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Abstract. Multilayer fuzzy connective-based hierarchical aggregation networks provide
a flexible and intuitive approach to decision analysis. This approach simulates the decision-
making processes performed by humans, and the results can be interpreted as a set of
rules with which to fashion an abstract model of the problem. Identifying the relative
importance of the criteria helps to identify redundancies that do not contribute to the
decision-making process. However, a gradient-based learning approach tends to generate
local solutions, and requires the aggregation function to be continuous and differentiable.
This study proposes a GA-based learning approach to identify the connective parame-
ters, exploiting the global exploration ability of GAs to improve the quality of solutions.
This approach does not require gradient information, making it applicable to both differ-
entiable and nondifferentiable aggregation functions. The benefits of this method were
demonstrated using eight datasets with different characteristics. Statistical analysis of
the experimental results confirms that the proposed approach outperforms the gradient-
based learning approach, generating more accurate estimates for both generalized mean
and gamma operators. The proposed approach is well suited to a broad range of fuzzy
aggregation connectives, which further expands its applicability.
Keywords: Fuzzy connectives, Multilayer hierarchical aggregation, Genetic algorithms
(GAs), Decision analysis

1. Introduction. Decision analysis is an important area of research, involving the ag-
gregation of information according to multiple criteria at several levels simultaneously.
Researchers have proposed a variety of fuzzy set connectives for the purpose of aggregat-
ing information, according to the specific applications involved. Many decision-making
situations require a degree of compensation [1], and generalized mean operator and gamma
operator can be applied specifically to such situations.

Krishnapuram and Lee [2,3] proposed a fuzzy connective-based aggregation network
capable of aggregating and propagating information hierarchically, according to the de-
gree of satisfaction. Their gradient-based learning approach systematically identifies the
parameters associated with generalized mean and gamma operators at each node. It is
also capable of determining the nature of the connectives and interpreting the resulting
network as a set of rules with which to fashion an abstract model of the problem. Iden-
tifying the relative importance of criteria can help to identify redundancies that do not
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contribute to the decision-making process. However, a gradient-based learning approach
requires that the aggregation function be continuous and differentiable, and this can be
problematic when dealing with discrete variables. When gradient search techniques are
applied to complex nonlinear optimization problems, they are prone to becoming stuck
in local minima and often produce inconsistent and unpredictable results during training
procedures [4].
Genetic algorithms (GAs) are stochastic search techniques, based on biological evolution

in which global solutions evolve through the processes of competition and variation. This
study proposes a GA-based learning approach to identify the parameters associated with
aggregation connectives in multilayer hierarchical networks. In addition to retaining the
advantages of fuzzy connective-based networks, our proposed approach exploits the global
exploration ability of GAs to increase the likelihood of arriving at a global (or near global)
optimum. This approach does not require gradient information, making it applicable to
both differentiable and nondifferentiable aggregation functions. This study demonstrates
the promising results that can be obtained using a GA-based learning approach.

2. Fuzzy Aggregation Network. In a multilayer hierarchical decision process, support
for a decision often depends on the degree of satisfaction according to several criteria,
which may in turn depend on the degree of satisfaction based on other subcriteria [2].
Figure 1 graphically illustrates this concept, where each node in the network represents a
criterion. In a fuzzy aggregation network, the input for each node is information related
to each subcriteria and the output is the aggregated evidence evaluated by the fuzzy
connectives. The output of one node is the input of the node above.

Figure 1. Multilayer decision-making architecture

Krishnapuram and Lee [2,3] proposed a gradient-based learning approach to train multi-
layer fuzzy aggregation networks. This approach is an adaptation of the backpropagation
algorithm [5] used to determine the parameters of generalized mean and gamma operators.
Forward processing propagates the degree of satisfaction for each input node through the
network to the output layer. Beginning with the nodes in the bottom level, the process
of aggregation progresses upward through each level until reaching the top of the hier-
archy. Backward processing is an optimization process minimizing the degree of output
discrepancy in the network. The generalized delta rule uses gradient information to mod-
ify weights and parameters. The following section provides the aggregation function and
partial derivatives of the generalized mean and gamma operators as they pertain to these
weights and parameters.

