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Abstract. This paper focuses on the development of an optimization mathematical
model for a reverse supply chain network that contains forward and reverse logistical
plans in the multi-echelon system. In the reverse process, the defective products are re-
turned to the original manufacture/supplier (specified returns) to be produced again. The
next period covers the quantity of defective products for the present period, as well as
the demands for the new period. To solve the mathematical model efficiently, a particle
swarm optimization (PSO) solution is proposed, called PSOsm. The PSOsm introduces
the saltation mechanism into the procedure of the original PSO to increase the search
area, which prevents the solution being laid on the local solution. Finally, to illustrate
the performance of the PSOsm, the original PSO and a genetic algorithm (GA) are em-
ployed to find the solution for the proposed problem and the performance of both methods
is compared. The results show that the PSOsm provides a better solution.
Keywords: Reverse supply chain, Specified returns, Particle swarm optimization, Ge-
netic algorithm

1. Background and Related Works. Supply chain management has become an im-
portant strategic process for the coordination of supply chain networks that increase
a company’s competitiveness in the current business environment [1-7]. Sadjady and
Davoudpour [8] stated that designing distribution networks – as one of the most impor-
tant strategic issues in supply chain management – has become the focus of research
attention in recent years and Das and Chowdhury [9] pointed out consideration of reverse
logistics as a significant part of overall business process has been gaining importance
across the entire global market. Dowlatshahi [10] also pointed out that reverse logistics
is an important concept for logistics and supply chain management and that efficient
reverse logistics management can increase the competitiveness of an enterprise and pre-
vent expulsion from the market, especially when facing intense competition and low profit
margins.

Shih [11] suggested that the reverse logistics system is an essential part of business
operations when the recovery rates and service coverage are broadened, in the future.
Desai and Mital [12] suggested that enterprises should work on the reuse, reworking,
recycling, and reutilization of products at the end of the product life cycle. Hu et al.
[13] stated that reverse logistics involves the complex logistics of management procedures,
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which includes planning, management and control of the discarded logistics generated by
rework and the disposal of discarded products. Imre [14] proposed that reverse logistics
involves the recycling of materials that could be reused in the market. If reverse logistics
is economically viable, it could protect the environment and reduce resources waste, which
might provide a new use for recycled products. According to one conservative estimate,
reverse logistics may account for 4% of total logistical costs [15]. According to Daugherty’s
study, the average reverse logistics may account for 9.49% of total logistical costs [16].
Therefore, reverse logistics may become critical to the success of many enterprises.
The traditional supply chain focuses only on logistics, which is the sale of products,

and has neglected possible damage that may occur after the products are sold, seemingly
ignoring the unavoidable fact that some non-conforming products would be generated in
the production and transportation processes. Therefore, when customers discover that
they have bought non-conforming products, they would surely want the original manu-
facturer to take responsibility. The distribution problem of returning the non-conforming
products to the original manufacturers needs to be taken into account. The network for
this specific return supply chain is shown in Figure 1.
To the best of our knowledge, no mathematical model for supply chain planning prob-

lems in multi-echelon networks that considers specified returns has been presented, even
though it represents a better operational practice. Therefore, this paper emphasizes the
development of an optimization mathematical model to deal with the problem of a reverse
supply chain with specified returns.

Figure 1. Network concept for reverse logistics with specified returns
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Gen and Cheng [17] indicated that a multi-stage stage logistical problem can be treated
as the combination of a multiple-choice Knapsack problem and a capacitated location-
allocation problem as a NP-hard problem. In this study, every copartner has constrained
information about not only capacity, but also rate of loss, rate of defective items and the
specified returns. Hence, the task is more difficult for this problem.

Some previous research has proposed heuristic approaches for the design of forward/rev-
erse supply chain networks, which can find near optimal solutions very quickly [18-21].
PSO has been proven as an effective and simple optimization algorithm [22]. Cui et
al. [23] and Yu et al. [24] stated that PSO is a practicable method for the solution of
optimization problems. Some studies [25-30] have also pointed out that PSO is a useful
heuristic approach that can easily produce acceptable solutions to complex problems.
Azadeh et al. [31] proposed a particle swarm optimization (PSO) algorithm to determine
the optimal inspection policy in serial multi-stage processes. Che and Cui [32] proposed a
PSO method for Unbalanced Supply Chain Design. Sinha et al. [33], Mahnam et al. [34],
Yang and Lin [35] and Che [30] successfully applied the PSO to the solution of supply
chain planning problems. However, the above studies did not deal with a multi-echelon
supply chain planning problem that considers specified returns. Another purpose of this
study, therefore, is to present a modified PSO method (PSOsm) for the solution of the
optimization mathematical model developed for reverse supply chain network design with
specified returns.

The remainder of this paper is organized as follows. Section 2 develops an optimization
mathematical model to deal with the problem. The proposed heuristic solution model,
PSOsm, is presented for the solution of the mathematical model in Section 3. Section 4
presents detailed applications of the proposed method. Section 5 compares the experimen-
tal results for PSOsm, PSO and GA, to determine the performance of PSOsm. Section 6
presents the conclusions.

