossing the obstacle is
greater than a certain amount of time, changing the path is preferred. Using this model
eliminates the need for replanning in many situations. However, it shall be noted that
any change in velocity in our cooperative system may lead to violation of kinematic and
differential constraints. In this regard, the following theorem converts the challenge of
speed adjustment to the problem of designing a time-dependent factor without violating
the system constraints.

Theorem 4.2. Assume that q(t) and ¢ (t) are the position and velocity vectors of the
closed chain system in the presence of nonholonomic constraints. Consider 3 (t) as an ar-
bitrary time scaling function. Then, substituting q (5 (t)) and f3 (t) G (B (t)) for the previous
position and velocity vectors still satisfies the closed chain and nonholonomic constraints.

Proof: This theorem can be easily verified by using Equations (4), (9) and (13).
Now, let us define g4 (t) and ¢4 (t) as position and velocity vectors without considering
the moving obstacles. Hence, from Theorem 4.2, these vectors in the presence of moving
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obstacles can be written as:
(38)

where:
B (t) :/0 a(t)dt (39)

and « (t) is a continuous function which can be utilized to adjust the velocity of the system
to keep it from colliding with moving obstacles. To design a suitable velocity adjustment
factor, we need to predict the distance from the moving obstacles. Therefore, we use a
linear estimator that periodically samples the position of each obstacle with a suitable
sampling period, A, and evaluates its position at the next sampling time. Now, let d;, be
a threshold value for the distance from moving obstacles that determines the necessity of
velocity adjustment. Then, considering d; (kA) as the distance from *® moving obstacle
at the k'™ sampling time, we can define the following factor in the same sampling time as
shown in Figure 8:

a(kA) = min (miin <di g:hA)> ,1) k=0,1,2,... (40)

which decreases the velocity of the system as a function of the minimum distance from

moving obstacles if they are closer than dy,. Finally, from Figure 8 together with Equation

(40), the continuous-time velocity adjustment factor can be expressed as:

[a((k+1)A) —a(kA)]
A

a(t) = a(kA) +

(t — kA) (41)

where:

t
k = Integer Part (K) (42)

(1 - i Moving Obstacle

— : Velocity Adjustment Factor ( a'lf_r 1D

@ - Normalized Distance of the Robotic System from the

Moving Obstacles in Each Sampling Time (4, / d, )

FIGURE 8. Continuous-time velocity adjustment factor (see Equations (40)
and (41))

Theorem 4.3. The velocity adjustment method defined in Equations (38)-(42), preserves
the previous upper bounds on the accelerations.
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Proof: From Equation (40) we can write:

a(t) <1 (43)
which by using Equation (38), implies that:
dam (1) < ¢a (B (1)) (44)
Now, differentiating both sides of the above inequality gives:
Gam () < o (t) Ga (B (1)) (45)

Therefore, from Equation (43) it is easy to conclude that the method does not violate
the previous bounds on the accelerations.

5. Simulation Results. Let us consider two of the same mobile manipulators shown in
Figure 2. To verify the effectiveness of our method we will conduct simulations based on
the following assumptions:

e Each mobile manipulator is subject to the differential constraints mentioned in Equa-
tions (9) and (13) and its goal is to cooperate with the other in a manner that satisfies
the closed-chain constraints in Equation (1).

e The transporting object is a rigid body, which cannot be deformed.

e Some important parameters used in the planner are chosen as per the following table:

TABLE 1. Simulation parameters

Parameter n  m g lua; L lo I3 1y 5 g dy
Value 300 200 1.2 1.2 0.8 0.5 0.3 0.3 0.5 0.8 3

e The start and final configurations are set to:

—[0,0,0,%,0,0,0,0,7]" ~[10,10,%,0,%.0.0,% 0] (46)
Gstart = 77727 y Uy Uy 72 ) qfinal = ) 747 727 ) 727

e The environment is populated with six static obstacles in the form of spheres with
specified positions and radii as shown in Figures 9(b) and 9(c).
e A moving obstacle passes the workspace with the following trajectory:

t
Lobs (t) = =

2 (47)
yobs(t) =10 — 5

Figure 9 shows a 3-dimensional visualization for the trajectory of the object with and
without static obstacles. As illustrated, there is a smooth trajectory between the start and
final configurations in both cases. Furthermore, accelerations of the computed trajectories
for joint space variables are shown in Figure 10 and it can be seen that they are bounded
within the predefined maximum allowed accelerations (1 rad/s?).

