
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2012 ISSN 1349-4198
Volume 8, Number 1(B), January 2012 pp. 647–657

MINING SEQUENCE MOTIFS FROM PROTEIN DATABASES
BASED ON A BIT PATTERN APPROACH

Ye-In Chang, Chen-Chang Wu, Jiun-Rung Chen and Yin-Han Jeng

Department of Computer Science and Engineering
National Sun Yat-Sen University

No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan
changyi@cse.nsysu.edu.tw; {wucc; chenjr; jengyh }@db.cse.nsysu.edu.tw

Received September 2010; revised April 2011

Abstract. Proteins are the structural components of living cells and tissues, and thus
an important building block in all living organisms. Sequence motifs in proteins are some
subsequences which appear frequently. Motifs often denote important functional regions
in proteins and can be used to characterize a protein family or discover the function
of proteins. The SP-index algorithm was proposed to find sequence motifs containing
gaps of arbitrary size. To find motifs, it constructs B-trees for indexing the occurring
positions of short segments. Then, to check whether a long pattern composed of short
segments appears frequently, the SP-index algorithm needs to test a large number of nodes
of those B-trees, which may not be efficient. Therefore, in this paper, we propose the Bit-
Pattern-based (BP) algorithm to improve the efficiency of the SP-index algorithm. First,
the BP algorithm transforms the protein sequences into bit patterns. Then, instead of
testing a large number of nodes in the SP-index algorithm, the BP algorithm utilizes
bit operations, i.e., AND, OR, shifting and masking, to efficiently find sequence motifs.
The BP algorithm also performs a pruning step to reduce the processing time. From the
experimental results on biological and synthetic data sets, we show that the BP algorithm
needs shorter processing time than the SP-index algorithm.
Keywords: Bit pattern, Data mining, Motif, Protein, Sequential pattern

1. Introduction. Proteins are the structural components of living cells and tissues, and
thus an important building block in all living organisms. The normal protein size is a
hundred amino acids, while large proteins can reach over a thousand amino acids [1, 12].
Only 20 different amino acids, i.e., {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, Y}, make up the diverse array of proteins found in living things [2]. Protein sequences
have the form of X1 ∗X2 ∗ . . . ∗Xn, where each Xk is a short consecutive items, called a
segment, and ∗ denotes a variable length gap [8, 15]. One of the important tasks is the
discovery of sequence motifs from the primary structure of proteins [7]. Sequence motifs
are frequent patterns in the protein sequences, which typically correspond to residues
conserved during evolution due to an important structural or functional role. Finding
frequent patterns is often the first step in sequence analysis such as classifying protein
sequences, extracting protein features, identifying transcription factor binding sites and
predicting protein structures [15, 17]. In this paper, we will focus on how to efficiently find
frequent patterns with gaps of arbitrary size from a large database of protein sequences.

There were two approaches proposed to find deterministic motifs: sequence driven
(SD) and pattern driven (PD). For algorithms based on the SD approach, they do global
multiple sequence alignments to find the frequent patterns in protein sequences. However,
finding the optimal multiple alignment is an NP-hard problem [17]. Therefore, SD-based
algorithms often use heuristic algorithms to obtain the approximate multiple alignments

647



648 Y.-I. CHANG, C.-C. WU, J.-R. CHEN AND Y.-H. JENG

to improve the efficiency, and cannot guarantee to find the optimal results [6]. Many
SD-based algorithms improve the string matching skills to solve the problem, e.g., suffix
trees and the BLAST algorithm [4].
For algorithms based on the PD approach, they often use the data mining skills. When

mining protein sequence patterns, we need to consider gaps and order in the patterns.
Therefore, the problem can be considered as a sequential patterns mining (SPM) problem
[3]. The original SPM is studied in market-basket analysis, where a transaction sequence
can be a purchase sequence, a web link stream, etc. [3, 10, 13, 14, 16]. Traditional algo-
rithms of SPM were usually designed for short sequences over a large alphabet, but may
not be efficient for protein sequences with a long length and a small alphabet. Moreover,
in SPM, a sequential pattern does not consider that one item is purchased more than
once at the same time, while in protein sequence discovering, multiple appearances of
one animo acid at the same time, e.g., “MM∗NN”, are allowed. Therefore, skills used in
algorithms of SPM, e.g., the SPAM algorithm [5], need to be improved to be adaptable
to the problem of protein sequence discovering for PD-based algorithms.
Based on the traditional SPM algorithms, Wang et al. proposed the SP-index algo-

