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Abstract. By integrating the stabilizability condition, the orthogonal-functions approach
(OFA) and the hybrid Taguchi-genetic algorithm (HTGA), an integrative computational
method is presented in this paper to design the stable and quadratic-optimal static out-
put feedback parallel-distributed-compensation (PDC) controller such that (i) the Takagi-
Sugeno (TS) fuzzy-model-based control system can be stabilized, and (ii) a quadratic
finite-horizon integral performance index for the TS-fuzzy-model-based control system
can be minimized. In this paper, the stabilizability condition is proposed in terms of
linear matrix inequalities (LMIs). By using the OFA and the LMI-based stabilizability
condition, the stable and quadratic-finite-horizon-optimal static output feedback PDC con-
trol problem for the TS-fuzzy-model-based dynamic systems is transformed into a static
constrained-optimization problem represented by the algebraic equations with constraint
of LMI-based stabilizability condition, thus greatly simplifying the optimal static output
feedback PDC control design problem. Then, for the static constrained-optimization prob-
lem, the HTGA is employed to find the stable and quadratic-optimal static output feedback
PDC controllers of the TS-fuzzy-model-based control systems. A design example of sta-
ble and quadratic-optimal static output feedback PDC controller for a nonlinear inverted
pendulum system controlled by a separately excited direct-current (DC) motor is given to
demonstrate the applicability of the proposed integrative computational approach.
Keywords: Quadratic optimal control, Static output feedback PDC controller, Takagi-
Sugeno fuzzy model, Orthogonal-functions approach, Hybrid Taguchi-genetic algorithm,
Linear matrix inequalities

1. Introduction. Recently, it has been shown that the fuzzy-model-based representa-
tion proposed by Takagi and Sugeno [1], known as the TS fuzzy model, is a successful
approach for dealing with the nonlinear control systems, and there are many successful
applications of the TS-fuzzy-model-based approach to nonlinear control systems [2-15].
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Unlike conventional modeling approaches where a single model is used to describe the
global behavior of a nonlinear control system, the TS fuzzy modeling approach is essen-
tially a multi-model approach in which the simple sub-models (typically linear models)
are combined to describe the global behavior of the nonlinear control system. Each fuzzy
rule for the TS fuzzy control system has a linear dynamic model as the consequent part
that expresses the local dynamics of each fuzzy rule. Then, the overall fuzzy model is
achieved by blending these rules. The advantage of controller synthesis for such a fuzzy
model is that the linear control methods can be used.
Despite the success of applying the TS-fuzzy-model-based approach to nonlinear con-

