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Abstract. In view of the conservatism of the conventional linear matrix inequality
(LMI) based fault detection observer design for Takagi-Sugeno fuzzy nonlinear systems
with more If-Then rules, an improved fuzzy observer design is presented. The identi-
cal transformation of matrix inequalities is employed to reduce the conservatism and the
number of LMI constraints, which can accommodate to the models with more rules. The
multiobjective optimization strategy is also applied to dealing with the multiobjective con-
straints on the disc poles index, the quasi L2-norm indices of the residual’s robustness to
disturbances and sensitivity to faults. The resulting observer not only is less conserva-
tive, but also meets the multiple performance requirements of fault detection. Meanwhile,
two other methods are introduced for comparative study. Moreover, to enhance the effect
of fault detection in residual evaluation, a weighted BIC criterion-based algorithm is in-
troduced to determine the finite-time window for online evaluation. Simulative examples
demonstrate the effectiveness of the proposed method.
Keywords: Takagi-Sugeno fuzzy model, Fault detection, Fuzzy observer, Multiobjective
optimization, Matrix identical transformation

1. Introduction. Over the last decades, many researchers have paid attention to the
problem of observer-based fault detection and diagnosis (FDD) for dynamic systems sub-
jected to various possible faults [1-3]. Most of the early studies are focused on linear
systems; see [4] and the references therein. In more recent years, observer-based fault
detection (FD) for nonlinear systems has received a great deal of attention [5]. Whereas,
due to the complexity in modeling nonlinearities, observer-based FDD for nonlinear sys-
tem is still an open challenge. Recently, Takagi-Sugeno (T-S) fuzzy model as a typical
description of nonlinear systems, its FDD problem has been widely studied; see for ex-
ample [6-15] and the references therein. Through observing those results, it is obvious
that many existing results are mainly focused on the LMI-based observer design to ensure
only the stability of the residual systems, according to the conventional common quadratic
Lyapunov function. Consequently, one problem is that only a few results touched upon
the FD performance requirements [9, 13, 15]. Although many intelligent algorithms on
the multiobjective programming and optimization have been developed [16, 17], it is neg-
ative to solve the FDD problem by such intelligent algorithms [17]. Another problem is
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that the conventional common quadratic Lyapunov function and the multiple parameter-
dependent Lyapunov functions or fuzzy Lyapunov function techniques often lead to too
many LMIs constraints, which is too fragile to be solvable for systems with more If-Then
rules [18-21]. Hence, it is also important to reduce the number of LMIs with acceptable
conservatism of conditions [21]. Unfortunately, few results have been reported for this
problem in the FD fuzzy observer design.
Therefore, in this paper, we investigate the fault detection problem for a class of

discrete-time T-S fuzzy systems. Attention is focused on the FD observer with multi-
ple performance constraints and its less conservative design method. Compared with
existing works, the main contribustions are in two aspects: i) Multiobjective optimization
idea [22] is employed to cope with the performance constraints on the regional eigenvalues,
the quasi L2-norm indices of robustness against external disturbances and the sensitivity
to fault, so that the residual system is asymptotically stable with the prescribed transient
behavior as well as robust margin to neglected modeling dynamics, the expected robust-
ness against disturbances and the desired sensitivity performance to faults; ii) Identical
transformation of matrix inequalities and the technique of slack variables in [19] are ap-
plied to the developing process, which renders the results to be with smaller number of
LMI constraints and less conservative. Thus, an improved LMI-based FD fuzzy observer
design is developed for fuzzy systems with more rules. For comparative study, two typical
strategies, the method based on the conventional common quadratic Lyapunov function
and the method combining the fuzzy Lyapunov function with the slack of variables, are
also presented respectively. All the results are formulated in the form of LMIs. In ad-
dition, residual evaluation function and threshold setting are discussed to enhance and
achieve fault detection function.
The remainder of the article is organized as follows. Section 2 formulates the problem

under consideration and presents some related preliminaries. The FD fuzzy observer
design and comparative study are introduced in Section 3, along with simulative examples.
Residual evaluation and detection threshold determination are discussed in Section 4. The
numerical example showed the validity of the proposed approach in the same section. The
paper is concluded in Section 5.
Throughout the paper, Z+ is the set of positive integers. The 2-norm of vector x is

defined as ∥x∥ :=
√

xT(t)x(t). The L2-norm is defined as ∥x∥2 :=
[∑∞

t=0 x
T(t)x(t)

]1/2
.

