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Abstract. In this paper, the composition estimation for the light component in a dis-
tillation column is performed experimentally by a continuous-discrete observer. This
observer is an extension of a continuous-time constant-gain observer developed for sys-
tems having a triangular form. The constant gain allows an easy tuning of the observer
and makes it suitable for its implementation in on-line applications. The main advan-
tage of the continuous-discrete approach is to increase the sampling time of the observer.
This feature is suitable for systems with slow dynamics. The proposed observer is used
to estimate experimentally the molar fractions for a binary mixture (Ethanol-Water) in
a distillation column. The estimates performed for the continuous-discrete observer are
acceptable using long sampling times appropriated for the distillation process.
Keywords: Nonlinear systems, Continuous-discrete observer, Distillation column

1. Introduction. Observers, also called virtual sensors (when used with hardware A/D
systems), are widely used in industrial processes to estimate variables that are not directly
measurable due to the nonexistence or high-cost of the suitable sensors. Because these
variables are used to perform control and diagnosis in practical applications, the knowledge
of the state variables is required.

Observers are also widely used in different control areas, such as observer-based control
[1, 2], fault diagnosis [3, 4], fault-tolerant control [5, 6], process monitoring [7] and system
identification [8]. Nowadays, several papers dealing with the problem of observability
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and the design of nonlinear systems observers involve interesting applications in process
engineering, such as bioreactors [9], polymerization reactors [10] and heat exchangers [11].
Several interesting problems arise when the on-line implementation of observers is re-

quired. One is how to treat the nonlinear discrete-time observers case. In this sense,
a circle-criterion approach to prove stability of discrete-time nonlinear observers is pre-
sented in [12]. The authors in [13] present a design procedure of discrete-time observers
based on linear matrix inequalities. Discrete-time reduced-order observers are studied in
[14, 15], however, it is assumed that the sampling period is constant; in practice, this is
not always true.
Continuous-discrete observers for nonlinear systems were introduced for state affine

systems in [16, 17]. Some researchers have used this approach as an alternative solution
when relatively long-time sampling periods are required. For instance, the authors in [18]
propose the use of continuous-discrete interval observers in applications where discrete
measurements are rarely available. The adaptive case (state and parameter estimation
are performed simultaneously) can be found in [19, 20] with application to polymerization
reactors. More recently, in [21] the authors derive stability conditions for this type of
observers in MIMO systems based on the Lyapunov stability theory. In the previously
cited papers, the gain of the continuous-discrete observer is computed after a coordinates
changes of the original nonlinear system.
As far as the authors have knowledge, just a few papers present an experimental valida-

tion of continuous-discrete observers. The observer proposed in this paper is an extension
of the continuous-time constant-gain observer, presented in [22].
The purpose of this work is to show that the continuous-discrete approach can use longer

sampling periods compared with purely discrete-time observers. This fact is evaluated by
implementing the observer in a process control interface system. The observer estimates,
on-line, the molar fractions of the light component of a binary mixture in a distillation
column, the estimation is performed based on discrete measurements. The effectiveness
of the method is proved by using long sampling times suitable for the distillation process.

2. Constant Gain Observer. In the following sections, superscripts 1 and 2 denote

subvectors, i.e., ζ(t) = [ζ1(t) ζ2(t)]
T
, whereas superscript T denotes matrix transposition.

Subscripts denote the elements of a vector, i.e., ζj(t) = [ζj1(t), ζ
j
2(t), . . . , ζ

j
nj
(t)]T .

Consider the following nonlinear system
ζ̇1(t) = f1(ζ(t),u(t)) + ε1(t)

ζ̇2(t) = f2(ζ(t),u(t)) + ε2(t)

ϱ(t) = [ϱ1(t) ϱ2(t)]
T =

[
Cn1ζ

1(t) Cn2ζ
2(t)

]T (1)

where the states of the system are grouped into two vectors ζ1(t) ∈ Rn1 , ζ2(t) ∈ Rn2 ;
u(t) ∈ Rm is the input vector; ε(t)j ∈ Rnj , j = 1, 2 are two unknown and bounded

disturbance vectors; ϱ(t) = [ϱ1(t) ϱ2(t)]
T ∈ R2 is the measured output vector; Cnj