rithm to find the longest sequential pattern with gaps of arbitrary size [15]. The SP-index
algorithm considers the multiple-appearance problem and the characteristics of bioinfor-
matics. Although the SP-index algorithm considers the characteristics of bioinformatics,
it still contains some time-consuming steps. The first phase in the SP-index algorithm
is producing all segments. Then, these segments are used to find the longest pattern in
the second phase. There are too many unnecessary segments for producing the longest
pattern. The SP-index algorithm uses the base segments to produce the SP-tree. The
more the base segments are, the longer the time of tracing the tree is. In the second phase,
the SP-index algorithm uses the SP-tree to check whether segment A can be linked after
segment B or not. This step needs long time, since it has to trace many nodes to get
the result. If there are many unnecessary segments in the first phase, the second phase is
time-consuming, since the number of segments is too large.
Therefore, to avoid the above disadvantages, we propose the Bit-Pattern-Based (BP)

algorithm to mine sequential patterns in a protein database. In our proposed algorithm,
first, we transform the protein sequences into bit sequences. Second, we use shifting
and the AND operator to get frequent segments. After getting frequent segments, we
prune unnecessary segments. Finally, we use OR and mask operators to get sequential
patterns. Because we reduce the number of candidate segments and apply bit operations,
our algorithm will be more efficient than the SP-index algorithm. From our performance
study based on the biological data and the synthetic data, we show that our proposed
algorithm is more efficient than the SP-index algorithm.
The rest of this paper is organized as follows: Section 2 briefly introduces the SP-index

algorithm; Section 3 presents the proposed BP algorithm; in Section 4, we study the
performance of the BP algorithm and make a comparison with the SP-index algorithm;
finally, we give conclusions in Section 5.

2. The SP-index Algorithm. The SP-index algorithm [15] uses a scalable two-phase
algorithm to deal with mining frequent patterns from protein sequences. First, the seg-
ment phase searches for frequent segments containing no gap, and generates base segments
from these frequent segments. An SP-index is built to index the occurring positions of
these base segments. Then, by utilizing the SP-index, the pattern phase searches for
the long frequent patterns containing multiple frequent segments separated by gaps with
variable lengths. Table 1 shows an example database of protein sequences, DB.



MINING SEQUENCE MOTIFS FROM PROTEIN DATABASES BASED ON BP 649

Table 1. The example database

ID Sequence

S1 ABDACDAB
S2 ABACDA
S3 AACDC

Figure 1. An example of the SP-index

Assuming that the minimal support is 2/3, the frequent segments are {AB, AC, CD,
DA, ACD, CDA, ACDA}. Base segments are those frequent segments with length equal
to parameter MinLen. Figure 1 shows the SP-index with MinLen = 2, where each
base segment has a B-tree for indexing its occurring positions, and only the leaf nodes of
each B-tree are shown here. After building the SP-index, a query Q(X, s, i) can find the
smallest position of subsequence X appearing after position i of sequence s.

In the pattern phase, the SP-index algorithm generates all frequent patternsX1∗. . .∗Xk

by using frequent segments Xi found in the segment phase. Basically, it enumerates the
possible combinations of all frequent segments. Then, for each combination of frequent
segments, it performs several queries Q(X, s, i) to check whether the pattern of this com-
bination is frequent. For example, we want to check whether pattern {AC}∗{AB} is
frequent. According to the occurring positions of the first segment {AC} in Figure 1, this
algorithm tests three queries, i.e., Q(AB, S1, 4), Q(AB, S2, 3) and Q(AB, S3, 2). Then, it
counts the number of sequences appearing in those queries which return a position re-
sult. Only if this number is not less than the minimal support, this pattern is frequent.
In the above example, only the first query returns a position result. Therefore, pattern
{AC}∗{AB} is not frequent. In this case, {AB} is added to a set, {AC}.dead, to indicate
that segment {AB} can not appear after segment {AC}.