The quasi L2-norm is defined as ∥x∥td :=
[∑td

t=0 x
T(t)x(t)

]1/2
or ∥x∥2td :=

∑td
t=0 [x

T(t)x(t)]
over a finite-time interval [0, td].

2. Problem Statement and Preliminaries.

2.1. Problem statement. We consider a class of discrete-time nonlinear systems with
T-S fuzzy model as follows:

x(t+ 1) =
N∑
i=1

hi(θ(t)) [Aix(t) + Biν(t) +Dif(t)]

=

[
N∑
i=1

hi(θ)Ai

]
x(t) +

[
N∑
i=1

hi(θ)Bi

]
ν(t) +

[
N∑
i=1

hi(θ)Di

]
f(t)

:=Ag(h)x(t) +Bg(h)ν(t) +Dgf(t)

y(t) =
N∑
i=1

hi(θ)Cix(t) := Cg(h)x(t),

(1)
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where t is the time step, x(t) ∈ Rn and y(t) ∈ Rm are respectively the state and mea-
surable output. ν(t) ∈ Rp is the stationary exogenous disturbances with norm-bounded,
and its L2-norm 0 < ∥ν(t)∥2 ≤ ϕν < ∞. The vector f(t) ∈ Rs stands for possible ac-
tuator or component fault signals which is norm-bounded. Ai, Bi, Ci and Di are known
constant matrices with appropriate dimensions. Here vector θ(t) = [θ1(t), · · · , θq(t)] is
the premise variable on the fuzzy set Mij (j = 1, · · · , q), and N is the number of If-Then

rules or local linear models. The fuzzy weighting function hi(θ) = ωi(θ)/
∑N

i=1 ωi(θ) and
ωi(θ) =

∏q
j=1Mij(θj) with Mij(θj) representing the grade of membership of θj in Mij. It

is obvious that hi(θ) satisfies hi(θ) ≥ 0 and
∑N

i=1 hi(θ) = 1. For simplicity, we assume
that the system is stable as well as the pair of {Ci, Ai} observable, and θj(t) is also known.

For the fault detection fuzzy observer design, a fuzzy observer associated with the same
premise variable as the model (1) is constructed by

x̂(t+ 1) =
N∑
i=1

hi(θ(t)) [Aix̂(t) +Gi(y(t)− ŷ(t))]

= Ag(h)x̂(t) +Gg(h)(y(t)− ŷ(t))

ŷ(t) =
N∑
i=1

hi(θ)Cix̂(t) = Cg(h)x̂(t),

(2)

where x̂(t) ∈ Rn and ŷ(t) ∈ Rm are the state and output vectors of the observer, Gi is the

gain matrix designed later, Gg(h) =
∑N

i=1 hi(θ)Gi. Then, the state error e(t) = x(t)− x̂(t)
and the output residual ε(t) = y(t)− ŷ(t) are obtained by{

e(t+ 1) = Agc(h)e(t) +Bg(h)ν(t) +Dg(h)f(t)
ε(t) = Cg(h)e(t),

(3)

where Agc(h) = [Ag(h)−Gg(h)Cg(h)] =
∑N

i=1

∑N
j=1[hi(θ)hj(θ)(Ai −GiCj)].

To make sure the stability and the expected rapidity of fault detection in the presence
of uncertainty, the desired regional poles assignment will be studied. Furthermore, the
quasi L2-norm of ε(t) and ν(t) is applied to indicate the robustness of residual against
disturbances in normal case, namely,

td∑
i=0

εT(t)ε(t) < η2
td∑
i=0

νT(t)ν(t). (4)

When the fault occurs, the follow inequality is introduced to describe the robustness
against disturbances and sensitivity to faults:

td∑
i=0

εT(t)ε(t) < β2

td∑
i=0

νT(t)ν(t) + γ2

td∑
i=0

fT(t)f(t) (5)

where td ∈ Z+ and 0 < td < ∞, the interval [0, td] is a finite-time window. To this end,
the problem of robust fault detection fuzzy observer design is addressed as follows.