=
[1 0 . . . 0] ∈ Rnj , j = 1, 2.
f j(t), j = 1, 2 are globally Lipschitz functions, they are uniformly bounded with respect

to the (bounded) state variables ζ(t) and they have the following triangular structure (for
simplicity, time dependency is omitted):

f1(ζ,u) =


f 1
1 (ζ

1
1 , ζ

1
2 ,u)

f 1
2 (ζ

1
1 , ζ

1
2 , ζ

1
3 ,u)

...
f 1
n1−1(ζ

1,u)
f 1
n1
(ζ,u)
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and

f2(ζ,u) =



f 2
1 (ζ

2
1 , ζ

2
2 ,u)

f 2
2 (ζ

2
1 , ζ

2
2 , ζ

2
3 ,u)

...
f 2
n2−2(ζ

2
1 , . . . , ζ

2
n2−1,u)

f 2
n2−1(ζ

2,u)
f 2
n2
(ζ,u)


2.1. Continuous-time constant-gain observer. Consider the following notations

i)

Anj
(t) =


0 a1(t) 0 0
... a2(t) 0

0
. . . anj−1(t)

0 . . . 0 0

 (2)

where ak(t), k = 1, . . . , nj−1 are bounded and unknown functions that should satisfy
assumption (H1):

• H1: There exist two finite strictly positive real numbers α, β, such as α ≤ ak(t) ≤ β.

ii)

Snj
=


s11 s12 0 0

s12 s22
. . .

...

0
. . . . . . 0

...
. . . s(nj−1)nj

0 . . . 0 s(nj−1)nj
snjnj

 (3)

Lemma 2.1. As in [22], assume that (H1) holds, then for every σj > 0, j = 1, 2 there ex-
ists a nj×nj Symmetric Positive Definite (S.P.D.) constant matrix Snj

, given in Equation
(3) and ∃ηj > 0 such that

AT
nj
(t)Snj

+ Snj
Anj

(t)− σjC
T
nj
Cnj

≤ −ηjInj
, ∀t ≥ 0; j = 1, 2 (4)

where Anj
(t) is given by Equation (2), Inj

is the nj × nj identity matrix.

By considering the notations defined above, the following theorem is given:

Theorem 2.1. Denote by ε the least upper bound of ∥εj(t)∥, j = 1, 2, i.e., ε = supt≥0

∥εj(t)∥ (sup denotes the supremum). Let δ1, δ2 two strictly positive constants such that

2n1 − 1

2n2 − 1
δ1 < δ2 <

2n1 + 1

2n2 − 1
δ1; (5)

and ∆θδj = diag(θδj , θ2δj , . . . , θnjδj), j = 1, 2. Then, there exist two S.P.D. matrices Snj
,

j = 1, 2 given by Lemma 2.1 such that the system

˙̂
ζ1(t) = f1

(
ζ̂(t),u(t)

)
− r1∆θδ1S

−1
n1
CT

n1

(
Cn1 ζ̂

1(t)− ϱ1(t)
)

˙̂
ζ2(t) = f2

(
ζ̂(t),u(t)

)
− r2∆θδ2S

−1
n2
CT

n2

(
Cn2 ζ̂

2(t)− ϱ2(t)
) (6)

where r1 > 0, r2 > 0; θ > 0; ∃ λ1 > 0, λ2 > 0, ν > 0; is an observer for the system given
in Equation (1), such that ∀ζ̂(0), ζ(0), ∥ζ̂(t)− ζ(t)∥ ≤ λ1 exp(−νt)∥ζ̂(0)− ζ(0)∥+ λ2ε.

A full demonstration of this theorem is presented in [22]. Note that this observer can
be easily implemented because of its constant gain.
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2.2. Discrete observer. The observer shown in Equation (6) assumes that the mea-
surements are continuously available. However, this is not always the case in industrial
applications. If the measurements are digitally available with a sampling time Ts, then a
discrete-time version of the observer shown in Equation (6) is obtained by approximating
the derivatives. This approximation is performed by using a forward Euler discretization
as follows:

ζ̂1(tk+1) = ζ̂1(tk) + Ts

[
f1

(
ζ̂(tk),u(tk)

)
− r1∆θδ1S

−1
n1
CT

n1

(
Cn1 ζ̂

1(tk)− ϱ1(tk)
)]