trol systems, it has become evident that many research issues remain to be addressed.
In fact, in many cases, it is very difficult, if not impossible, to obtain a full order output
feedback controller of a nonlinear control system. This is due to inaccessible measurement
or overly expensive measurement. Therefore, recently, some research studies [16-19] have
proposed the linear-matrix-inequality-based (LMI-based) approach to design the static
output feedback parallel-distributed-compensation (PDC) controllers of the TS-fuzzy-
model-based control systems for the infinite-horizon (i.e., infinite-time) control problems.
On the other hand, only robust stability and stabilization are often not enough in control
design. In control systems design, it is often of interest to synthesize a quadratic-optimal
controller such that the control objective of minimizing a quadratic integral performance
criterion is achieved [20]. Hence, recently, some researchers [2,21,22] have proposed some
LMI-based approaches to design the quadratic-optimal controllers of TS-fuzzy-model-
based control systems. Tanaka and Wang [2], Zheng et al. [21] and Li [22] designed the
quadratic-optimal parallel-distributed-compensation (PDC) controllers by minimizing the
upper bound of a quadratic infinite-horizon integral performance index. However, under
the design consideration of directly minimizing a quadratic infinite-horizon integral per-
formance index, it is not easy for the LMI-based approaches presented by Tanaka and
Wang [2], Zheng et al. [21] and Li [22] to solve the quadratic-infinite-horizon-optimal
PDC control problem of such systems. For some practical problems, we need to deal
with the finite-horizon (i.e., finite-time) optimal control problems [23]. However, it is also
difficult to apply the LMI-based approaches proposed by Tanaka and Wang [2], Zheng et
al. [21] and Li [22] to directly minimize the finite-horizon performance index for solving
the quadratic-finite-horizon-optimal PDC control problem of these systems. Besides, for
solving the optimal PDC control problems, there are some issues that need to be resolved,
such as how to simplify the computation for the above control problem of such systems
and also ensure some characteristics of closed-loop systems [24]. Therefore, one of the
most important issues is to develop computational methods for designing the quadratic-
finite-horizon-optimal PDC controllers where the performance index is directly minimized.
Very recently, Ho and Chou [25] have proposed a computational optimization method,
which integrates the orthogonal-functions approach (OFA) [26] and the genetic algorithm
[27,28], to design quadratic-optimal PDC controllers for the finite-horizon optimal control
problem of the TS-fuzzy-model-based control systems where the performance index is di-
rectly minimized. Since the method proposed by Ho and Chou [25] only involves algebraic
computation and is straightforward and well-adapted to computer implementation, the
design procedures of the controllers for these control systems may be either greatly reduced
or much simplified accordingly. Ho and Chou [25] have also shown that the computational
optimization method integrating the OFA and the genetic algorithm may obtain better
results than the LMI-based approaches [2,21,22] for finding the quadratic-optimal PDC
controllers of the TS-fuzzy-model-based control systems.
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Summing up the above statements and reasons, although the LMI-based approach
is successful in designing the static output feedback PDC controllers of the TS-fuzzy-
model-based control systems for the infinite-horizon (i.e., infinite-time) control problems
proposed by Fang et al. [16], Wu et al. [17], Chung et al. [18] and Huang and Nguang
[19], to the authors’ best knowledge, there are no studies investigating the issue of design-
ing stable and quadratic-finite-horizon-optimal static output feedback PDC controllers for
the TS-fuzzy-model-based control systems by directly minimizing the performance index
subject to the constraint of stabilizability. On the other hand, in practice, in order to
avoid high gains, the controller gains must be considered to satisfy the constraints. The
LMI-based approach proposed by Fang et al. [16], Wu et al. [17], Chung et al. [18]
and Huang and Nguang [19] cannot deal with the design problem of the static output
feedback PDC controller gains having constraints. Therefore, we can see that it is worth-
while to present an efficiently numerical optimization approach accompanied with the
stabilizability condition to design the stable and quadratic-finite-horizon-optimal static
output feedback PDC controllers having constraints for the TS-fuzzy-model-based con-
trol systems, where the performance index subject to the constraint of stabilizability is
considered to be directly minimized.

The purpose of this paper is to propose a numerical optimization method accompanied
with the stabilizability condition to design stable and quadratic-optimal static output
feedback PDC controllers for the finite-horizon optimal control problem of the TS-fuzzy-
model-based control systems by integrating the OFA, the hybrid Taguchi-genetic algo-
rithm (HTGA) and the LMI technique, where the LMI technique is used to derive the
stabilizability condition for ensuring that the closed-loop TS-fuzzy-model-based control
systems can be stabilized. The proposed numerical optimization method can not only
be applied to find the feedback gain matrices of the stable and quadratic-optimal static
output feedback PDC controller for the TS-fuzzy-model-based control system under the
minimization of a defined quadratic finite-horizon integral performance index, but also be
applied to the case of the elements of the feedback gain matrices having constraints for
practical consideration.

In this paper, by using the OFA and the LMI-based stabilizability condition, the stable
and quadratic-finite-horizon-optimal static output feedback PDC control problem for the
TS-fuzzy-model-based control systems is transformed into a static parameter constrained-
optimization problem represented by algebraic equations with constraint of LMI-based
stabilizability condition, thus greatly simplifying the optimal static output feedback PDC
control design problem. The computational complexity for both differential and integral
in the optimal static output feedback PDC control design of the original dynamic sys-
tems may therefore be reduced remarkably. Then, for the static constrained-optimization
problem, the HTGA is employed to find the stable and quadratic-optimal static output
feedback PDC controllers of the TS-fuzzy-model-based control systems. The proposed in-
tegrative computational method considers directly minimizing the quadratic finite-horizon
integral performance index subject to the constraint of stabilizability in designing the sta-
ble and quadratic-optimal static output feedback PDC controllers. The reason why the
HTGA is applied in this paper is that Tsai et al. [29,30] have shown that the HTGA
may obtain better results than those existing improved genetic algorithms reported in
the literature. An illustrative example is also given in this paper to demonstrate the
applicability of the proposed integrative computational method.
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2. Problem Statement. The TS-fuzzy-model-based control system for the nonlinear
control system can be obtained as the following form:

R̃i : IF z1(t) is Mi1 and . . . and zg(t) is Mig,

THEN

{
ẋ(t) = Aix(t) + Biu(t),
y(t) = Cix(t),

(1)

with the initial state vector x(0), where R̃i (i = 1, 2, . . . , N) denotes the i-th impli-

cation, N is the number of fuzzy rules, x(t) = [x1(t), x2(t), . . . , xn(t)]
T denotes the n-

dimensional state vector, y(t) = [y1(t), y2(t), . . . , yr(t)]
T denotes the r-dimensional out-

put vector, u(t) = [u1(t), u2(t), . . . , up(t)]
T denotes the p-dimensional input vector, zi(t)