Proposition 2.1. For the fuzzy nonlinear system (1), given a prespecified region S(0, r)
and three scalars γ > 0, β > 0, η > 0 with γ > β and γ > η, find a fuzzy observer (2) or
gain matrix Gi (i = 1, · · · , N) such that the following three constraints hold.

C1) The residual system (3) is asymptotically stable and its poles are assigned within the
disc region S(0, r), where 0 < r < 1 is the radius of disc centred at (0, 0), i.e., the
eigenvalues of Agc(h) are within S(0, r).

C2) When the system (3) is stable and fault-free, the inequality constraint (4) holds with
initial condition e(0) = 0.
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C3) When the fault has occurred, the inequality constraint (5) holds for the system (3)
with initial condition e(0) = 0.

Remark 2.1. It is noted that constraint C2) represents the worst-case criterion for the
effect of disturbances on the residual ε(t), which is a well-known description of robustness
against the disturbances. Nevertheless, the criterion C3) does not stands for the worst-case
criterion for the sensitivity to faults [4]. However, to a great extent it does not deteriorate
the sensitivity to fault while ensures the worst-case attenuation to disturbances, and makes
the observer design solvable. In addition, the conditions γ > β and γ > η for the given
three indices are just to enhance the effect of fault detection.

2.2. Several lemmas.

Lemma 2.1. (Elimination Lemma, [23]) For the following matrix inequality

G(s) + U(s)XV T (s) + V (s)XTUT (s) > 0 (6)

with s and X two variables, where U and V do not depend on X, and X is a free matrix.
Then, the inequality (6) is equivalent to the two inequalities G(s)− ρU(s)UT (s) > 0 and
G(s)− ρV (s)V T (s) > 0 with s the first variable and ρ ∈ R.

Lemma 2.2. (Inversion Matrix Lemma) Let A, B, C and D be matrices of appropriate
dimension, then (A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1.

Lemma 2.3. A fuzzy observer (2) has its eigenvalues in the region S(0, r), if there exists
a matrix P = PT > 0 such that the inequality AT

gc(h)PAgc(h)− r2P < 0 holds.

It is a deduced result to LMI region S(0, r) from Lemma 2 in [24].

3. Fault Detection Fuzzy Observer Design and Comparative Study.

3.1. Three kinds of fault detection fuzzy observer design. First of all, our pro-
posed design method is presented in Theorem 3.1 by using the identical transformation of
matrix inequality and technique introduced in [19]. Then, two other methods (the first in
Theorem 3.2 is based on the conventional common quadratic Lyapunov function; the sec-
ond in Theorem 3.3 is derived from the fuzzy Lyapunov function) with less conservatism
strategies such as in [6, 7, 9, 13, 15, 20, 25] are introduced for comparative study.

Theorem 3.1. For the residual system (3), given the performance constraints S(0, r),
η > 0, γ > 0 and β > 0 with γ > β and γ > η, if there exist matrices P = PT > 0, Lj

(j = 1, 2, · · · , 9), Kk and δk < 0 (k = 1, 2, 3) such that for i = 1, 2, · · · , N , the LMIs:[
P ∗
Ci I

]
> 0 (7) r2P − L1Ci − CT

i L
T
1 ∗ ∗

−PAi − L2Ci P ∗
LT
1 −KT

1 Ci LT
2 K1 +KT

1 − (r2 + δ1)I

 > 0 (8)


P − L3Ci − CT

i L
T
3 ∗ ∗ ∗

−L4Ci η2I ∗ ∗
−PAi − L5Ci −PBi P ∗
LT

3 −KT
2 Ci LT

4 LT
5 K2 +KT

2 − (1 + δ2)I

 > 0 (9)


P − L6Ci − CT

i L
T
6 ∗ ∗ ∗ ∗

−L7Ci γ2I ∗ ∗ ∗
−L8Ci 0 β2I ∗ ∗

−PAi − L9Ci −PDi −PBi P ∗
LT
6 −KT

3 Ci LT
7 LT

8 LT
9 K3 +KT

3 − (1 + δ3)I

 > 0 (10)
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have solution {P,Kk, Lj, δk}, then the fuzzy observer (2) with gain matrix

Gi = Ai(P − CT
i Ci)

−1CT
i

[
Ci(P − CT

i Ci)
−1
CT

i

]−1

(11)

drives the eigenvalues of the system (3) within the region S(0, r) and the performance
constraints C2) and C3) are satisfied.