ζ̂2(tk+1) = ζ̂2(tk) + Ts

[
f2

(
ζ̂(tk),u(tk)

)
− r2∆θδ2S

−1
n2
CT

n2

(
Cn2 ζ̂

2(tk)− ϱ2(tk)
)] (7)

where the terms tk and tk+1 are the simplified form of kTs and kTs + Ts respectively, and
Ts is the sampling time.
The main disadvantage of using discrete-time observers (discretized by the method

described above), is that the sampling period Ts of the data acquisition system coincides
with the integration step of the observer differential equations shown in Equation (7).
If small integration steps are used to solve the differential equations in (7), then small
sampling periods Ts will be required. In this case, the observer implementation could not
be possible due to technical problems such as: physical limitations of the data acquisition
system, time-delays due to the sensors physics and/or the time needed to process data.
Many of these problems are solved by using continuous-discrete observers.

2.3. Continuous-discrete observer. Consider the continuous-time system with dis-
crete measurements given by:

ẋ(t) = f(x(t)) + g(x(t))u(t)

ϱ(tk) = h(x(tk))
(8)

where x(t) ∈ Rn is the state vector, f(x(t)) and g(x(t)) are two n×1 smooth vector fields,
u(t) ∈ Rm is a measurable input and ϱ(tk) ∈ R is a measurable output correlated to the
state by ϱ(tk) = h(x(tk)). The term tk is used to denote discrete-time dependence.
Authors in [16] propose an alternative solution to the state estimation problem which

consists in the use of a continuous-discrete observer. This type of observer is suitable
when the measurements are available in relatively long sampling periods, see for instance
[17, 18]. In [23], it is demonstrated that certain restrictions in the dimension of the
sampling period used by a purely discrete observer exist.
The continuous-discrete observer proposed in [16] for the system given in Equation (8)

is a recursive algorithm which is given in two steps:
Step 1: A prediction step in the semi-open time interval t ∈ [tk, tk+1):

˙̂x(t) = f (x̂(t)) + g (x̂(t))u(t)

Ṡ(t) = −θS(t)−ATS(t)− S(t)A
(9)

Step 2: A correction step at time t = tk+1:

x̂(tk+1) = x̂(t−k+1)−K
(
x̂
(
t−k+1

)) [
h
(
x̂(t−k+1)

)
− ϱ(tk+1)

]
S(tk+1) = S

(
t−k+1

)
+ TeC

TC
(10)

where Te is the sampling time and K
(
x̂(t−k+1)

)
is the observer gain which depends on the

state x̂(t−k+1). S(tk+1) is a symmetric positive definite matrix. The matrix A is:
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A =


0 1 0 0
... 1 0
0 0 1
0 . . . 0 0


and C = [ 1 0 . . . 0 ].

The expression t−k+1 represents the limit value of a variable at tk+1, e.g.,

S(t−k+1) = lim
t→tk+1

S(t).

It can be easily noticed that this observer is composed by (i) a mathematical model of
the process in the prediction step and (ii) a correction term composed by the observer
gain and the error of the process output (with respect to the estimated output) in the
correction step. By considering this fact, the following proposition is stated.

Proposition 2.1. Given the continuous-time system with discrete measurements given
by: 

ζ̇1(t) = f1(ζ(t),u(t)) + ε1(t)

ζ̇2(t) = f2(ζ(t),u(t)) + ε2(t)

ϱ(tk) = [ϱ1(tk) ϱ2(tk)]
T =

[
Cn1ζ

1(tk) Cn2ζ
2(tk)

]T (11)

where the states ζj(t), the input vector u(t), the disturbance vectors ε(t)j and vector fields
f j(·) (j = 1, 2) are defined similarly to the continuous case, a continuous-discrete observer
is given in two steps:

Step 1: A prediction step in the semi-open time interval t ∈ [tk, tk+1):

˙̂
ζ1(t) = f1

(
ζ̂(t),u(t)

)
˙̂
ζ2(t) = f2

(
ζ̂(t),u(t)

) (12)

Step 2: A correction step at time t = tk+1:

ζ̂1(tk+1) = ζ̂1(t−k+1)−Q1θ

[
Cn1 ζ̂

1(t−k+1)− ϱ1(tk+1)
]

ζ̂2(tk+1) = ζ̂2(t−k+1)−Q2θ

[
Cn2 ζ̂

2(t−k+1)− ϱ2(tk+1)
] (13)

where the observer gains Qjθ are given by Qjθ = rj∆θδjS
−1
nj C

T
nj for j = 1, 2 and ∆θδj ,

Snj, Cnj defined in Subsection 2.1.