The quality of the designed trajectory is shown in Figure 11. This figure illustrates the
deviation of the joint space variables from their final values neglecting moving obstacles.
The errors converge to zero as time goes on.

However, as shown in Figure 12(a), in presence of a moving obstacle, this leads to a
collision with the obstacle (collision zone). Therefore, we use the velocity adjustment
approach to avoid collision. In this regard, based on the theory presented in the previous
section we evaluate a (¢) as shown in Figure 13. This has the benefit of collision avoidance
with the moving obstacle as illustrated in Figure 12(b).
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FIGURE 9. Object’s trajectory between predefined start and goal configu-
rations: (a) without obstacle, (b) with obstacles and (c) with obstacles (top
view)

If the moving obstacle moves into the velocity adjustment zone, the velocity adjustment
strategy is adopted to avoid it as shown in Figure 14. Every gray circle in the figure
denotes the simplified model of the cooperative mobile manipulator system in its current
position and those in black represent the moving obstacle’s current position. The number
within the circles marks the sampling order. Figure 14(a) shows that a collision occurs in
the 3" sampling time by utilizing the initial trajectory. However, by using the velocity
adjustment method, the obstacle is avoided as illustrated in Figure 14(b), though it takes
longer to reach the final configuration (see Figure (15)).

6. Conclusions. A heuristic trajectory planning method has been proposed for coopera-
tive transportation of an object utilizing a dual mobile manipulator system in presence of
fixed and moving obstacles. The method utilizes the advantages of direct and decoupled
approaches along with the ability of probabilistic methods to present a reliable and fast
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Accelerations

F1GURE 10. Joint accelerations of the manipulators

solution. Furthermore, the results of computer simulations confirmed the effectiveness of

the method.

In comparison with other approaches discussed in the literature, advantages of the
proposed method are summarized as follows and have been shown in greater detail in

Table 2.

TABLE 2. Comparison of Recent approaches on motion planning for coop-
erative mobile manipulators

Computa- Considering |Guarantees |Applicablel Applicable
Method| . Differential | to Find a | to Dyna- | to High
el . tional . . . . . .
mcomplexityConstramts in| Solution |mic Envi- Dimensional
the Trajectory| If It Exists | ronments| Systems
OEZ;ZSI [510, gt;iOl Very High Yes Yes No No
Complete Nu.mf)ricfal .
Methods Optimization High Yes No No No
[23,24]
Artificial
Potential Fields | Very High Yes Yes No No
[27]
Rand(());nlzed ;&I(;tg}lliiu[e;gﬁ Moderate No Yes No Yes
Probabilisti. Multiple Query
Complete Methods Low No Yes No Yes
Methods [28-31]
Our method Low Yes Yes Yes Yes

1) Using advantage of decoupled methods, the complexity of trajectory planning can be
decomposed in two steps, which increases the simplicity of the planning process.

2) Because of its structure, the method can handle high dimensional configuration spaces
efficiently and it is not necessary to construct an exact representation of the free space.
Therefore, a simple and fast method is achieved instead of a more accurate but slower

one.
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FIGURE 11. Errors of the joint space variables: (a) without obstacle and
(b) with obstacles

3) Various types of constraints such as nonholonomic and closed-chain constraints, along
with joint angle and acceleration limits, can be easily dealt with in presence of collision
constraints with fixed and moving obstacles.



1096 H. BOLANDI AND A. F. EHYAEI
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FIGURE 12. Minimum distance from moving obstacle: (a) without velocity
adjustment and (b) with velocity adjustment
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FI1GURE 13. Velocity adjustment factor

4) Moving obstacles with unknown dynamics are avoided through a heuristic velocity
adjustment method, which does not violate closed-chain and differential constraints of
the system. The method has the desirable benefit of avoiding replanning.

5) The method can avoid any number of moving obstacles without a significant increase
in the computational complexity and memory requirements.

Although it is usually possible to keep the system from colliding with moving obstacles
by adjusting its velocity, in some emergency cases, the system must escape out the moving
field of the obstacles by changing the designated trajectory. Therefore, a good idea to
improve the algorithm proposed in this work is to design an optimal detour with minimum
deviation from the initial trajectory when moving obstacles enter a predetermined security
area. Also, investigating the trajectory planning of more than two cooperating mobile
manipulators to perform the carrying task seems to be an interesting way to follow.