From the above example, we could see that in the SP-index algorithm, as the size of
the B-tree of each base segment increases, the number of nodes needed to be checked
during the testing process of queries also increases. Moreover, there exist many frequent
segments which do not need to be considered when generating long patterns. For example,
assume that there are two frequent segments, {DA} and {CDA}, with the same number
of appearances. If pattern {CDA}∗X is frequent, we do not need to consider pattern
{DA}∗X. This is because we only focus on the longest pattern.

3. The BP Algorithm. In this section, we present the Bit-Pattern-based (BP) algo-
rithm. First, we formally define the problem as follows. A pattern “X1 ∗X2 ∗ . . . ∗Xn”
matches one sequence if each segment Xi matches itself in order and each ∗ can be substi-
tuted for zero or more items [9]. The support of one pattern is the percentage of sequences
matched by this pattern in a database DB. Given a minimal segment length MinLen
and a minimal support MinSup, pattern X1 ∗X2 ∗ . . .∗Xn is frequent, if | Xi |≥ MinLen



650 Y.-I. CHANG, C.-C. WU, J.-R. CHEN AND Y.-H. JENG

Table 2. Table BM

S1 S2 S3

A B D A C D A B A B A C D A A A C D C

BS{A} 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0
BS{B} 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
BS{C} 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
BS{D} 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0

for 1 ≤ i ≤ n and the support of this pattern is at least TH, where TH is the threshold
in the BP algorithm. The goal is to find the longest frequent pattern from all protein
sequences. Basically, the BP algorithm contains three steps: (1) transforming protein
sequences into bit patterns; (2) finding the frequent segments and pruning the unnec-
essary frequent segments; and (3) finding the longest pattern. We will use an example
to demonstrate the proposed BP algorithm later. Let DB be a collection of sequences
{S1, S2, S3}. Each sequence Si is composed of 4 alphabets: {A,B,C,D}. Database DB
is shown in Table 1. TH is 2. The minimal length of a segment, MinLen, is 2.
In Step 1, we transform the protein sequences into bit patterns. We will transform the

bits corresponding to the occurring positions of one code in a protein sequence to ‘1’.
We store this information in table BM , as shown in Table 2. For example, the protein
sequence S1 is “ABDACDAB”. Code A appears in the first, the fourth, and the seventh
positions. Therefore, the bit pattern of code A is 10010010.
In Step 2, there are two parts: (1) using the AND operator to find all frequent seg-

ments; and (2) pruning unnecessary segments. A segment refers to one or more codes at
consecutive positions in a sequence. When the number of the segment found in protein
sequences is at least TH, we call it a frequent segment.

Definition 3.1. If a segment F starts at t-th position of a sequence S, we let the t-th bit
of the bit pattern of F be 1.

Consider the characteristic described as follows. For protein sequence S, assume that
there are two segments whose lengths are k and 1, respectively. If the longer segment
ends at position t and the shorter one starts at position (t + 1), there exists a segment
with length (k + 1) in sequence S, which is composed of these two segments.
By this characteristic, any segment can be composed of two subsegments. If two sub-

segments can form a long segment, one segment must end at position t and the other
segment must start at position (t+1). When we want to find a long segment, we can find
two subsegments in which one subsegment occurs from position t to position (t+ k), and
the other subsegment occurs at position (t + k + 1). Now, we consider how to use these
bit patterns to get frequent segments by this characteristic.

Property 1. Consider a protein sequence, Seq = f1f2 . . . fk, where fi is an acid amino
for 1 ≤ i ≤ k. There are two segments F and F ′ in sequence Seq, where F =
ftf(t+1) . . . f(t+m−1) (whose length is m) and F ′ = f(t+m) (whose length is 1). We have
two bit patterns for segments F and F ′, denoted as BSF and BSF ′ respectively, where
BSF = 01 . . . 0(t−1)1t0(t+1) . . . 0k and BSF ′ = 01 . . . 0(t+m−1)1(t+m)0(t+m+1) . . . 0k. If we shift
the bits of BSF ′ to left by m bits (where m is the length of segment F ), the new BSF ′ will
be 01 . . . 0(t−1)1t0(t+1) . . . 0k, and bit ‘1’ in BSF and BSF ′ will appear at the same position
t.
Bit ‘1’ in a bit pattern shows the start position of one segment. By Property 1, if two

subsegments (i.e., F and F ′) can construct a long segment, bit ‘1’ in their bit patterns will
appear at the same position after shifting the bit pattern of the second segment (i.e., F ′)