Proof: With a quadratic Lyapunov’s function V (e(t)) = eT(t)Pe(t) ≥ 0, we first derive
the result on the constraint C1). According to Lemma 2.3 and Schur Complement [23],
the constraint C1) is met if the inequality[

r2(P − CT
g (h)Cg(h)) ∗

PAg(h)−Ng(h)Cg(h) P

]
> 0, (12)

where Ng(h) = PGg(h). By using Lemma 2.1, the inequality (12) is equivalent to the
following two inequalities

P − CT
g (h)Cg(h) > 0, (13)[

r2(P − CT
g (h)Cg(h))− δ1C

T
g (h)Cg(h) ∗

PAg(h) P

]
> 0 (14)

for scalar δ1 < 0. By applying Lemma 3 in [26] and Schur Complement, the inequality
(14) is equivalent to r2P − L1Cg(h)− CT

g (h)L
T
1 ∗ ∗

−PAg(h)− L2Cg(h) P ∗
LT
1 −KT

1 Cg(h) LT
2 K1 +KT

1 − (δ1 + r2)I

 > 0 (15)

with finding the matrices P = PT, L1, L2, K1 and scalar δ1 < 0. Consequently, expanding
the two inequalities (13) and (15) leads to the results (7) and (8) accordingly. To design
the gain matrix Gi, applying Schur Complement to (12) and together with Lemma 2.2 to
(14) gives, respectively,

P − (PAg(h)−Ng(h)Cg(h))[r
2(P − CT

g (h)Cg(h))]
−1(PAg(h)−Ng(h)Cg(h))

T > 0 (16)

and

P − PAg(h)


(r2[P − CT

g (h)Cg(h)])
−1 − (r2[P − CT

g (h)Cg(h)])
−1CT

g (h)

×
[
(−δ1I)

−1 + Cg(h)(r
2[P − CT

g (h)Cg(h)])
−1
CT

g (h)
]−1

×Cg(h)(r
2[P − CT

g (h)Cg(h)])
−1

AT
g (h)P > 0.

(17)
Now, after some simplifications by Lemma 2.2, we get that the left part of (16) is always

greater than the left part of (17) if the matrix Ng(h) is set by

Ng(h) = PAg(h)(P − CT
g (h)Cg(h))

−1CT
g (h)

[
Cg(h)(P − CT

g (h)Cg(h))
−1
CT

g (h)
]−1

,

which means the gain matrix (11) making the inequality (12) holds.
Next, we infer the result about the constraint C2) in the case of f(t) = 0 and e(0) = 0

for the system (3). According to the H∞ optimization theory and the constraint C1),
we consider the performance function E(t) =

∑td
t=0[ε

T(t)ε(t)− η2νT(t)ν(t)], and then get
that the constraint C2) is met if the matrix

S =

 CT
g (h)Cg(h)− P

+AT
gc(h)PAgc(h)

∗

BT
g (h)PAgc(h) BT

g (h)PBg(h)− η2I

 < 0. (18)
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Transforming the inequality S < 0 by Schur Complement yields P − CT
g (h)Cg(h) ∗ ∗
0 η2I ∗

Ng(h)Cg(h)− PAg(h) −PBg(h) P

 > 0. (19)

Then, with the similar manner for the constraint C1), we can obtain the inequality (9)
and the gain matrices Gi as (11).
Finally, as for the constraint C3) in the fault case f(t) ̸= 0 of the system (3) with

e(0) = 0, we consider the performance function Ef (t) =
∑td

t=0[ε
T(t)ε(t) − β2νT(t)ν(t) −

γ2fT(t)f(t)]. Then, similar to the strategy for the constraint C2), the inequality
P − CT

g (h)Cg(h) ∗ ∗ ∗
0 γ2I ∗ ∗
0 0 β2I ∗

Ng(h)Cg(h)− PAg(h) −PDg(h) −PBg(h) P

 > 0 (20)

and the corresponding result (10) are obtained.