2.1. Generalized mean operator. The generalized mean operator was introduced by
[6]. This operator is defined by the following equation

f(x1, x2, · · · , xn; p, w1, w2, · · · , wn) =

(
n∑

i=1

wix
p
i

)1/p

(1)
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where xi ∈ [0, 1] is the n input to be aggregated, p is the parameter controlling the degree
of compensation between intersection and union operators with p ∈ R and p ̸= 0, and
wi is the weight representing the relative importance of various criteria with wi ≥ 0 and∑n

i=1wi = 1. To eliminate the constraints on wi, the aggregation function can be written
as

f =

(
w1

2∑n
i=1w

2
i

xp
1 + · · ·+ w2

n∑n
i=1w

2
i

xp
n

)1/p

(2)

Thus, the partial derivatives of the generalized mean operator are
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2.2. Gamma operator. The gamma operator was introduced by [7,8], and is provided
in the following equation

y =

(
n∏

i=1

xδi
i

)1−γ

·

(
1−

n∏
i=1

(1− xi)
δi

)γ

(5)

where xi ∈ [0, 1] is the n input to be aggregated, δi represents the weight associated with
xi, and γ is a parameter controlling the degree of compensation. This parameter indicates

where the actual operator is located between the logical ‘and’ and ‘or’ with
n∑

i=1

δi = n and

0 ≤ γ ≤ 1 [6,9]. The intersection part and union part of the gamma operator can be
denoted as

y1 =
n∏

i=1

xδi
i (6)

y2 = 1−
n∏

i=1

(1− xi)
δi (7)

To eliminate the constraints on γ and δi, the definition of γ and δi can be modified as
follows [2,3]:

γ =
a2

a2 + b2
and (8)

δi =
nd2i∑n
i=1 d

2
i

(9)

Thus, the partial derivatives of the gamma operator are
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(12)

Many researchers have discussed fuzzy aggregation networks, applying them in a variety
of fields, including safety assessment [10], software quality evaluation [11], structural dam-
age detection [12], fault diagnosis [13] and satellite data classification [14]. Chiang [15]
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and Chiang and Kuo [16] also proposed gradient-based training algorithms to determine
the parameters of Choquet integral and gamma operator.

3. Genetic Algorithms. Genetic algorithms are stochastic search and optimization
techniques based on the processes associated with biological evolution. Given a speci-
fied optimization problem, GAs begin with an initial population of candidate solutions,
referred to as chromosomes. These chromosomes evolve over time through the processes
of competition and variation. The members of the population that are most likely to
produce offspring are those possessing traits favorable to solving the optimization prob-
lem. A fitness function assesses the performance of each chromosome indicating how good
the solution is. The fitness values of each chromosome are then used to identify which
chromosomes reproduce in the competition process, referred to as selection. The higher
the fitness value that a chromosome has, the greater its chances of contributing to the
next generation are. Genetic operators such as crossover and mutation create new off-
spring, inheriting a blend of traits from the previous generation. This process is repeated
through many generations, with the traits best able to reach a solution being passed on,
and undesired traits dying out [17,18].
Genetic algorithms possess a number of advantages over traditional methods, such as

their ability to search from population to population, without the limitations imposed by
point-to-point search methods. In this manner, searches sweep through the parameter
space in many directions simultaneously, greatly enhancing the probability of finding the
global optimum [4]. This makes GAs particularly useful for optimizing variables with
extremely complex solution surfaces. Genetic algorithms enable the optimization of con-
tinuous or discrete variables, without the need for derivative information, making them
applicable to a wide range of differentiable, nondifferentiable, continuous, and discon-
tinuous optimization problems encountered in a variety of disciplines [18,19]. Genetic
algorithms have enabled researchers to solve many problems, such as the matching and
scheduling of extraction, transformation and loading (ETL) tasks [20], overcoming trans-
portation problems [21] and developing medications [22].

4. Proposed Approach. This study uses generalized mean and gamma operators to
aggregate information at each node in multilayer fuzzy aggregation networks, employ-
ing a GA-based learning approach to determine connective parameters. The learning
procedures were implemented in the following, and a flowchart is presented in Figure 2.

Step 0. Construct the topology of a fuzzy aggregation network according to the informa-
tion related to the specific problem.

Step 1. Encode the weights and parameters in the network as chromosomes, represented
by a vector of floating point numbers.