The tuning parameters of the proposed observer are rj (j = 1, 2) and θ.
The constant gain is obtained due that the structure of the system in Equation (12)

satisfies the conditions given in [22]. Currently, there is not an available research that
combines these two results. In this paper, experimental evidence of the operation of
the continuous-discrete constant-gain observer is presented. However, formal evidence is
required.

3. Application to a Distillation Column. In distillation columns, the estimation of
the states that are not measurable or that can only be measured through the combination
of some state variables is a fundamental problem. One of the most important variables
to consider is the composition of the distilled product, which indicates its quality (purity
of the product).

Applying control systems in distillation columns requires the continuous information of
the molar compositions of the components. The measurement of this variable can be per-
formed through direct analyzers, such as gas chromatograph or refractive index detectors.
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Nevertheless, the costs of investment, implementation and maintenance of these tech-
niques, are very high. Thus, some authors (see for instance [24, 25]), propose estimating
this variable through secondary measurements (such as temperature and pressure).
Diverse techniques have been developed in order to estimate molar compositions in

distillation columns based on the available measurements of temperature, i.e., a neural
based soft-sensor is presented in [26], an extended Luenberger observer in [25], an extended
Kalman Filter in [27] and a high-gain observer is synthesized in [28].

3.1. The mathematical model of the distillation column. A distillation column
consists of trays, a condenser and a boiler, (see Figure 1). The condenser is labeled with
number 1, the boiler with number n and the intermediate trays are numbered ascending
from the condenser to the boiler. The feeding mixture is deposited in the tray number f ,
named the feeding tray.

Figure 1. Distillation column

The caloric energy is provided by a heating element located in the boiler, which causes
the evaporation of the liquid stored into it. The condenser is located in the superior
part of the column and its function is to cool and condense the vapor that arrives from
the body of the column until it becomes liquid. In this part of the column the reflux is
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performed, where everything or a part of the condensed liquid returns to the column to
allow the equilibrium phase.

A mathematical model of the system is required to design a state observer; this model
provides the structure on which the observer is based.

The following assumptions are considered to model the distillation column:

A1. The mixture is binary (Ethanol-Water).
A2. The components of the mixture are 100 % pure.
A3. The pressure inside the column is constant.
A4. The vapor molar mass is insignificant compared with the liquid molar mass.
A5. The condenser is total.
A6. The molar flow F and the liquid composition xf of the feeding stream are known.
A7. The process enthalphies are considered constant.
A8. The molar mass retention is considered constant in every tray.

Under the above considerations, the following simplified model is obtained:

M1ẋ1 = VR(y2 − x1)

Mpẋp = VR(yp+1 − yp) + LR(xp−1 − xp), p = 2, . . . , f − 1

Mf ẋf = VSyf+1 − VRyf + LRxf−1 − LSxf + Fxf

Mpẋp = VS(yp+1 − yp) + LS(xp−1 − xp), p = f + 1, . . . , n− 1

Mnẋn = VS(xn − yn) + LS(xn−1 − xn)

(14)

where xp and yp are the liquid and vapor molar fractions (respectively) of the components
in every tray. Vp and Lp are the molar flows of the system, which are considered constant
and denominated as VR, VS, LR and LS; subindex R and S correspond to the rectifying
and stripping sections of the column, respectively.

3.1.1. State-space model. The states of the model are the liquid compositions xi (i =
1, . . . , n) (it is worth noting that the meaning of n is associated with the context: the
dimension of the state or the total number of trays in the column. In the subsequent
paragraphs, both interpretations are correct). They can be classified in two vectors:

x1(t) =


x1

x2
...

xf−1

 ∈ Rn1 x2(t) =


xn

xn−1
...
xf

 ∈ Rn2

where clearly n1+n2 = n. Physically, the elements of the vectors x1(t) and x2(t) represent
the liquid compositions in the rectifying and the stripping sections respectively.