Remark 3.1. In Theorem 3.1, the LMI conditions designing the gain matrices indirectly
is potential less conservative. Moreover, the identical transformation were fully employed
during the inferring procedure, which does not increase the number of LMIs. Thus, the
conservatism is introduced as less as possible.

Based on Theorem 3.1, we can achieve the object in Proposition 2.1 by minimizing the
indices η2 and β2. As a result, the following corollary can be deduced.

Corollary 3.1. For the residual system (3), given the performance constraints S(0, r) and
γ > 0, if there exist matrices P = PT > 0, Lj (j = 1, 2, · · · , 9), Kk, δk < 0 (k = 1, 2, 3)
and scalars β > 0 and η > 0 such that for i = 1, 2, · · · , N , the optimization problem:

min
Lj ,P,η,β,δk,Kk

(η2 + β2) s.t. LMIs (7) ∼ (10) (21)

has solution {P0, Kk,0, Lj,0, δk,0, η0, β0}, then the fuzzy observer (2) with gain matrices

Gi = Ai(P0 − CT
i Ci)

−1CT
i

[
Ci(P0 − CT

i Ci)
−1
CT

i

]−1

makes the poles of systems (3) within

the region S(0, r) and the indices η2 and β2 of the constraints C2) and C3) minimized.

Theorem 3.2. For the residual system (3), given the performance constraints S(0, r),
η > 0, γ > 0 and β > 0 with γ > β and γ > η, if there exist matrices P = PT > 0, Ni

such that for i = 1, 2, · · · , N , the following LMIs:{
Uii > 0, (i = 1, 2, · · · , N);
Uij + Uji > 0, (1 ≤ i < j ≤ N)

(22){
Yii > 0, (i = 1, 2, · · · , N);
Yij + Yji > 0, (1 ≤ i < j ≤ N)

(23){
Xii > 0, (i = 1, 2, · · · , N);
Xij +Xji > 0, (1 ≤ i < j ≤ N)

(24)

have solution {P,Ni}, then the fuzzy observer (2) with gain matrices Gi = P−1Ni drives
the eigenvalues of the system (3) within the region S(0, r) and the constraints C2) and
C3) are satisfied, where

Uij =

[
r2P ∗

PAi −NiCj P

]
, Yij =

 P − CT
i Cj ∗ ∗

0 η2I ∗
NiCj − PAi −PBi P

 and
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Xij =


P − CT

i Cj ∗ ∗ ∗
0 γ2I ∗ ∗
0 0 β2I ∗

NiCj − PAi −PDi −PBi P

 .

Proof: Let a Lyapunov function V (e(t)) = eT(t)Pe(t). Then, according to Schur
Complement, Lemma 2.3 and the similar technique in [9, 15], the results in the theorem
can be yielded. Due to pages limitation, the detailed proof is omitted.

Corollary 3.2. For the residual system (3), given the performance constraints S(0, r)
and γ > 0, if there exist matrices P = PT > 0, Ni, scalars β > 0 and η > 0 such that for
i = 1, 2, · · · , N , the following optimization problem

min
P,η,β,Ni

(η2 + β2) s.t. LMIs (22) ∼ (24) (25)

has solution {P0, Ni,0, η0, β0}, then the fuzzy observer (2) with gain matrices Gi = P−1
0 Ni,0

regulates the eigenvalues of the system (3) within the region S(0, r) and the indices η2 and
β2 of the constraints C2) and C3) are minimized.