(i = 1, 2, . . . , g) are the premise variables, Ai, Bi and Ci (i = 1, 2, . . . , N) are, respectively,
the n × n, n × p and r × n consequent constant matrices, and Mij (i = 1, 2, . . . , N and
j = 1, 2, . . . , g) are the fuzzy sets.
The resulting TS-fuzzy-model-based dynamic system inferred from (1) is represented

as

ẋ(t) =
N∑
i=1

hi(z(t))(Aix(t) +Biu(t)), (2a)

y(t) =
N∑
i=1

hi(z(t))Cix(t), (2b)

in which z(t) = [z1(t), z2(t), . . . , zg(t)]
T denotes the g-dimensional premise vector, hi(z(t))

= wi(z(t))

/
N∑
i=1

wi(z(t)), wi(z(t)) =
g∏

j=1

Mij(zj(t)) and Mij(zj(t)) are the grades of mem-

bership of zj(t) in the fuzzy sets Mij (i = 1, 2, . . . , N and j = 1, 2, . . . , g). It can be seen

that, for all t, hi(z(t)) ≥ 0 and
N∑
i=1

hi(z(t)) = 1.

Before we are able to synthesize a static output feedback controller such that good
control performance for a given dynamic system can be efficiently achieved, it is necessary
that the given dynamic system can be stabilized by the following static output feedback
PDC controller:

u(t) = −
N∑
i=1

hi(z(t))Fiy(t) = −
N∑
i=1

N∑
j=1

hi(z(t))hj(z(t))FiCjx(t), (3)

where Fi (i = 1, 2, . . . , N) denote the p× r local static output feedback gain matrices.
By substituting (3) into (2a), we can get the closed-loop TS-fuzzy-model-based dynamic

system as

ẋ(t) =
N∑
i=1

N∑
j=1

N∑
k=1

hi(z(t))hj(z(t))hk(z(t))(Ai −BiFjCk)x(t). (4)

Before we investigate the stabilizability condition to design the stable and quadratic-
finite-horizon-optimal static output feedback PDC controllers for the TS-fuzzy-model-
based dynamic systems (4), the following lemmas need to be introduced first.

Lemma 2.1. [2] If the number of rules that fire for all t is less than or equal to s̄ where
1 < s̄ ≤ N , then

N∑
i=1

h2
i (z(t))−

1

s̄− 1

N∑
i<j

2hi(z(t))hj(z(t)) ≥ 0. (5)
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For the closed-loop TS-fuzzy-model-based dynamic system (4), the problem of stabiliz-
ability analysis is (under the condition that the local static output feedback gain matrices
Fi (i = 1, 2, . . . , N) of the static output feedback PDC controller in (3) have been speci-
fied in advance) to derive a stabilizability criterion for checking whether the closed-loop
TS-fuzzy-model-based dynamic system (4) can be stabilized by the specified static output
feedback PDC controller or not. Hence, in what follows, we present an LMI-based sta-
bilizability criterion to analyze whether the closed-loop TS-fuzzy-model-based dynamic
system (4) can be stabilized by the static output feedback PDC controller or not, where
the local static output feedback gain matrices Fi have been specified in advance.

Theorem 2.1. The closed-loop TS-fuzzy-model-based dynamic system (4) is stable, if, for
the specified local static output feedback gains matrices Fj (j = 1, 2, . . . , N) in (3), there
exists a symmetric positive definite matrix P and the symmetric positive semi-definite
matrices Qk (k = 1, 2, . . . , N) such that the following LMIs are simultaneously satisfied:

GT
kiiP + PGkii + (s̄− 1)Qk < 0, (6a)

and (
Gkij +Gkji

2

)T

P + P

(
Gkij +Gkji

2

)
−Qk ≤ 0, (6b)

where Gijk = Ai −BiFjCk, i < j, s̄ > 1, and i, j, k = 1, 2, . . . , N .