The two control variables are u(t) = [u1(t) u2(t)]
T = [V L]T . These input variables

can be manipulated by varying the heating power applied on the boiler Qb(t) and the
opening period of the reflux valve rv(t) respectively.

If the top and the bottom product compositions x1 and xn can be measured, then the
measured output vector is ϱ(t) = [ϱ1(t) ϱ2(t)]

T = [x1(t) xn(t)]
T .

The above notations lead to the following compact representation of the dynamical
mathematical model of the distillation column, considering discrete-time measurements:

ẋ1(t) = f1(x(t),u(t))

ẋ2(t) = f2(x(t),u(t))

ϱ(tk) = [Cn1x
1(tk) Cn2x

2(tk)]
T

(15)
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where x(t) = [x1(t) x2(t)]
T ∈ Rn, and

f1(x,u) =


f 1
1 (x

1
1, x

1
2,u)

f 1
2 (x

1
1, x

1
2, x

1
3,u)

...
f 1
n1−1(x

1,u)
f 1
n1
(x,u)



f2(x,u) =



f 2
1 (x

2
1, x

2
2,u)

f 2
2 (x

2
1, x

2
2, x

2
3,u)

...
f 2
n2−2(x

2
1, . . . , x

2
n2−1,u)

f 2
n2−1(x

2,u)
f 2
n2
(x,u)


Cnj

= [1 0 0 . . . 0] (j = 1, 2)

4. Observer Implementation and Results. Considering the distillation column model
given in Equation (15) the following assumptions are physically verified:

A9. The flow rates are physically bounded.
A10. The liquid compositions xp ∈ [0, 1].

The nonlinear model presented in Equation (15) has the same form than the system
given in Equation (11), where the states ζ(t) are replaced by x(t) and the disturbances
εj(t) = 0, j = 1, 2 (usually, F and xf are assumed known, see assumption A6). Then,
according to the Proposition 2.1 given in Subsection 2.3, the discrete observer given by
Equation (6) and the continuous-discrete observer given by Equations (9) and (10) allow
estimating the molar compositions x1 . . . xn, based on the measurement of the top and
the bottom molar compositions (x1(t) = ϱ1(t) and xn(t) = ϱ2(t), respectively).
To validate the discrete and continuous-discrete observers performance, several on-line

experiments were developed in the distillation pilot plant. A typical operation is presented
in this paper. In order to implement (on-line) the proposed observer, a process control
interface system was developed by using an adequate instrumentation software.

4.1. Process control interface brief description. The process control interface for
a distillation process, is an on-line application that has the advantage of supervising the
behavior of the process variables and manipulating the actuators of a distillation pilot
plant. The graphic interface of the developed station is shown in Figure 2.
By using this interface the user can access different subprograms, through a button

menu, in order to execute a desired action over the distillation plant, such as monitoring
the temperature, heating the resistors and controlling the reflux valve. This interface has
the aim of improving the quality of the distilled product, enhancing the process behavior
and increasing the security level of the column.
The user can access the observer program through the menu button that is circled in

red in Figure 2.
A special graphic interface was developed to show the estimation results obtained

through the observer execution (see Figure 3). This interface presents the on-line es-
timation of the molar compositions of the system. These estimations are based on the
available temperature measurements of the distillation plant.
The graphic interface allows the user to choose the variable to be displayed: estimated

temperatures, estimated compositions or measured temperatures. The user can select
from one to n trays to be displayed in the window, in order to visualize the estimated and
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Figure 2. Process control interface

Figure 3. Observer graphic interface
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measured variables comparison. Besides, it presents, on-line, the numerical value of the
desired variable. A complete description of this interface can be found in [29].

4.2. Experimental results. The distillation column consists of n = 12 trays (including
the boiler and the condenser); it can be used in batch or continuous operation.
The temperature measurements are available in trays 1, 2, 4, 6, 7, 9, 11 and 12, through

8 Pt-100 RTD sensors. The measurements used in the observer correspond to the boiler
(tray 12) and the condenser (tray 1).
The physical variables that can be considered as manipulable inputs in the column are:

the heating power of the boiler (0-2500 watts) and the reflux rate. These variables allow
controlling the liquid and vapor molar compositions of the light component. The flow,
molarity and temperature in the feeding mixture are the perturbations of the process,
and they are considered known (in accordance with assumption A6).
The mixture used in this study is Ethanol-Water, characterized as a non-ideal mixture,

due that its components form an azeotrope. The thermodynamic properties of the mixture
are given in Table 1. The initial operation conditions used for the experiment are presented
in Table 2.