Theorem 3.3. For the residual system (3), given the performance constraints S(0, r),
η > 0, γ > 0 and β > 0 with γ > β and γ > η, if there exist matrices Ri = RT

i > 0, Ni

and Z such that for i = 1, 2, · · · , N , the following LMIs:{
Ξii < 0, (i = 1, 2, · · · , N);
Ξii

N−1
+ 1

2
(Ξij + Ξji) < 0, (1 ≤ j ̸= i ≤ N)

(26){
Ψii < 0, (i = 1, 2, · · · , N);
Ψii

N−1
+ 1

2
(Ψij +Ψji) < 0, (1 ≤ j ̸= i ≤ N)

(27){
Φii < 0, (i = 1, 2, · · · , N);
Φii

N−1
+ 1

2
(Φij + Φji) < 0, (1 ≤ j ̸= i ≤ N)

(28)

have solution {Ri, Z,Ni}, then the observer (2) with gain matrices Gi = Z−TNT
i regulates

the poles of the system (3) within the region S(0, r) and the constraints C2) and C3) met,
where

Ξji =

[
−r(Ri − Z − ZT) ∗
AT

i Z − CT
i Nj −rRi

]
, Ψji =

 −Ri + Z + ZT ∗ ∗
AT

i Z − CT
i Nj CT

i Cj −Ri ∗
BT

i Z 0 −η2I



and Φji =


−Ri + Z + ZT ∗ ∗ ∗
AT

i Z − CT
i Nj CT

i Cj −Ri ∗ ∗
DT

i Z 0 −γ2I ∗
BT

i Z 0 0 −β2I

 .

Proof: The fuzzy Lyapunov function V (e(t)) =
∑N

i=1 hi(θ)e
T(t)Pie(t) := eT(t)P (h)e(t)

of the system (3) is defined, where Pi = PT
i > 0. Then, by introducing matrix R(h) =∑N

i=1 hi(θ)Ri > 0, the slack matrix variable R(h) − Z − ZT and matrix Ni = GT
i Z, the

processing is similar to the procedure of Lemma 2 in [25], according to Lemma 2.3 and the
inequalities (19) and (20) where the matrix P is P (h) instead. Thus, the corresponding
results in the theorem can be obtained.

Corollary 3.3. For the residual system (3), given the performance constraints S(0, r)
and γ > 0, if there exist matrices Ri = RT

i > 0, Ni, Z and scalars η > 0, β > 0 such that
for i = 1, 2, · · · , N , the following optimization problem:

min
Ri,η,β,Ni,Z

(η2 + β2) s.t. LMIs (26) ∼ (28) (29)
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has solution {Ri,0, η0, β0, Ni,0, Z0}, then the fuzzy observer (2) with gain matrix Gi =
Z−T

0 NT
i,0 makes the eigenvalues of the system (3) within the region S(0, r) and the indices

η2 and β2 of the constraints C2) and C3) optimized.

Remark 3.2. As for the number of LMIs constraints of the above three design methods,
it is obvious that for each performance requirement the method without any reducing tech-
nique is N2, the one in Theorem 3.1 is N , in Theorem 3.2 is N(1+N)/2 and in Theorem
3.3 is N2. Therefore, our proposed method in Theorem 3.1 is with the least number and
is more suitable for systems with more rules. In this sense, the proposed design is said to
be an improved one.

3.2. Numerical example. For the sake of clarity, we named respectively the method in
Theorem 3.1 and Corollary 3.1 as method I, in Theorem 3.2 and Corollary 3.2 as method
II, in Theorem 3.3 and Corollary 3.3 as method III hereinafter. A three-dimension and
four-rule fuzzy system (1) is considered. The parameters are as follows:

A1 =

 0 −0.5 0.9
0.25 0.5 0.5
0.6 0.6 0.1

 , B1 =

 1.05
1.05
1

 , D1 =

 1 0.1
0 0.5
0 1

 , C1 =

[
0.7 −0.2 0
0.2 0.9 0.0

]
;

A2 =

 0 0.5 −1
−0.5 0.5 0.5
0.6 0 1

 , B2 =

 1
0.5
1

 , D2 =

−0.2 0.1
0 −0.5
0 −0.8

 , C2 =

[
0.8 −0.1 0
0.1 1.0 0.0

]
;

A3 =

 0 −0.25 0.45
0.125 0.25 0.25
0.3 0.3 0.05

 , B3 =

 0.525
0.525
0.5

 , D3 =

 0.5 0.05
0 0.25
0 0.5

 , C3 =

[
0.3 0 0.1
0.1 1.0 0.0

]
;

A4 =

 0 −0.333 0.6
0.167 0.333 0.333
0.4 0.4 0.067

 , B4 =

 0.7
0.7
0.667

 , D4 =

 0.667 0.067
0 0.333
0 0.667

 ,

C4 =

[
0.5 0 0.1
0.05 1.0 0.0

]
.