Proof: See Appendix A.
However, only stabilizability is often not enough in control design. The control objective

of minimizing a quadratic finite-horizon integral performance criterion for the dynamic
systems is also considered in many practical control-engineering applications [20,23]. On
the other hand, before we are able to synthesize a controller such that good control
performance for a given dynamic system can be efficiently achieved, it is necessary that
the given dynamic system can be stabilized by the controller [31,32]. In addition, both
optimality and stability should be simultaneously considered in the optimal controllers
design [33]. Therefore, the problem considered in this paper is how to specify the local
static output feedback gain matrices Fi (i = 1, 2, . . . , N) of the static output feedback PDC
controller in (3) such that the constraint of the LMI-based stabilizability condition (6) for
the closed-loop TS-fuzzy-model-based dynamic system (4) can be satisfied, and such that
the optimal control performance for the TS-fuzzy-model-based dynamic system (2) can
be achieved by minimizing the following H2 quadratic finite-horizon integral performance
index:

J =

∫ qtf

0

[
yT(t)Qy(t) + uT(t)Ru(t)

]
dt

=

q−1∑
k=0

∫
ktf

(k+1)tf [
yT(t)Qy(t) + uT(t)Ru(t)

]
dt,

(7)

where tf denotes a small time interval which is chosen for the independent variable t, q
is a positive integer specified by the designer, Q is a symmetric positive semi-definite
matrix, and R is a symmetric positive-definite matrix. Here the time interval of interest
is designated as being from t = 0 to t = qtf , where t = 0 is the initial time and t = qtf
is the final time of the control period. The problem to be studied in this paper can be
named the mixed H2/LMI static output feedback PDC controllers design problem of the
TS-fuzzy-model-based control systems, and the design procedures for the static output
feedback PDC controllers can be described as follows:

Step 1: Check the constraint of LMI-based robust stabilizability condition (6).
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Step 2: Minimize the H2 quadratic finite-horizon integral performance index (7) for the
TS-fuzzy-model-based dynamic system (2).

That is, the design problem of the mixed H2/LMI static output feedback PDC con-
trollers for the TS-fuzzy-model-based control systems is a constrained optimization prob-
lem. In the next section, we will integrate the OFA, the HTGA and the presented LMI-
based stabilizability condition to solve the mixed H2/LMI static output feedback PDC
controllers design problem of the TS-fuzzy-model-based control systems, where the per-
formance index subject to the constraint of stabilizability condition is considered to be
directly minimized.

3. Stable and Quadratic-Optimal Static Output Feedback PDC Controllers
Design. Here, consider the time interval ktf ≤ t ≤ (k + 1)tf , where tf is chosen for the
independent variable t, and let us define

t = ktf + η, (8)

and

xk = x(ktf ), (9)

in which k = 0, 1, 2, . . . , q − 1 and 0 ≤ η ≤ tf .
The state vector x(t), within ktf ≤ t ≤ (k+1)tf , can be approximated by the truncated

orthogonal-functions (OF) representation as

x(t) =
m−1∑
s=0

x(k)
s Ts(t) = x̃(k)T (t), (10)

where m is the number of terms required for the OF, T (t) = [T0(t), T1(t), . . . , Tm−1(t)]
T

denotes the m × 1 OF basis vector, Ti(t) (i = 0, 1, . . . ,m − 1) denotes the OF, x
(k)
s

(s = 0, 1, . . . ,m − 1) are the n × 1 coefficient vector, and x̃(k) =
[
x
(k)
0 , x

(k)
1 , . . . , x

(k)
m−1

]
is

the n×m coefficient matrix of x(t).
Substituting (3) and the truncated OF representation of x(t) in (10) into the quadratic

integral performance index (7), the quadratic integral performance index J becomes the
following algebraic form:

J =

q−1∑
k=0

trace

[
W (x̃(k))T

( N∑
i=1

N∑
j=1

N∑
l=1

N∑
o=1

hi(zk)hj(zk)hl(zk)ho(zk)

CT
i (Q+ FT

j RFl)Co

)
(x̃(k))

]
,

(11)

where the constant matrix W is the product-integration-matrix of two OF basis vectors
[25].
Since, before the consequent output can be inferred within the small time interval

ktf ≤ t ≤ (k + 1)tf , the degree of fulfillment of the antecedent must be computed in
advance, so, as in the studies given by Ho and Chou [34,35], we can let the value of
hi(z(t)), within ktf ≤ t ≤ (k + 1)tf , be hi(z(ktf )). Then, integrating (2a) from t = ktf
to t = t within ktf ≤ t ≤ (k + 1)tf , we obtain

x(t)− x(ktf ) =
N∑
i=1

hi(zk)