Step 2. Select the size of the population and probability of crossover and mutation.
Step 3. Randomly create an initial population of n chromosomes.
Step 4. Aggregate the information upward layer by layer using the aggregation function

and evaluate the fitness value of each chromosome in the current population.
Step 5. Create an intermediate population by extracting members from the current pop-

ulation using a selection operator.
Step 6. Generate new offspring by applying the crossover operator to the intermediate

population according to the probability of crossover.
Step 7. Mutate new offspring at each position in the chromosome according to the prob-

ability of mutation.
Step 8. Adopt an elitist strategy to ensure that the best-performing chromosome always

survives.
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Figure 2. Flowchart of the GA-based learning approach

Step 9. If the conditions required for stopping are met, then stop; otherwise, return to
Step 4.

The following section provides detailed information about the processes involved in
implementation.

4.1. Representation of chromosomes. Genes can be represented directly as real num-
bers for variables within a continuous domain, to avoid the problems associated with a
lack of precision, storage requirements, and computational load incurred through binary
representation [23]. In this case, chromosomes are vectors of floating point numbers. For a
multilayer fuzzy aggregation network with L layers and nl nodes in layer l, a chromosome
comprising the weight of the ith node in layer l − 1 to the jth node in layer l, wl−1ij,
and parameter of the ith node in layer l, pli, of the generalized mean operator can be
represented as

chromosome = [w111, · · · , wL−1nlnl−1
; p11, · · · , pLnl

] (13)

A chromosome comprising the weight of the ith node in layer l − 1 to the jth node in
layer l, dl−1ij, and the parameters of the ith node in layer l, ali and bli, of the gamma
operator can be represented as

chromosome = [d111, · · · , dL−1nlnl−1
; a11, · · · , aLnl

; b11, · · · , bLnl
] (14)

4.2. Fitness function. The fitness function assesses the performance of each chromo-
some to evaluate the quality of the solution. This study selected 1/me as a fitness function,
where me is the root mean squared error (RMSE) defined as

RMSE =

√√√√√ n∑
k=1

m∑
p=1

(Ypk − ypk)2

n×m
(15)

where n denotes the number of training patterns, m is the number of outputs, and Ypk

and ypk are the target and actual value of output p and input pattern k, respectively.
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The best individual in the population is that with the maximum fitness value, i.e., the
minimum error.

4.3. Initial population. A group of chromosomes represents the population. The initial
generation of the population and the size are two important aspects of populations used in
GAs [24]. Consider an initial population of Npop chromosomes. For an Nvar dimensional
optimization problem, the population is represented by an Npop ×Nvar matrix filled with
uniform random numbers [19]. For each problem, the size of the population depends on
the complexity of the problem. The larger the population is, the easier it is to explore
the search space. However, this requires much higher computational cost, memory, and
time. The size of the population can be altered according the available time, computer
memory, and desired quality of the results [24].

4.4. Selection. Selection is a method in which chromosomes are randomly selected from
the population with an emphasis on the fitness of individuals [24]. Consider P a popu-
lation with chromosomes C1, . . . , CN . The selection mechanism creates an intermediate
population, P ′, to produce copies of chromosomes in P . The higher the fitness value, the
greater the chance that a chromosome will contribute copies to P ′. The selection mecha-
nism comprises two steps: calculating the probability of selection and implementing the
sampling algorithm [17].

• Calculating the Probability of Selection. Proportional selection is the best
known and most commonly used selection mechanism [25,26]. For each chromosome
Ci in P where i = 1, . . . , N , the probability of including a copy of Ci in P ′ can be
calculated using Equation (16) [17].

ps (Ci) =
f (Ci)∑N
j=1 f (Cj)

(16)

where f(Ci) is the fitness value of chromosome Ci.
• Implementing the Sampling Algorithm. Copies of chromosomes are repro-
duced to form P ′ according to the probability of being selected. Stochastic sampling
with replacement, referred to as roulette wheel selection, is a traditional selection
technique [25,26]. The principle of roulette wheel selection involves a linear search
through each chromosome Ci in the population mapped onto a roulette wheel with
a space proportionally to ps (Ci). With each spin, an individual chromosome is
selected for inclusion in the intermediate population of the next generation. The
roulette wheel is spun repeatedly until all available positions in P ′ are filled [17].