MINING SEQUENCE MOTIFS FROM PROTEIN DATABASES BASED ON BP 651

S1:


(a)


(b)


(c)


1
BS
{A}
:
 0
0
 0
0
1
0
1

0
BS
{B}
:
 1
0
0
0
0
0
1


0
0
1
0
0
1
0

1
0
0
0
0
0
1
0


AND:


1


0
0
0
0
0
1
0
1


A
B
 A
C
D
A
B
D


Add 0
0

BS
{A}
:

BS
{B}
:


(BS
{AB}
)


Figure 2. The process of finding the bit pattern of segment {AB} in
sequence S1: (a) bit patterns of segments {A} and {B}; (b) shifting the bit
pattern of segment {B} to left by one position; (c) the resulting bit pattern
of segment {AB} after applying the AND operation

to left by m bits. Therefore, after performing shifting, we can use the “AND” operation
to construct a new bit pattern for the long segment composed of those two subsegments
(i.e., F and F ′).

We use two examples to explain the process. The first example is finding whether
segment {AB} appears in protein sequence S1, as shown in Figure 2. We can consider
segment {AB} as segment {A} + segment {B}. The length of segment {A} is 1, i.e.,
m = 1. Figure 2(a) shows the bit pattern of segment {A}, i.e., BS{A} = “10010010”,
and the bit pattern of segment {B}, i.e., BS{B} = “01000001”, in protein sequence S1.
Figure 2(b) shows the result of shifting BS{B} to left by m = 1 bit. Figure 2(c) shows
the resulting bit pattern of segment {AB}, by applying the AND operation on BS{A}
and the shifting result of BS{B}. From this bit pattern, we know that segment {AB}
appears at positions 1 and 7 in protein sequence S1. In the second example, we want to
know whether segment {ACD} appears in protein sequence S1 by considering segment
{ACD} as segment {AC} + segment {D}. BS{AC} in sequence S1 is “00010000”. BS{D}
in sequence S1 is “00100100”. The length of segment {AC} is 2, i.e., m = 2. We shift
BS{D} to left by m = 2 bits and the result of BS{D} is “10010000”. Finally, we apply
the AND operation on BS{AC}, i.e., “00010000”, and this shifting result, i.e., “10010000”.
The AND result, i.e., “00010000”, is the bit pattern of segment {ACD}, which means
segment {ACD} appears at position 4 in sequence S1.

By this way, we can derive whether one segment appears in one sequence. If one segment
appears in at least TH protein sequences, this segment is a frequent segment. We use this
way to find all frequent segments, where the length of each frequent segment is at least
MinLen = 2. Then, these frequent segments and their bit patterns are stored in table
BPS. For the database shown in Table 1, the resulting table BPS is shown in Table 3.
These frequent segments will be the basic elements to produce frequent patterns later.

Up to this point, we have found all frequent segments stored in table BPS. These
segments are not all necessary for producing the longest pattern. For example, segment
{AC} is a subset of segment {ACD}, and their numbers of appearances are both 3. That
is, when segment {AC} appears in a protein sequence, segment {ACD} appears at the
same position of the same protein sequence. Because we want to find the longest pattern,
we just keep segment {ACD} and prune segment {AC}. Pruning unnecessary frequent
segments can help us reduce the storage space and the processing time.



652 Y.-I. CHANG, C.-C. WU, J.-R. CHEN AND Y.-H. JENG

Table 3. Table BPS

S1 S2 S3

A B D A C D A B A B A C D A A A C D C

BS{AB} 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
BS{AC} 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
BS{CD} 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
BS{DA} 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
BS{ACD} 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
BS{CDA} 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
BS{ACDA} 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Table 4. Table BPS after pruning

S1 S2 S3

A B D A C D A B A B A C D A A A C D C

BS{AB} 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
BS{ACD} 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
BS{ACDA} 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