Table 1. Ethanol and water thermodynamic properties

Parameter Ethanol Water Units
Density (ρi) 0.789 1 g/cm3

Molecular weight (Wi) 46.069 18.015 g
Boiling Temperature (Tbi) 78.400 100 ◦C
Specific heat (Cpj) 0.112 0.076 kJ/mol ◦C

Table 2. Initial operating conditions

Parameter Value Units
Ethanol volume in the boiler 3700 ml
Water volume in the boiler 300 ml
Boiler heating power 1250 watts
Cooling liquid flow 250 L/h
Pressure 84.92 kPa

Because the main objective of this work is to estimate the light component composition,
the initial composition is settled in 0.7919 in order to determine if the observer is capable
of estimate small changes in the trays compositions under high-composition conditions.
The azeotrope characteristics limit the operating range in a simple distillation process

(maximum composition = 0.89 – under the experiment pressure conditions).
Table 3 presents the operating conditions used to validate the observer under changing

conditions. The events (changes in a process input or perturbation) are presented in
chronological order. Recall that the heating power Qb(t) affects the control variable V ,
and the reflux rate rv(t) affects the control variable L. It can be noticed that the heating
power Qb is increased once during the experiment. The reflux variable rv is manipulated
via an on-off valve. When the valve is turned off, all the distillate is returned to the column
(Total reflux), whereas, when the valve is turned on, all the distillate is withdrawn from
the condenser. The Pulse legend in Table 3 means that the reflux valve sequentially turns
on and off every 3s.
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Table 3. Process inputs and perturbations

Input Value Execution time
Qb 1250 watts 0 min
rv Total 0 min
Qb 1500 watts 53 min
Qb 1750 watts 72 min
rv Pulse (ton = 3s, toff = 3s) 90 min
rv Total 100 min
Qb 1500 watts 108 min
Qb 1250 watts 128 min

The continuous-discrete observer given by Equations (12) and (13) was implemented in
the process control interface described in Subsection 4.1. The measured process outputs
were the temperatures in trays 1 and 12. These temperatures were used to calculate
the observer inputs ϱ1(t) = x1(t) and ϱ2(t) = x12(t) by means of the thermodynamic
properties of the mixture [30]. The integration of the continuous differential equations
was carried out using a Runge-Kutta first order method (Euler) with an integration step
of 0.05s. The design parameters of the observer were n1 = 6, n2 = 6. The values δ1 = 1,
δ2 = 1.29 were selected to satisfy Equation (5). The tuning parameters were θ = 2,
r1 = 3, r2 = 3. These values allow to compute ∆θδj = diag(θδj , θ2δj , . . . , θnjδj). An
adequate S.P.D. matrix Sn1 = Sn2 that satisfies Equation (4) is:

Snj
=


1 −1 0 0 0 0

−1 2 −1.5 0 0 0
0 −1.5 4 −2 0 0
0 0 −2 8 −3 0
0 0 0 −3 10.5 −4
0 0 0 0 −4 15.5


The initial conditions of the observer were

x̂1(0) = [x̂1(0), . . . , x̂6(0)]
T = [0.88 0.87 0.865 0.862 0.86 0.85]T

x̂2(0) = [x̂12(0), . . . , x̂7(0)]
T = [0.79 0.795 0.8 0.82 0.84 0.8417]T

The initial conditions do not affect the observer convergence; the observer converges
independently of their value. However, these conditions and the discrete sampling time
affect the time in which the observer reaches the reference signal; a bigger difference
between these values (initial and reference) implies a bigger convergence time.

In order to validate the continuous-discrete observer performance, its response was
compared to the discrete observer response under different discrete sampling periods.
Figures 4 to 6 show the results obtained in trays 1, 3 and 12 when Ts (discrete observer)
and Te (continuous-discrete observer) are equal to 3s. The first two figures belong to the
rectifying section and the last to the condenser (distilled product) of the column.