4.5. Crossover. Crossover is a method used to share information between chromosomes
according to the probability of crossover, pc. The traditional crossover operator in GAs
is the simple crossover [27,28]. First, chromosomes in the intermediate population P ′ are
randomly grouped into pairs. For each pair, assume two chromosomes have been selected
for the application of the crossover operator:

C1 =
(
c1

1 . . . c1n
)

(17)

C2 =
(
c1

2 . . . c2n
)

(18)

A crossover site i ∈ {1, 2, . . . , n − 1} is then selected at random along the length of
the string. Finally, position values are swapped between the two strings according to the
crossover site to construct two new chromosomes based on Equations (19) and (20).

H1 =
(
c11, c

1
2, . . . , c

1
i , c

2
i+1, . . . , c

2
n

)
(19)

H2 =
(
c21, c

2
2, . . . , c

2
i , c

1
i+1, . . . , c

1
n

)
(20)
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4.6. Mutation. Mutation is a method used to recover lost or unexplored genetic material
in the population according to the probability of mutation, pm. Random mutation is the
most commonly used mutation mechanism for the representation of real-values. This
method involves the replacement of selected chromosome with a value uniformly selected
from the parameter space [4,23]. Assume that C = (c1, . . ., ci, . . ., cn) is a chromosome
and ci ∈ [ai, bi] is the gene to be mutated. The gene c′i resulting from the application of
mutation operators is a uniform random number from the domain [ai, bi] [28].

4.7. Elitist strategy. An elitist strategy may be adopted following the implementation
of crossover and mutation [29]. This strategy involves copying either the best chromosome
or a few of the best chromosomes from each generation to the succeeding generation. This
method ensures that the best-performing chromosome always survives from one generation
to the next. This is necessary to avoid the loss of the best chromosome due to crossover
or mutation [17].

4.8. Stopping conditions. Searches are terminated at the end of each generation if
stopping conditions are satisfied. Examples of stopping conditions include reaching a
specified number of generations, a lack of observable change in the best fitness value over
a specified number of generations, or a situation in which all chromosomes and associated
fitness values would converge, if it were not for mutation.

5. Experimental Study. This study conducted experiments on eight datasets to eval-
uate the effectiveness of the GA-based learning approach in a fuzzy connective-based
hierarchical aggregation network. The following section presents details of the datasets,
implementation of the experiment, and a comparison of the results.

5.1. Datasets. The eight datasets used in this paper varied in terms of the numbers of
criteria, subcriteria and volume of data. Table 1 summarizes the characteristics of the
datasets with detailed information provided below.

Table 1. Summarized characteristics of dataset

Dataset No. of Criteria No. of Subcriteria Size
Abalone 3 10 4177
Bank 4 8 8192

Investment 11 35 29
Society 9 79 51
Economy 6 27 51
Politics 5 35 51

Environment 7 22 51
Health and Education 4 29 51

Example 5.1. The growing awareness of the profound influence that humans have on
marine systems has been the impetus for increased advocacy on the part of marine con-
servation. Faced with strict size limits, the age and growth of fish populations must be
accurately estimated to protect the reproductive capacity of stocks and preserve biodiversity.
Many researchers have attempted to develop techniques for estimating the age of abalone
[30]. The “Abalone” dataset used in this study was obtained from the UCI machine learn-
ing repository, including 4177 instances. The age of abalone was estimated according to
3 criteria comprising 10 subcriteria. Figure 3 illustrates the network architecture of this
dataset.
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Figure 3. Network architecture of the “Abalone” dataset

Example 5.2. Research into service management and marketing has provided a strong
theoretical base on which to pursue an empirical exploration of the relationships among
customer satisfaction, customer loyalty and profitability [31]. The “Bank” dataset used
in this study was obtained from the Delve datasets, including 8192 instances. Data were
generated from a simulation of queues in a series of banks. In this scenario, customers
came from various residential areas, selecting their preferred bank according to distance
from their home. They had to perform tasks of varying complexity and were equipped with
various levels of patience. Customers were liable to change queues when they lost patience.
The rejection rate in this problem was determined by 4 criteria comprising 8 subcriteria.
Figure 4 illustrates the network architecture of this dataset.