[
Ai

∫ t

ktf

x(t)dt+Bi

∫ t

ktf

u(t)dt

]
, (12)

where hi(zk) = hi(z(ktf )) and k = 0, 1, 2, . . . , q − 1.
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Using the following integral property of the OF:∫ t

ktf

T (t)dt = HT (t), (13)

and applying (3), (9) and (10), (12) can be cast into the form

x̃(k) − [xk, 0, 0, . . . , 0] =
N∑
i=1

N∑
j=1

N∑
l=1

hi(zk)hj(zk)hl(zk)(Ai −BiFjCl)x̃
(k)H, (14)

in which H is the operational matrix of integration for the OF [34,35].
Equation (14) can be rewritten as

x̃(k) −
N∑
i=1

N∑
j=1

N∑
l=1

hi(zk)hj(zk)hl(zk)(Ai −BiFjCl)x̃
(k)H = Q̃(k), (15)

where Q̃(k) = [xk, 0, 0, . . . , 0] is an n×m matrix.
Making use of the Kronecker product, the explicit form for the coefficient matrix x̃(k)

comes directly from (15) as

x̂(k) =

[
Imn −

N∑
i=1

N∑
j=1

N∑
l=1

hi(zk)hj(zk)hl(zk)(H
T ⊗ (Ai −BiFjCl))

]−1

Q̂(k), (16)

where Imn denotes the mn×mn identity matrix, x̂(k) =
[
x
(k)T

0 , x
(k)T

1 , . . . , x
(k)T

m−1

]T
, Q̂(k) =[

xT
k , 0

T, 0T, . . . , 0T
]T
, and ⊗ denotes the Kronecker product [36]. This implies that x̃(k)

can be obtained from (16).
Now, if one set of local static output feedback gain matrices {F1, F2, . . . , FN} is given,

then x̃(k) (k = 0, 1, . . . , q−1) can be calculated from the following algorithm only involving
the algebraic computation.

Detailed Steps: Algebraic Algorithm

Step 1: Give a small time interval tf , the specified positive integer q, and the initial state
vector x(0), and set k = 0.

Step 2: Calculate hi(z(k tf )) for i = 1, 2, . . . , N .
Step 3: Calculate x̂(k) from (16).
Step 4: Compute xk+1 by using xk+1 = x((k + 1) tf ) = x̃(k)T ((k + 1) tf ).
Step 5: Set k = k + 1. If k > q − 1, then stop; otherwise go to Step 2.

From the above algorithm, it is obvious that if one set of local static output feedback
gain matrices {F1, F2, . . . , FN} is specified, then x̃(k) (k = 0, 1, . . . , q − 1) can be deter-
mined, and thus the value of the performance index (11) corresponding to this set of
{F1, F2, . . . , FN} can be calculated. Given another set of local static output feedback gain
matrices {F1, F2, . . . , FN}, there obtains another value of the performance index (11).
That is, the value of the performance index of algebraic form (11) is actually dependent
on the set of local static output feedback gain matrices {F1, F2, . . . , FN}, which means

J = G (f111, f112, . . . , fNpr) (17)

where fijk (i = 1, 2, . . . , N , j = 1, 2, . . . , p and k = 1, 2, . . . , r) denotes the elements of the
local static output feedback gain matrices Fi. Hence, the design problem of the stable and
quadratic-optimal static output feedback PDC controller for the TS-fuzzy-model-based
control system is to search for the optimal fijk such that there exists a symmetric positive
definite matrix P and the symmetric positive semi-definite matrices Qk (k = 1, 2, . . . , N)
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to make the LMIs in (6) hold (i.e., such that the stabilizability condition in Theorem
2.1 is satisfied), and such that the performance index of algebraic form (11) for the TS-
fuzzy-model-based dynamic system (2) is minimized. This is equivalent to the static
constrained-optimization problem in the following:

minimize J = G (f111, f112, . . . , fNpr) (18)

subject to |fijk| ≤ Cijk, and subject to the constraint that there exist a symmetric positive
definite matrix P and the symmetric positive semi-definite matrices Qk (k = 1, 2, . . . , N)
to make the LMIs in (6) hold, for i = 1, 2, . . . , N , j = 1, 2, . . . , p and k = 1, 2, . . . , r, where
Cijk are the positive real numbers given from the practical consideration, respectively.
This means that, by using the OFA and the LMI-based stabilizability condition, the
stable and quadratic-finite-horizon-optimal static output feedback PDC control problem
for the TS-fuzzy-model-based control systems can be replaced by a static constrained-
optimization problem represented by the algebraic equations with constraints; thus greatly
simplifying the stable and quadratic-finite-horizon-optimal static output feedback PDC
control problem. Then, the HTGA described below can be employed to search for the
optimal solution of the static constrained-optimization problem (18), where (18) is a
nonlinear function with continuous variables.
The HTGA combines the traditional genetic algorithm (TGA) [37] with the Taguchi

method [38-40]. In the HTGA, the Taguchi method is inserted between the crossover and
mutation operations of a TGA. Then, by using two major tools (signal-to-noise ratio and
orthogonal arrays) of the Taguchi method, the systematic reasoning ability of the Taguchi
method is incorporated in the crossover operations to systematically select the better genes
to achieve the crossover operations, and consequently enhance the genetic algorithms. The
additional details regarding the HTGA can be found in the works proposed by Tsai et al.
[29,30] and Ho and Chang [41].