These figures show the measured compositions (solid lines) and the compositions es-
timated by the observer x̂i (dotted lines). The upper figure corresponds to the discrete
observer, the lower belongs to the continuous-discrete observer. The graphics were edited
in Matlabr. As expected, the variations on the molar concentrations reflect the vari-
ations on the operating conditions. The variations on the measured data is due to the
opening and closure of the reflux valve.

These results allow appreciating that the observer estimates are quite acceptable, even
near the azeotrope condition and under small value measurement changes, (error less than
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Figure 4. Liquid composition in tray 1 (Ts = Te = 3s)

Figure 5. Liquid composition in tray 3 (Ts = Te = 3s)

Figure 6. Liquid composition in tray 12 (Ts = Te = 3s)
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Figure 7. Liquid composition in tray 3 (Ts = Te = 30s)

Figure 8. Liquid composition in tray 3 (Te = 2.5m)

5 percent in the worst case) considering the simplicity of the model used in the observer
design. It can be seen in Figures 4 and 6 that the estimates x̂1 and x̂12 converge better
than x̂3 towards the measured values. This is a normal occurrence, considering that x1

and x12 are the measured process outputs (the observer inputs).
In a different experiment, but considering same initial, input and operating conditions,

the sampling time was increased to 30s. As can be seen in Figure 7, the continuous-
discrete observer properly converges to the reference signal, whereas the discrete observer
does not estimate the light composition properly (the estimated value is not even close
to the measured one, so it does not appear in the figure). For the sake of simplicity only
Tray 3 is depicted.

Different sampling times were used to validate de continuous discrete observer perfor-
mance. Figures 8 and 9 show the estimated values for Te = 2.5 and 5 minutes, respectively.
As can be seen, the observer can estimate the light component of the mixture regardless
the sampling time, however, the longer the sampling time the bigger the estimation error.

5. Conclusions. In this work, a continuous-discrete observer used to estimate the light
component of a binary mixture in a distillation column was presented. One of the main
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Figure 9. Liquid composition in tray 3 (Te = 5m)

advantages of this observer is that it can be used for slow-dynamic processes, such as
distillation, where the reference data can be measured using long sampling times without
affecting the observer operation, unlike the discrete observer, where a long sampling time
can cause an undesirable behavior.
Several experiments where performed in order to validate the continuous-discrete ob-

server performance compared to the discrete one. The continuous-discrete version of the
observer has an adequate performance regardless the sampling time, however, the esti-
mation error increases if the sampling time is increased. It is necessary to experimentally
determine the maximum sampling time in order to obtain an adequate estimation of the
light composition of the mixture.
The obtained results demonstrate the adequate performance of the continuous-discrete

observer under different sampling time conditions. In addition, the constant gain feature
of the observer, allows to tune easily the parameters of the observer, making it suitable
for its on-line application.
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Appendix. Nomenclature.

Subscripts
f feeding tray
i tray number
n total number of trays
p tray number
R rectifying section
S stripping section
Lowercase letters
bv bottom valve opening, [0, 1]
f feeding tray
i tray number
n total number of trays
p tray number
qF quality of the feed
rv reflux valve opening, [0, 1]
v volume ml3

w weight fraction
x liquid compositions
xeq liquid compositions in equilibrium
y vapor compositions
yeq vapor compositions in equilibrium
zf feed composition
Capital letters
B bottom product, mol/min
Cp specific heat, kJ/mol◦C
D distilled product, mol/min
E Murphree’s efficiency
F molar flow of the feeding stream, mol/min
FV volumetric flow of the feeding stream, mL/min
K equilibrium constant
L liquid molar flow, mol/min
LR liquid molar flow (rectifying section), mol/min
LS liquid molar flow (stripping section), mol/min
M molar hold-up, mol
P sat partial pressure (saturation), kPa
PT total pressure, kPa
Qb heating power, Watts
T temperature, ◦C
Tb boiling temperature, ◦C
TF feeding temperature, ◦C
V vapor molar flow, mol/min
VR vapor molar flow (rectifying section), mol/min
VS vapor molar flow (stripping section), mol/min
W molecular weight, g
Greek letters
ρ component density, g/cm3