Figure 4. Network architecture of the “Bank” dataset

Example 5.3. With increases in globalization, enterprises are continually seeking suit-
able overseas investment opportunities to maintain long-term competitiveness. This ex-
ample, obtained from [32], investigated the experiences of investors in the electrical and
electronic appliance industry in Taiwan, concerning their evaluation of the investment
environment of Mainland China and Southeast Asia. The degree of satisfaction (subjec-
tive) investors felt for the investment environment was aggregated through an hierarchical
decision-making structure to produce an overall satisfaction value. Data related to the
investment environment were collected from 29 questionnaires, and evaluated according
to 11 criteria comprising 35 subcriteria. Figure 5 depicts the network architecture of this
dataset.

The following section introduces 5 datasets related to the evaluation of quality of life
(QOL). Quality of life generally refers to the level of satisfaction or happiness experienced
by an individual. Quality of life measures are used to assess social progress and social
accounting, making them useful for national goal setting, the evaluation of programs,
and ranking of priorities. Quality of life is an output of an aggregate function linking a
group of quantifiable factors, used to statistically assess the health status of the nation.
Quality of life can be evaluated from various aspects related to national welfare, each of
which represents a major national objective, in areas pertaining to society, economics, the
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Figure 5. Network architecture of the “Investment” dataset

environment, politics, and health and education [33]. This study analyzed data obtained
from [33], covering 50 states and the District of Columbia-Washington metropolitan area
in the United States. Examples 5.4 through 5.8 provide detailed information, evaluating
various aspects of the QOL.

Example 5.4. Due to the wide range of social concerns, evaluation of the social aspect
of QOL encompasses many factors reflecting social issues, including equality, personal
development and community living conditions. This study evaluated the social aspects
pertaining to QOL by measuring 9 criteria comprising 79 subcriteria. Figure 6 illustrates
the network architecture of this dataset.

Figure 6. Network architecture of the “Society” dataset

Example 5.5. Inputs for modeling QOL from an economic perspective include variables
related to the economic well-being of individuals and economic health of the community.
All selected variables in this study were designed to measure either the command over
goods and services or the capability of satisfying basic needs to provide a better quality of
life for the entire population within each state. This study evaluates QOL data from an
economic perspective by measuring 6 criteria comprising 27 subcriteria. Figure 7 shows
the network architecture of this dataset.

Figure 7. Network architecture of the “Economy” dataset

Example 5.6. Evaluating QOL from a political perspective deals with institutional factors
and functional operations of a democratic system, in which all individuals are organized
within a community to achieve a common goal or public objectives. This study measured
QOL from this perspective by measuring 5 criteria comprising 35 subcriteria. Figure 8
shows the network architecture of this dataset.
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Figure 8. Network architecture of the “Politics” dataset

Example 5.7. Humans use natural resources to satisfy various needs and desires and
achieve the goals of economic growth. However, energy related crises and environmental
problems are indications that the degree to which nature can be exploited without reper-
cussions is limited. Thus, the protection of the environment and conservation of natural
resources have become focal points of public interest and national concern. Evaluating
QOL from an environmental perspective can provide a better understanding of environ-
mental issues. This study evaluated this perspective by measuring 7 criteria comprising
22 subcriteria. Figure 9 depicts the network architecture of this dataset.

Figure 9. Network architecture of the “Environment” dataset

Example 5.8. The quality of health and education is another principal concern in the
quality of life accounting systems. Three primary health concerns are: longevity, freedom
from disability, and the availability and accessibility of medical care. Achieving a basic
level of education and the opportunity to pursue goals of higher learning are the primary
concerns of intellectual health. This study evaluated the conditions of health and education
among individuals and the community by measuring 4 criteria comprising 29 subcriteria.
Figure 10 shows the network architecture of this dataset.

Figure 10. Network architecture of the “Health and Education” dataset
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5.2. Implementation. This section compares the performance of the gradient-based
learning approach in multilayer aggregation networks with the proposed learning ap-
proach. Experiments were conducted using a programming environment developed in
C# on a Windows XP operating system, a 1.6 GHz dual CPU and 3.0 GB of RAM. Data
were transformed within the range [0, 1]. The network topology was modeled according to
the structure of the criteria and subcriteria pertaining to each problem. For each model,
the initial weights and parameters were established randomly within the range [–1, 1]. In
addition, we adopted a 10 five-fold cross-validation strategy to increase the accuracy and
reliability of the results.