4. Illustrative Example. A nonlinear inverted pendulum system controlled by a sepa-
rately excited direct-current (DC) motor [42] is considered in this example as ẋ1(t)

ẋ2(t)
ẋ3(t)

 =

 x2(t)
K1 sin x1(t) +K2x3(t)
K3x2(t) +K4x3(t)

+

 0
0
K5

 u (t) , (19)

where x1(t) ∈ [−π, π] is the angle of the pendulum, x2(t) = ẋ1(t) is the angular velocity,
x3(t) is the current of the motor, u(t) denotes the control input voltage, K1 = 9.8 (
1/sec2), K2 = 1 (1/A · sec2), K3 = −10 (V · sec/rad ·mH), K4 = −10 (Ω/mH) and
K5 = 10 (1/mH). In this example, we also represent the nonlinear equation of motion of
the system (19) into a TS-fuzzy-model-based dynamic system. The TS-fuzzy-model-based
dynamic system for (19) can be obtained as following:

R̃1 : IF z1(t) is M11,THEN

{
ẋ(t) = A1x(t) +B1u(t),
y(t) = C1x(t),

(20a)

R̃2 : IF z1(t) is M21,THEN

{
ẋ(t) = A2x(t) + B2u(t),
y(t) = C2x(t),

(20b)

where z1(t) = sin x1(t)/x1(t), x(t) = [x1(t), x2(t), x3(t)]
T, x(0) = [30◦, 0, 0]T, x1(t) ∈

[0◦, 360◦], A1(t) =

 0 1 0
9.8 0 1
0 −10 −10

, A2(t) =

 0 1 0
0 0 1
0 −10 −10

, B1(t) = B2(t) =

[0, 0, 10]T, C1 = C2 =

[
1 0 0
0 1 0

]
denote the feedback of the angle and angular velocity
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of the pendulum, simultaneously, M11(z1(t)) =

{
z1(t), x1(t) ̸= 0,
1, otherwise,

and M21(z1(t)) =

1−M11(z1(t)).
The quadratic finite-horizon integral performance index is

J =

∫ 5

0

[
yT(t)Qy(t) + uT(t)Ru(t)

]
dt

=

q−1∑
k=0

∫ (k+1)tf

ktf

[
yT(t)Qy(t) + uT(t)Ru(t)

]
dt,

(21)

where q = 500, tf = 0.01, Q = diag {1, 1} and R = 1.
Then, for the TS-fuzzy-model-based control system (20), the proposed approach, which

integrates the OFA, the HTGA, and the presented LMI-based stabilizability condition, is
applied to design the stable and quadratic-optimal static output feedback PDC controller
such that a symmetric positive definite matrix P and the symmetric positive semi-definite
matrices Q1 and Q2 exist to make the LMIs in (6) hold, and such that the quadratic
integral performance index (21) is minimized. Here, the type of OF considered in this
example is also the shifted-Chebyshev functions. The evolutionary environments of the
HTGA used in this paper are: the population size is 100, the crossover rate is 0.8, the
mutation rate is 0.1, and the generation number is 50.

By using the proposed integrative computational approach and the LMI toolbox [43]
with m = 4 and |fijk| ≤ 500 in which fijk (i = 1, 2, j = 1 and k = 1, 2) are the ele-

ments of the local static output feedback gain matrices Fi (i = 1, 2) for x(0) = [30◦, 0, 0]T,
we can derive the performance index as J = 62.3289, and the stable and quadratic-
optimal local static output feedback gain matrices are F1 =

[
32.953 16.816

]
and F2 =[

10.376 28.287
]
, and we can obtain a symmetric positive definite matrix P and the sym-

metric positive semi-definite matrix Q1 and Q2, respectively, as P =

 167.7466 7.3397
7.3397 6.4890
0.7956 0.1333

0.7956
0.1333
0.0294

, Q1 =

 6.6895 0.5061 0.5553
0.5061 12.5640 0.2238
0.5553 0.2238 0.0690

 and Q2 =

 59.2127 18.7103 0.5746
18.7103 13.1713 0.0558
0.5746 0.0558 0.0463

.
Therefore, we can conclude that the obtained stable and quadratic-optimal static output
feedback PDC controller can make the closed-loop TS-fuzzy-model-based dynamic sys-
tem of this example stable, and may simultaneously minimize the quadratic finite-horizon
integral performance index (21).