The idea of pruning is the same as that of closed itemsets in the problem of mining
association rules. If segment t is the subset of some segments and their numbers of ap-
pearances are the same, we prune segment t. For example, for table BPS shown in Table
3, segment {CDA} appears at sequences S1 and S2, i.e., the number of appearances = 2.
Segment {ACDA} is the superset of segment {CDA}, and also appears twice in sequences
S1 and S2. Therefore, segment {CDA} is pruned. After we prune those unnecessary
segments, only three segments are kept, i.e., {AB}, {ACD} and {ACDA}, in Table 4.
In Step 3, we use a depth-first-search way to combine the longest pattern. In the

combining process, we will utilize the OR operation, which can help us know whether
a bit pattern has been changed. For every two segments, first, we find the position of
the first appearance of bit ‘1’ in the bit pattern of the first segment. Assume that this
position is i. For the first segment, we create a new bit pattern, NewBS, whose bits
left to position i are all ‘1’ and bits right to position i are all ‘0’. This idea is similar
to “masking”. That is, we want to find out whether the second segment appears after
the first appearance of the first segment, i.e., position i. Therefore, for those bits left to
position i, we set them to ‘1’ to avoid affecting the OR result. For example, for segment
{AB}, its original bit patterns in sequences S1 and S2 are “10000010” and “100000”,
respectively, as shown in Figure 3. Note that segment {AB} does not appear in sequence
S3, and we do not consider sequence S3 here. The new bit patterns in sequences S1 and
S2 will be “10000000” and “100000”, respectively.
Next, we want to find out whether there exists any segment appearing after the first

segment in all sequences. For each sequence, we apply the OR operation on NewBS of
the first segment and the original bit pattern of the second segment. If the bit pattern
of the OR result is different from NewBS of the first segment, it means that the second
segment appears after the first segment in this sequence. Figure 3 shows examples of
applying the OR operation to find the longest pattern based on those remaining segments
in Table 4 after pruning. Figure 3(a) shows the example of finding out whether segment
{AB} appears after segment {AB}. For sequence S1, after applying the OR operation,
the resulting bit pattern is “10000010”, different from NewBS of the first segment, i.e.,
“10000000”. It means that segment {AB} appears after segment {AB} in sequence S1.



MINING SEQUENCE MOTIFS FROM PROTEIN DATABASES BASED ON BP 653

S1 S2 S3

A B D A C D A B A B A C D A A A C D C

NewBS{AB} 1 0 0 0 0 0 0 0 1 0 0 0 0 0

BS{AB} 1 0 0 0 0 0 1 0 1 0 0 0 0 0

OR 1 0 0 0 0 0 1 0 1 0 0 0 0 0
(a)

S1 S2 S3

A B D A C D A B A B A C D A A A C D C

NewBS{AB} 1 0 0 0 0 0 0 0 1 0 0 0 0 0

BS{ACD} 0 0 0 1 0 0 0 0 0 0 1 0 0 0

OR 1 0 0 1 0 0 0 0 1 0 1 0 0 0
(b)

S1 S2 S3

A B D A C D A B A B A C D A A A C D C

NewBS{AB}∗{ACD} 1 1 1 1 0 0 0 0 1 1 1 0 0 0

BS{ACD} 0 0 0 1 0 0 0 0 0 0 1 0 0 0

OR 1 1 1 1 0 0 0 0 1 1 1 0 0 0
(c)

Figure 3. Examples of finding the longest pattern: (a) pattern
{AB}∗{AB}; (b) pattern {AB}∗{ACD}; (c) pattern {AB}∗{ACD}∗{ACD}

For sequence S2, the resulting bit pattern is “100000”, the same as NewBS of the first
segment. Therefore, segment {AB} does not appear after segment {AB} in sequence S2.

From these bit patterns of the OR result, we find that pattern {AB}∗{AB} only appears
once (in sequence S1), and the number of appearances of pattern {AB}∗{AB} is 1 <
TH(= 2). Therefore, pattern {AB}∗{AB} is not frequent. We use a data structure,
{AB}.dead, to record those segments which have been found to be unable to appear after
segment {AB}. Therefore, {AB}.dead is set to {{AB}} now.