The learning rate of the gradient-based approach was optimized by trial and error to
determine the setting with the minimum RMSE, and the test range gradually increased
from 0.05 to 1.0. The training in the gradient-based learning approach was terminated
when a specified number of generations was reached or changes in accuracy, weights, or
parameters were less than 10−8. The combination of parameters in the GA-based learning
approach was tested using the range recommended in the literature [18,24,34]. We set the
size of the population at 100, probability of crossover at 100%, probability of mutation
below 20%, and kept the best 10% of the chromosomes from each generation for the
elitist strategy. The training of the GA-based learning approach was terminated when a
specified number of generations had been reached.

Figure 11 shows the training process for the gamma operator in Example 5.3 with the
gradient-based and GA-based learning approaches. It can be observed that the GA-based
learning approach provided superior results in the beginning and at the end of training.
This can be attributed to the fact that GAs search for solutions in many directions
simultaneously and the evolution mechanism helps to focus the search in better regions of
the solution space. Table 2 summarizes the experimental results, including the average,
best, worst and standard deviation (SD) for RMSE. The GA-based learning approach
had a smaller RMSE in the average, best and worst cases, indicating that the proposed
approach can provide more accurate estimates. The GA-based learning approach also
had smaller variations in RMSE, demonstrating that the proposed approach is capable of
generating more stable and reliable solutions for both operators.

Figure 11. Training process for the gamma operator in Example 5.3 using
gradient-based and GA-based learning approaches

5.3. A comparison. This study was concerned whether there is a statistically significant
difference in the accuracy of evaluation between the gradient-based and proposed learning
approaches. Therefore, this study adopted two-way ANOVA for the block design using
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Table 2. Summarized experiment results