The responses of the angle of the pendulum x1(t), the angular velocity x2(t) and the
current of the motor x3(t), and the control input voltage u(t) for a nonlinear inverted
pendulum system controlled by a separately excited DC motor system with the designed
stable and quadratic-optimal static output feedback PDC controller obtained by using
the proposed integrative computational approach are, respectively, shown in Figures 1-4.

Figures 1-3 illustrate the responses x1(t), x2(t) and x3(t) of the controlled and un-
controlled nonlinear inverted pendulum system. The simulation of the optimal control
input voltage u(t) is shown in Figure 4. From Figures 1-4, it can be seen that the re-
sponses x1(t), x2(t) and x3(t) are remarkably suppressed by employing a control signal
u(t). Therefore, we can conclude that the proposed approach, which integrates the OFA,
the HTGA and the presented LMI-based stabilizability condition, can make the nonlin-
ear inverted pendulum system controlled by a separately excited DC motor system have
satisfactory control results.
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Figure 1. Response of the angle of the pendulum x1(t) for the nonlinear
inverted pendulum system controlled by a separately excited DC motor
with the designed stable and quadratic-optimal static output feedback PDC
controller via the proposed integrative computational approach and without
controller
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Figure 2. Response of the angular velocity x2(t) for the nonlinear inverted
pendulum system controlled by a separately excited DC motor with the de-
signed stable and quadratic-optimal static output feedback PDC controller
via the proposed integrative computational approach and without controller
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Figure 3. Response of the current of the motor x3(t) for the nonlinear
inverted pendulum system controlled by a separately excited DC motor
with the designed stable and quadratic-optimal static output feedback PDC
controller via the proposed integrative computational approach and without
controller
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Figure 4. Control input voltage u(t) of the nonlinear inverted pendulum
system controlled by a separately excited DC motor with the designed sta-
ble and quadratic-optimal static output feedback PDC controller via the
proposed integrative computational approach
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5. Conclusions. Based on the OFA, an algorithm has been presented in this paper for
solving the TS-fuzzy-model-based feedback dynamic equations. Then, the presented alge-
braic algorithm is integrated with the HTGA to design the stable and quadratic-optimal
static output feedback PDC controllers of the TS-fuzzy-model-based control systems such
that the control objective of directly minimizing a quadratic finite-horizon integral per-
formance index subject to the constraint of LMI-based stabilizability condition can be
achieved, where the quadratic integral performance index is also converted into the al-
gebraic form by using the OFA. Since, by using the OFA and the LMI-based stabiliz-
ability condition, the stable and quadratic-finite-horizon-optimal static output feedback
PDC control problem for the TS-fuzzy-model-based control systems can be replaced by a
static parameter constrained-optimization problem represented by the algebraic equations
with constraint of LMI-based stabilizability condition, and since the new proposed algo-
rithm only involves the algebraic computation, the design procedures of the stable and
quadratic-optimal static output feedback PDC controllers for the TS-fuzzy-model-based
control systems may be either greatly reduced or much simplified accordingly. In addi-
tion, the presented integrative computational approach, which integrates the presented
LMI-based stabilizability condition, the OFA and the HTGA, is non-differential, non-
integral, straightforward, and well-adapted to computer implementation. Therefore, this
proposed approach facilitates the design task of the stable and quadratic-optimal static
output feedback PDC controllers for the TS-fuzzy-model-based control systems. On the
other hand, the problem of determining the stabilizability has been turned into a LMI
feasibility problem that can be easily solved by means of numerically efficient convex
programming algorithms. The illustrative example regarding the nonlinear inverted pen-
dulum system controlled by a separately excited DC motor has shown that the proposed
approach is effective for designing stable and quadratic optimal static output feedback
PDC controllers of the TS-fuzzy-model-based control systems. In future work, the LMI-
based stabilizability criterion in (6) may be improved in order to make our results less
conservative.
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Appendix A. Proof of Theorem 2.1. Let V (x (t)) = xT (t)Px (t) be a quadratic
Lyapunov function candidate for the system (4), then we have

V̇ (x(t)) =xT(t)

( N∑
i=1

N∑
j=1

N∑
k=1

hi(z(t))hj(z(t))hk(z(t))
(
Ai −BiFjCk

)T)
Px(t)