Since we perform a depth-first-search and segment {AB} has been found to be unable
to appear after segment {AB}, we continue to find out whether there exists any other
segment, e.g., segments {ACD} and {ACDA} in Table 4, appearing after segment {AB}.
Figure 3(b) shows the resulting bit pattern of pattern {AB}∗{ACD}. Since these resulting
bit patterns are all different from NewBS of segment {AB} for sequences S1 and S2, it
means that pattern {AB}∗{ACD} appears in both sequences S1 and S2. The number of
appearances of this pattern is 2 ≥ TH, and pattern {AB}∗{ACD} is frequent. In this
case, {AB}∗{ACD}.dead inherits the result of {AB}.dead. That is, {AB}∗{ACD}.dead
is {{AB}}. In the depth-first-search way, next, we consider whether there exists any
segment appearing after pattern {AB}∗{ACD}.

The resulting bit pattern of pattern {AB}∗{ACD} in sequence S1 is “10010000”. The
position of the first appearance of segment {ACD} after segment {AB} is 4 in sequence
S1. Because we want to find whether there exists any segment appears after pattern
{AB}∗{ACD}, we should not consider those segments whose positions of appearance are
not larger than position 4. We set those bits of positions from 1 to 4 to ‘1’, i.e., masking.
(Note that if there is bit ‘1’ in a bit pattern, there is bit ‘1’ at the same positions of the bit
pattern after applying the OR operation). Therefore, NewBS of pattern {AB}∗{ACD}
for sequence S1 becomes “11110000”. Similarly, NewBS of pattern {AB}∗{ACD} for
sequence S2 becomes “111000”.



654 Y.-I. CHANG, C.-C. WU, J.-R. CHEN AND Y.-H. JENG

After changing NewBS of pattern {AB}∗{ACD}, we consider which segment can be
combined after pattern {AB}∗{ACD}. Because segment {AB} is in {AB}∗{ACD}.dead,
we do not need to consider pattern {AB}∗{ACD}∗{AB}. We just consider segment
{ACD} and segment {ACDA}. We want to know whether pattern {AB}∗{ACD}∗{ACD}
is frequent. The resulting bit patterns of pattern {AB}∗{ACD}∗{ACD} are shown in Fig-
ure 3(c). For sequences S1 and S2, the resulting bit patterns are the same as NewBS
of pattern {AB}∗{ACD}, which means that segment {ACD} does not appear after pat-
tern {AB}∗{ACD}. Therefore, pattern {AB}∗{ACD}∗{ACD} is not frequent. Segment
{ACD} is added to {AB}∗{ACD}.dead. Following the similar idea, we continue to con-
sider the other possible patterns in a depth-first-search way. After considering all possible
patterns, there are two frequent patterns found from the example database shown in Table
1, i.e., {AB}∗{ACD} and {AB}∗{ACDA}, where {AB}∗{ACDA} is the longest pattern.

4. Performance. In this section, we study the performance of the proposed BP algo-
rithm, and make a comparison with the SP-index algorithm [15]. Our experiments were
run on a Quad CPU Q6600 2.40GHz, 2GB RAM and running Windows XP. All experi-
ments were written in Java and were compiled by JDK 1.6.
In order to evaluate the performance of the proposed algorithm, we first extracted real

life protein sequences from the web site of National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/) as the experimental data. The protein data set was
extracted by the conjunction of searching: (1) category = “Protein”; (2) sequence length
range = [100 : 150]; and (3) substance name = “human”. We experimented three cases:
(1) changing the value of the minimal support; (2) changing the number of sequences;
and (3) changing the length of protein sequences. Figure 4 shows the experimental results
of these three cases, where Figures 4(a)-4(c) are for the first case, the second case and
the third case, respectively. The default number of sequences and the default minimal
support are 1000 and 40%, respectively. From Figure 4, we show that the BP algorithm
needs shorter processing time than the SP-index algorithm. Since in the real data sets,
the length of one segment is usually short, the number of segments which can be pruned
in the BP algorithm is also small. However, since the BP algorithm efficiently utilizes bit
operations to find the longest pattern, the BP algorithm could outperform the SP-index
algorithm in terms of processing time.