Dataset Operator Learning Approach
RMSE

Mean Best Worst SD

Abalone

Generalized Mean
Gradient-based 0.1873 0.1378 0.3257 0.0556

GA-based 0.1004 0.0970 0.1038 0.0022

Gamma
Gradient-based 0.0944 0.0877 0.1396 0.0159

GA-based 0.0877 0.0867 0.0888 0.0006

Bank

Generalized Mean
Gradient-based 0.1337 0.1224 0.1493 0.0089

GA-based 0.0986 0.0923 0.1005 0.0025

Gamma
Gradient-based 0.0685 0.0683 0.0687 0.0002

GA-based 0.0684 0.0682 0.0690 0.0002

Investment

Generalized Mean
Gradient-based 0.0998 0.0860 0.1300 0.0140

GA-based 0.0966 0.0802 0.1116 0.0103

Gamma
Gradient-based 0.1447 0.0906 0.2861 0.0691

GA-based 0.1054 0.0949 0.1392 0.0127

Society

Generalized Mean
Gradient-based 0.1519 0.1245 0.1802 0.0178

GA-based 0.1495 0.1409 0.1681 0.0090

Gamma
Gradient-based 0.4239 0.3073 0.4918 0.0571

GA-based 0.1130 0.1053 0.1267 0.0075

Economy

Generalized Mean
Gradient-based 0.1417 0.1134 0.1566 0.0134

GA-based 0.1392 0.1271 0.1650 0.0123

Gamma
Gradient-based 0.2739 0.1198 0.3877 0.0804

GA-based 0.1122 0.1014 0.1289 0.0082

Environment

Generalized Mean
Gradient-based 0.1475 0.1081 0.1930 0.0312

GA-based 0.1427 0.1254 0.1634 0.0141

Gamma
Gradient-based 0.2277 0.1756 0.2712 0.0325

GA-based 0.1257 0.1062 0.1427 0.0127

Politics

Generalized Mean
Gradient-based 0.1710 0.1514 0.2140 0.0189

GA-based 0.1459 0.1344 0.1756 0.0126

Gamma
Gradient-based 0.3423 0.2554 0.4993 0.0787

GA-based 0.1364 0.1293 0.1447 0.0051

Health & Education

Generalized Mean
Gradient-based 0.1607 0.1313 0.2295 0.0268

GA-based 0.1576 0.1357 0.1954 0.0173

Gamma
Gradient-based 0.2443 0.1324 0.3721 0.0773

GA-based 0.1264 0.1165 0.1445 0.0085

ten replications. We adopted the learning approach as the “factor” and the dataset as the
“block”, running ten replications for each combination of factor and block. Tables 3 and 4
show the results of ANOVA for the generalized mean and gamma operators, respectively.
The p-values of learning approaches in the ANOVA tables are smaller than 0.05, indicating
a statistically significant difference between the accuracy of gradient-based and GA-based
learning approaches for both aggregation operators at a 95% confidence level. Figure 12
shows the 95% confidence interval in the accuracy of evaluation using the gradient-based
and GA-based learning approaches for generalized mean and gamma operators. Both
intervals of the GA-based learning approach had smaller mean estimates of RMSE and
widths of confidence intervals, particularly for the gamma operator. The above statistical
analysis provides sufficient evidence to conclude that the proposed approach is capable of
generating more accurate estimates with a smaller degree of variation.

6. Conclusions. Multilayer fuzzy connective-based hierarchical aggregation networks
provide a flexible and intuitive method for decision analysis. The approach is similar
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Table 3. ANOVA for the generalized mean operator

Source Df. SS MS F p
Approach (Factor) 1 0.0167 0.0167 38.60 0.00
Dataset (Block) 7 0.0633 0.0090 20.93 0.00

Interaction 7 0.0307 0.0044 10.15 0.00
Error 144 0.0623 0.0004
Total 159 0.1730

Table 4. ANOVA for the gamma operator

Source Df. SS MS F p
Approach (Factor) 1 0.5574 0.5574 312.17 0.00
Dataset (Block) 7 0.6772 0.0967 54.18 0.00

Interaction 7 0.3977 0.0568 31.82 0.00
Error 144 0.2571 0.0018
Total 159 1.8894

Figure 12. 95% confidence interval of the accuracy mean

to the decision-making processes performed by humans, providing a number of attractive
features. However, the gradient-based learning approach requires that the aggregation
function be continuous and differentiable, requiring considerable computation to adjust
the weights and parameters, and learning speeds are slow when discrepancy surfaces are
flatter [3]. Problems involving a high degree of complexity in the network architecture tend
to obtain local solutions. To enhance effectiveness and applicability, this study proposed
a GA-based learning approach to determine weights and parameters, taking advantage
of GAs global exploration to improve the quality of solutions. The proposed approach
retains the advantages of fuzzy connective-based networks and does not require gradient
information, making it applicable to a wider range of aggregation functions. The effec-
tiveness of the proposed learning approach was demonstrated using eight datasets with
different characteristics. Statistical analyses of the experimental results in Sections 5.2 and
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5.3 indicate statistically significant differences between the GA-based and gradient-based
learning approaches for both generalized mean and gamma operators. The GA-based
learning approach outperforms the gradient-based learning approach, and is capable of
generating estimates of higher accuracy with less variation.
This study makes three main contributions to the literature. First, we successfully

implemented a heuristic learning approach using GAs to determine the connective pa-
rameters in multilayer hierarchical aggregation networks. This approach preserves the
advantages of fuzzy connective-based networks, while improving the quality of the so-
lutions by increasing the likelihood of arriving at the global optimum. The GA-based
learning approach is capable of providing a higher degree of accuracy and more reliable
solutions than the gradient-based learning approach. Second, the proposed approach is
widely applicable, and not limited to continuous or differential aggregation functions. Ad-
ditional fuzzy aggregation connectives can be applied, thereby expanding the applicability
of this approach. Third, the GA-based learning approach requires less mathematical com-
putation than the gradient-based approach does. The mechanism integrating evolution
with search solutions from many directions simultaneously helps focus quickly on better
regions of the solution space thereby achieving superior results.
The GA-based learning approach has good global search capability, enabling it to locate

the region of a better solution quickly. However, it is difficult to find the exact location
of the global optimum using the processes of crossover or mutation. Hybridization with a
local optimization step may help to obtain more ideal solutions. In addition, the size of the
population and probability of crossover and mutation influence the results. Optimizing
the settings for the GA-based learning approach and the effect of combination with other
aggregation connectives are issues for future research.
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