+ xT(t)P

( N∑
i=1

N∑
j=1

N∑
k=1

hi(z(t))hj(z(t))hk(z(t))
(
Ai −BiFjCk

))
x(t)

=
N∑
i=1

N∑
j=1

N∑
k=1

hi(z(t))hj(z(t))hk(z(t))x
T(t)((

Ai −BiFjCk

)T
P + P

(
Ai −BiFjCk

))
x(t)

=
N∑
i=1

N∑
j=1

N∑
k=1

hi(z(t))hj(z(t))hk(z(t))x
T(t)

(
GT

ijkP + PGijk

)
x(t)

=h1(z(t))
N∑
i=1

N∑
j=1

hi(z(t))hj(z(t))x
T(t)

(
GT

1ijP + PG1ij

)
x(t)

+ . . .+ hN(z(t))
N∑
i=1

N∑
j=1

hi(z(t))hj(z(t))x
T(t)

(
GT

NijP + PGNij

)
x(t)

=h1(z(t))

[ N∑
i=1

h2
i (z(t))x

T(t)
(
GT

1iiP + PG1ii

)
x(t)

+
N∑
i<j

2hi(z(t))hj(z(t))x
T(t)

((
G1ij +G1ji

2

)T

P + P

(
G1ij +G1ji

2

))
x(t)

]
(A.1)
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+ . . .+ hN(z(t))

[ N∑
i=1

h2
i (z(t))x

T(t)
(
GT

NiiP + PGNii

)
x(t)

+
N∑
i<j

2hi(z(t))hj(z(t))x
T(t)

((
GNij +GNji

2

)T

P + P

(
GNij +GNji

2

))
x(t)

]
,

where Gijk = Ai −BiFjCk.
From the condition (6a) and Lemma 2.1, we have

V̇ (x (t)) ≤h1 (z (t))

[
N∑
i=1

h2
i (z (t))x

T (t)
(
GT

1iiP + PG1ii

)
x (t)

+
N∑
i<j

2hi (z (t))hj (z (t))x
T (t)Q1x (t)

]
+ . . .

+ hN (z (t))

[
N∑
i=1

h2
i (z (t)) x

T (t)
(
GT

NiiP + PGNii

)
x (t)

+
N∑
i<j

2hi (z (t))hj (z (t))x
T (t)QNx (t)

]

≤h1 (z (t))

[
N∑
i=1

h2
i (z (t))x

T (t)
(
GT

1iiP + PG1ii

)
x (t)

+ (s̄− 1)
N∑
i=1

h2
i (z (t))x

T (t)Q1x (t)

]
+ . . .

+ hN (z (t))

[
N∑
i=1

h2
i (z (t))x

T (t)
(
GT

NiiP + PGNii

)
x (t)

+ (s̄− 1)
N∑
i=1

h2
i (z (t))x

T (t)QNx (t)

]

=h1 (z (t))

[
N∑
i=1

h2
i (z (t))x

T (t)
(
GT

1iiP + PG1ii + (s̄− 1)Q1

)
x (t)

]
+ . . .

+ hN (z (t))

[
N∑
i=1

h2
i (z (t))x

T (t)
(
GT

NiiP + PGNii + (s̄− 1)QN

)
x (t)

]

=
N∑
i=1

N∑
k=1

h2
i (z (t))hk (z (t))x

T (t)
(
GT

kiiP + PGkii + (s̄− 1)Qk

)
x (t).

(A.2)

It is obvious that V̇ (x (t)) < 0, ∀x (t) ̸= 0, if, for the specified static output feedback
gain matrices Fj (j = 1, 2, . . . , N) in (3), there exists a symmetric positive definite matrix
P and the symmetric positive semi-definite matrices Qk (k = 1, 2, . . . , N) such that

GT
kiiP + PGkii + (s̄− 1)Qk < 0, (A.3a)

and (
Gkij +Gkji

2

)T

P + P

(
Gkij +Gkji

2

)
−Qk ≤ 0, (A.3b)

where Gijk = Ai −BiFjCk, i < j, s̄ > 1, and i, j, k = 1, 2, . . . , N .
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So, from the result mentioned above, we can derive the closed-loop TS-fuzzy-model-
based dynamic system (4) is stable if, for the specified static output feedback gains matri-
ces Fj (j = 1, 2, · · · , N) in (3), a symmetric positive definite matrix P and the symmetric
positive semi-definite matrices Qk (k = 1, 2, . . . , N) exist such that the LMIs in (6) are
simultaneously satisfied. Thus, the proof is completed.