0


100


200


300


400


500


600


10%
 20%
 30%
 40%


Minimal Support


SP-index


BP


0


500


1000


1500


2000


1000
 2000
 3000
 4000
 5000


Number of Protein Sequences


SP-index


BP


0


200


400


600


800


1000


1200


1400


100:150
 151:200
 201:250
 251:300


Sequence Length


SP-index


BP


(a)
 (b)
 (c)


S
ec




S
ec




S
ec




Figure 4. A comparison of processing time between SP-index and BP
algorithms for real data: (a) changing the value of the minimal support;
(b) changing the number of sequences; (c) changing the length of protein
sequences



MINING SEQUENCE MOTIFS FROM PROTEIN DATABASES BASED ON BP 655

0


200


400


600


10%
 20%
 30%
 40%

Minimal Support


P
ro

ce
ss

in
g 

T
im

e,
 s

ec



SP-index


BP


0


500


1000


1500


2000


1000
 2000
 3000
 4000
 5000


Number of Protein Sequences


P
ro

ce
ss

in
g 

T
im

e,
 s

ec



SP-index


BP


(a)
 (b)


0

100

200

300

400

500

600

700

800


2
 3
 4
 5

Threshold of the Minimal Length


P
ro

ce
ss

in
g 

T
im

e,
 s

ec



SP-index


BP


(c)


0


100


200


300


400


500


600


4
 5
 6
 7


Length of Segments


P
ro

ce
ss

in
g 

T
im

e,
 s

ec



SP-index


BP


(d)


0

200

400

600

800


1000

1200

1400

1600


100:150
151:200
201:250
251:300


Range of Sequence Lengths


P
ro

ce
ss

in
g 

T
im

e,
 s

ec



SP-index


BP


(e)


Figure 5. A comparison of processing time between SP-index and BP al-
gorithms for synthetic data: (a) changing the value of MinSup; (b) chang-
ing the value of D; (c) changing the value of MinLen; (d) changing the
value of MaxSeg; (e) changing the value of L

Next, to study the performance of the BP algorithm when the length of a segment is
long, we generated the synthetic data as the experimental data. We applied the method
of generating synthetic data in the SP-index algorithm [15]. That is, D sequences will
be randomly generated with the codes of 20 amino acids. First, we generate NumSeg
(whose default value is 20) distinct segments randomly, where the length of each segment
is at most MaxSeg. Next, we let the number of appearances of these segments be F ∗D,
where F is the percentage of one frequent segment appearing in all sequences. That is, We
randomly choose F ∗D sequences and insert one segment into random positions of these
sequences. The default value of F is 45%. We repeat the inserting process for all segments
and avoid the case that the length of one sequence is out of range L. Finally, the rest
of codes which have not been determined yet in each sequence are randomly generated.
We experimented five cases by changing the values of: (1) the minimal support, MinSup;
(2) D; (3) the threshold of the minimal length of a segment, MinLen; (4) MaxSeg
and (5) L, respectively. Figures 5(a)-5(e) are experimental results of Cases 1, 2, 3, 4
and 5, respectively. The default values of parameters are MinSup = 40%, D = 1000,
Minlen = 2, MaxSeg = 5 and L = [100 : 150].

From Figure 5, we can observe that the BP algorithm needs shorter processing time
than the SP-index algorithm for these 5 cases. In Case 1 shown in Figure 5(a), as the
value of MinSup increases, the processing time of both algorithms decreases. This is
because as the value of MinSup increases, the number of frequent segments which need
to be processed decreases. On the other hand, as the value of MinSup decreases, the
number of frequent segments increases. The more the number of frequent segments is, the
longer the time needed by the SP-index algorithm in its pattern phase is. Therefore, the



656 Y.-I. CHANG, C.-C. WU, J.-R. CHEN AND Y.-H. JENG

difference of the processing time between the SP-index algorithm and the BP algorithm
becomes large when the value of MinSup becomes small.
In Case 2 shown in Figure 5(b), as the number of protein sequences increases, the

processing time of both algorithms increases. This is because both algorithms need more
time for processing protein sequences. In Case 3 shown in Figure 5(c), as the value of
MinLen increases, the processing time of both algorithms decreases. This is because as
the value of MinLen increases, the number of segments which can pass this threshold
(i.e., MinLen) decreases. In Case 4 shown in Figure 5(d), as the length of each segment,
MaxSeg, increases, the processing time of both algorithms increases. This is because
the larger the value of MaxSeg is, the larger the total number of frequent segments is.
Moreover, the larger the value of MaxSeg, the more the unnecessary frequent segments
we can prune. The process time of the BP algorithm increases slowly, while that of the
SP-index algorithm increases rapidly. In Case 5 shown in Figure 5(e), as L increases, the
processing time of both algorithms increases. Because as the range of lengths of sequences,
L, increases, both algorithms need more time to process each sequence.