TRAJECTORY PLANNING OF TWO COOPERATIVE MOBILE MANIPULATORS 1097

(Sh .

(a) (b)

FIGURE 14. Escaping out the moving field of the obstacle by velocity ad-
justment: (a) initial trajectory and (b) modified trajectory
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Appendix A. Proof of Equation (1).

Utilizing the coordinate systems in Figure 2 along with the concept of transformation
matrices, we can write:

NP TP T ST ST T2 TT =0T 2 THT 8T T T, T 92T hT (A1)

in which 47 is a matrix that transforms coordinate system {B} into {A} and for the
different coordinate systems in the above equation is defined as follows:
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cos (0p,) —sin(f,,) 0 0 10 0 O
" sin (0,,) cos(6,,) 0 0 e 00 -1 0
a 0 0 11, | = 01 0 I,
0 0 0 1 00 0 1
[ cos () —sin(6;) 0 0 cos (62) —sin(f2) 0 [
ap sin (6;) cos(fy) 0 0 I sin (f2) cos(f2) 0 0
e 0 0 10 = 0 0 10
0 0 01 0 0 01
cos (f3) —sin (03) 0 Iy 0 0 1 1,
o _ sin (f3) cos(f3) 0 0 3 -1 0 0 O
35 0 0 10 @ 0 =10 0
0 0 01 0 0 0 1
[ cos(#,,) —sin(f,,) 0 0 ~1 0 0 Iy
T sin (6,,) cos(6,,) 0 0 P 0 -1 0 0
pt = 0 00 10| e |0 0 11,
0 0 01 0 0 0 1
COS (932 - 931) —sin (932 - 931) 0 d12 COS (0112)
n Sin (932 - 931) COS (932 - 931) 0 d12 sin (0112)
v2 0 0 1 0
0 0 0 1
cos (0p,) —sin(f,,) 0 0 -1 00 0
o sin (6,,) cos(6,,) 0 0 P 0 01 0
ps 0 0 11, | ™ 0 10 i,
0 0 0 1 0 00 1
[ cos () —sin(f) 0 0 cos (05) —sin (05) 0 Ig
asp _ sin (fg) cos(fg) 0 0 6T sin (65) cos(f5) 0 0
6= 0 0 10 T 0 0 10
0 0 01 0 0 01
cos (0y) —sin(fy) 0 5 00 1 [,
ST sin (f4) cos(fy) 0 O sp_ |1 000
T 0 0 10 3 010 O
0 0 01 000 1
cos (fp,) —sin(fp,) 0 0 100 O
w sin (fp,) cos(6,) 0 0 P — 010 0
Ps 0 0 10| = 001 i,
0 0 01 000 1

Therefore, from (A.1) after further manipulation, the validity of Equation (1) can be
verified.

Appendix B. Proof of Equation (16).

The reachable workspace of any articulated mechanism can be bound by two concentric
spheres centered at its base as shown in Figure 5. The radii of these spheres correspond to
the length of the mechanism in case of minimum and maximum extensions. This length
is defined by the distance between the origins of the base-frame and the end-frame and
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can be expressed as:

(B.1)

k
r= Z Liai
i=1
where L; (i = 1,...,k) is the length of i*" link and a; € [~1,1] is a factor that maps
these lengths in the direction of the vector connecting the origins of the base-frame and
the end-frame. Thus, by substituting a; = —1 or a; = 1, Vi € {1,...,k} in (B.1) we can
compute a maximum value for r as follows:

k
Pmax = 3 _ L (B.2)
i=1

Now, suppose that the 5% link of the system has the longest length, L.y, from (B.1)
one gets:

r = |Liay + Laas + Lyag + - -+ + Limaxaj + - -+ + Lyay]| (B.3)
Therefore, we can write the following equation to compute a minimum value for r:
_Ll_LZ_"'_L‘jfl_FLmax_Lj+1"'_Lk
o 0 if Lmax>Ll+L2+"'+LJ‘71+LJ'+1"'+LIC (B4)
].f LmaXSLl+L2+.-.+L]—1+L]+1'.'+Lk
and from (B.2) we can conclude that:
s FR 59

which shows the validity of Equation (16).