The fuzzy premise variable θ(t) = θ1(t) is assumed within the interval [−80, 80]. The
membership grade functions are shown in Figure 1(a), and the corresponding coefficient
hi(θ) can be obtained. The initial state condition is x(0) = [2.414, 1.413, 1.025]T and
error e(0) = 0. The parameters of the performance constraints from C1) to C3) are,
respectively, C1): S(0, r) = S(0, 0.28), C2): η2 = 9.172, C3): γ2 = 18.40, β2 = 9.459.
Through computing based on methods I – III, we found that only method I could obtain

the desired results, denoted as fuzzy observer I:

G1 =

 −0.65476 0.43777
−0.26011 1.1304
0.53753 0.91265

 , G2 =

 0.58748 −0.58008
−1.0036 0.96905
0.091531 1.148

 ,

G3 =

 −0.80586 0.35248
−0.10288 0.54555
0.98053 0.24544

 , G4 =

 −0.56607 0.41388
−0.0047241 0.7132
0.76938 0.38831

 .

The corresponding closed-loop poles of local observers are z1,2,3 = {−0.0986, 2.067e-015,
2.824e-016} for G1, z1,2,3 = {0.0186, 3.57e-015, 1.021e-011} for G2, z1,2,3 = {−0.1371,
7.65e-014,−5.908e-013} for G3 and z1,2,3 = {−0.1278,−1.756e-014, 5.957e-016} for G4,
respectively. The corresponding global closed-loop poles distribution with θ(t) ∈ [−80, 80]
is illustrated in Figure 1(b). The other two methods could not obtain their solutions. For
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the purpose of performance comparison, the optimal robustness indices η2 and β2 along
with the parameter r ∈ [0, 1] and the fixed index γ2 = 18.4 were observed according to
the corollaries 3.1 – 3.3. In this example, method III failed to get feasible solutions for
given indices r ∈ [0, 1]. The results of the methods I and II are presented in Table 1. It is
obvious that method I can get feasible solutions in a wider range of the parameter r. The
above performance results indicated that our design is less conservative than the other
two methods. It is more attractive for large-scale fuzzy systems with more rules.
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Figure 1. Fuzzy membership function and poles distribution

Table 1. Optimal robustness performance

r 0.15 0.2 0.328 0.35 0.4 0.6 0.8 1.0
η2 method I 34.647 18.197 6.6513 5.8335 4.4568 2.3625 2.3554 2.3554
η2 method II – – 38.16 8.7401 4.4568 2.3625 2.3554 2.3554
β2 method I 327.54 19.358 6.8173 5.9663 4.5423 2.418 2.4149 2.4149
β2 method II – – 50.557 9.1753 4.5423 2.418 2.4149 2.4149

4. Residual Evaluation and Fault Detection.

4.1. Residual evaluation and detection threshold. Taking the on-line fault detec-
tion, time-finite evaluation and the performance requirements into accounts, here an eval-
uation function in terms of the ‘quasi L2-norm’ form of ε(t) is introduced:

J(t) = ∥ε(t)∥Td
=

(
t∑

t−Td

εT(t)ε(t)

)1/2

, (30)

where Td ∈ Z+ and Td < ∞ is an evaluation window. In the function (30), the parameter
Td is vital for FD. Thus, a weighted BIC (bayesian information criterion) information
criterion [27] is introduced here to obtain the smaller value T0 for parameter Td. The
simple algorithm is listed as follows:
Algorithm 1
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Step 1: For each disturbance signal νi(t) (i = 1, . . . , p) time-serial over the length td,

compute the parameter Ltd,i =
[∑td

t=0 ν
T
i (t)νi(t)