5. Conclusions. Sequence motifs often denote important functional regions in proteins,
and can be used to discover the function of proteins. In this paper, we have proposed
the BP algorithm to mine the longest sequential pattern with gaps of arbitrary size from
protein sequences. In the BP algorithm, first, protein sequences are transformed into
bit patterns. Next, by applying various bit operations, i.e., AND, OR, shifting and
masking, on those bit patterns, the BP algorithm can find frequent segments and the
longest sequential pattern efficiently. From the experimental results on real and synthetic
data sets, we have shown that the BP algorithm is more efficient than the SP-index
algorithm in terms of processing time.

Acknowledgment. This research was supported in part by the National Science Council
of Taiwan under Grant No. NSC-99-2221-E-110-080-MY3.

REFERENCES

[1] http://www.csie.ncnu.edu.tw/∼rctlee/biology.html, 2009.
[2] http://en.wikipedia.org/wiki/Protein, 2009.
[3] R. Agrawal and R. Srikant, Mining sequential patterns, Proc. of the 11th Int. Conf. Data Engineering,

Taipei, Taiwan, pp.3-14, 1995.
[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, Basic local alignment search

tool, J. Mol. Biol., vol.215, no.3, pp.403-410, 1990.
[5] J. Ayres, J. Flannick, J. Gehrke and T. Yiu, Sequential pattern mining using a bitmap representation,

Proc. of the 8th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, Edmonton, Canada,
pp.429-435, 2002.

[6] A. Brazma, I. Eidhammer and D. Gilbert, Approaches to the automatic discovery of patterns in
biosequences, J. Comput. Biol., vol.5, no.2, pp.279-305, 1998.

[7] P. G. Ferreira and P. J. Azevedo, Query driven sequence pattern mining, Proc. of Simpósio Brasileiro
de Banco de Dados, Santa Catarina, Brasil, pp.1-15, 2006.

[8] P. G. Ferreira and P. J. Azevedo, Evaluating deterministic motif significance measures in protein
databases, Algorithms Mol. Biol., vol.2, no.16, pp.1-20, 2007.

[9] V. Guralnik and G. Karypis, A scalable algorithm for clustering protein sequences, Proc. of Workshop
Data Mining Bioinformatics, San Francisco, USA, pp.73-80, 2001.

[10] K.-F. Jea, K.-C. Lin and I.-E. Liao, Mining hybrid sequential patterns by hierarchical mining tech-
nique, International Journal of Innovative Computing, Information and Control, vol.5, no.8, pp.2351-
2367, 2009.

[11] J. Pei et al., PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth,
Proc. of the 17th Int. Conf. Data Engineering, Heidelberg, Germany, pp.215-226, 2001.



MINING SEQUENCE MOTIFS FROM PROTEIN DATABASES BASED ON BP 657

[12] X. Shang, Z. Li and W. Li, Mining functional associated patterns from biological network data, Proc.
of ACM Symp. Applied Computing, Hawaii, USA, pp.1488-1489, 2009.

[13] Z. Sui, Y. Liu and Y. Hu, Extracting hyponymy relation between Chinese terms based on term types’
commonality and sequential patterns, ICIC Express Letters, vol.3, no.4(B), pp.1233-1238, 2009.

[14] C.-Y. Tsai and P.-H. Lo, A sequential pattern based route suggestion system, International Journal
of Innovative Computing, Information and Control, vol.6, no.10, pp.4389-4408, 2010.

[15] K. Wang, Y. Xu and J. X. Yu, Scalable sequential pattern mining for biological sequences, Proc.
of the 13th ACM Int. Conf. Information Knowledge Management, Washington, USA, pp.178-187,
2004.

[16] Y. Wang, W. Zhang, C. Cheng, H. Ling and F. Zhao, Establishing website navigation support
systems by mining sequential patterns, ICIC Express Letters, vol.4, no.2, pp.395-400, 2010.

[17] J. Yang, J. S. Deogun and Z. Sun, A new scheme for protein sequence motif extraction, Proc. of the
38th Annual Hawii Int. Conf. System Sciences, Hawaii, USA, 2005.