]1/2
. Set the loop variable k = 1,

and begin the iterative process.
Step 2: Get the parameter l = int[td/k], where int[td/k] stands for the maximum integer

less than td/k. Then, calculate the parameter λj =
[∑j·k

t=k(j−1) ν
T
i (t)νi(t)

]1/2
,

(j = 1, 2, · · · , l) in the interval [0, td].
Step 3: Compute the parameter: Rss = 1

Ltd,i
| Ltd,i − sup

j
(λj) |, and the BIC criterion:

BICk = σ ln(Rss2)+ k[ln(td)/td], where σ > 0 is a specified weighting coefficient.
Step 4: If k ≥ td, then set the parameter Ti,0 = k when BICk is the minimum one. The

loop ends. Otherwise set k = k + 1 and return to Step 2 if k < td.
Step 5: Set the parameter T0 = max

i
{Ti,0}. The algorithm stops.

The resulted parameter T0 is a lower-bound of Td in the energy and entropy significance.
The practical parameter Td can be selected as severalfold T0 in applications. Then as for
the threshold setting, we select the maximum value of the above J(t) over a reasonable
time interval which is far more than Td in fault-free case.

Jth = sup
ν ̸=0,f=0

∥ε(t)∥Td
(31)

Thus, the logic for the fault detection is

J(t) =

(
t∑

t−Td

εT(t)ε(t)

)1/2

⇒
{

≥ Jth ⇒ a fault is detectecd ⇒ alarm;
< Jth ⇒ fault-free.

4.2. Numerical example. The FD effect of the designed observer I in Section 3.2 is
demonstrated. We assumed that the nonlinear function of the premier variable θ(t) was

θ(t) =

{
18− 40 exp(−0.01t) t ≤ 100,

17.998 t > 100.
(32)

Then, the fuzzy weighting coefficient hi(θ(t)) was obtained by fuzzy computation. To
facilitate the simulation, we also supposed that the unknown disturbances were, respec-
tively, a combined signal of a cosine wave 0.08 cos(0.1t), a step signal of amplitude 0.05,
a noisy signal taking value randomly with normal distribution at zero mean and 0.02
intensity which is exponential attenuating, and a chirp signal with amplitude 0.02 and
frequency varying linearly from 0.001Hz to 0.02Hz. Its upper bound of L2-norm over the
whole simulation time was estimated as ϕν = 4.9837. An abrupt fault occurred in the
first channel between t = 1600 and t = 2400 (see Figure 2(a)). The output y(t) of system
(1) in the fault case is illustrated in Figure 2(b). Obviously, it is difficult to identify the
fault from the output y(t).
Using the FD observer I, the FD task can be accomplished. First of all, the detection

iterative interval Td was obtained as Td = 86 by the Algorithm 1 (see Figure 3(a), where
weighting coefficient σ = 2). And so the detection result is illustrated in Figure 3(b).
When we set the threshold Jth = supν ̸=0,f=0 ∥ε(t)∥Td

= 0.7138 by (31), the evaluation
signal J(t) was beyond the threshold at t = 1627 and then fell back at t = 2474 (see
Figure 3(b)). To this end, it is evident that the FD observer design method I and the
residual evaluation strategy are effective for fault detection.

5. Conclusions. Aiming to the conservatism of existing methods for fuzzy system with
more If-Then rules, an LMI-based fault detection fuzzy observer has been investigated
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Figure 2. Fault signal and system output
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Figure 3. Residual evaluation and fault detection

for a class of T-S fuzzy systems. The matrix identical transformation and relaxing tech-
niques were utilized in our design. Meanwhile, the multiobjective optimization was also
applied to meet the transient behavior, robustness against disturbances and satisfactory
sensitivity to faults. Thus, the designed FD observer can guarantee the given multi-
ple performance constraints and achieve the satisfied fault detection with the suggested
residual evaluation in the paper. It is important to note that our proposed design is just
sufficient condition based on the common Lyapunov function. Extending the strategy
into the multiple Lyapunov functions may be a possible alternative for further improve-
ment. Unfortunately, it is very tricky due to the complexity of identical transformation
applied to the multiple Lyapunov functions. In addition, it is also interesting to extend
the proposed strategy to the fuzzy systems with more complex structure of subsystems.
They are the topics in our future research.
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