2. Optimization Mathematical Model for Supply Chain Network Design. Cost
and quality are the criteria used for the design of the supply chain network in this study.
Before the data is used, a T -transfer technique is employed to transfer the original values
of these two criteria to the standard T scores and to further integrate these scores. The
T -transfer formula for the original value, C, is Cs = (C−mean(C))/(Stand(C)/10)+50,
where mean(C) is the mean value of C and Stand(C) is the standard deviation of C.

The notations used in the optimization optimizing mathematical model are as follows:

i Supply chain echelons, i = 1, 2, 3, . . ., I

p Production periods, t = 1, 2, 3, . . ., T

I Total number of echelons in the supply chain

P Total periods of production

j Copartner index

k Copartner index of the specified return

Ji Total number of copartners at echelon i

Ki Total number of copartners for the specified return at echelon i

INC(i,j) Inspection cost for copartner j at echelon i

PC(i,j) Production costs for copartner j at echelon i

TC((i,j),(i+1,k)) Transportation cost from copartner j of echelon i to the original

(specified) copartner k of echelon i+ 1

TLR((i,j),(i+1,k)) Transport loss rate from copartner j of echelon i to the original

(specified) copartner k of echelon i+ 1
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DR(i,j) Defect production rate of copartner j at echelon i

Xp
(i,j) Product quantity of copartner j at echelon i in period p

Xp
((i,j),(i+1,k)) Transportation quantity from copartner j of echelon i to the original

(specified) copartner k of echelon i+ 1

Rp−1
((i+1,k),(i,j)) Quantity of non-conforming products from copartner j of echelon i

at period p− 1 to the original (specified) copartner k of echelon i+ 1

MaxCAP(i,j) Upper limit of maximal productivity of copartner j at echelon i

MinCAP(i,j) Lower limit of minimal productivity of copartner j at echelon i

INT{} Integer function to obtain the integer value of the real number by

eliminating its decimal

The mathematical model is formulated as follows.
Objective function: Minimize production costs, transportation costs, remake costs,

inspection costs and quality (definition 1 of quality level was the best quality).

Minimise
P∑

p=1

I−1∑
i=1

Ji∑
j=1

Ki+1∑
k=1

(
PC(i,j) ×Xp

((i,j),(i+1,k))

)

+
P∑

p=1

I∑
i=1

J1∑
j=1

Ki+1∑
k=1

(
TC((i,j),(i+1,k)) ×

(
Xp

((i,j),(i+1,k)) +Rp
((i+1,k),(i,j))

))

+
P∑

p=1

I∑
i=1

Ji∑
j=1

Ki−1∑
k=1

(
PC(i,j) ×Xp

((i−1,k),(i,j))

)

+
P∑

p=1

I∑
i=1

Ji∑
j=1

Ki+1∑
k=1

(
INC(i,j) ×Xp

((i,j),(i+1,k))

)
+

P∑
p=1

I∑
i=1

Ji∑
j=1

Qp
(i,j)

Constraints: The transportation quantities for suppliers are at the first echelon, the
middle echelon suppliers of the second, third, etc., to the last echelon supplier, after
considering the transportation loss rates. These also represent the quantity of specified
non-conforming products returned to the original manufacturer.

Ki+1∑
k=1

Xp
((i,j),(i+1,k)) = INT

{
Ki+1∑
k=1

Xp
((i,j),(i+1,k)) ×

(
1− TLR((i,j),(i+1,k))

)
+Rp−1

((i+1,k),(i,j))

}
,

i = 1; p = 1, 2, 3, . . . , P ; j = 1, 2, 3, . . . , J

Ki−1∑
k=1

Xp
((i−1,k),(i,j)) = INT

{[
Ki−1∑
k=1

Xp
((i−1,k),(i,j)) ×

Ki+1∑
k=1

(
1− TLR((i,j),(i+1,k))

)]

+

Ki+1∑
k=1

Rp−1
((i+1,k),(i,j)) −

Ki−1∑
k=1

Rp
((i,j),(i−1,k))

}
,

i = 2, . . . , I − 1; p = 1, 2, 3, . . . , P ; j = 1, 2, 3, . . . , J

Ki−1∑
k=1

Xp
((i−1,k),(i,j)) = INT

{
Ki−1∑
k=1

[
Xp

((i−1,k),(i,j)) ×
(
1− TLR((i,j),(i−1,k))

)
−Rp

((i,j),(i−1,k))

]}
,

i = I; p = 1, 2, 3, . . . , P ; j = 1, 2, 3, . . . , J
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The quantity of non-conforming products that must be returned to the original manu-
facturer of the last echelon is generated in the production process.

Ki−1∑
k=1

Rp
((i,j),(i−1,k)) = INT

{(
Ki−1∑
k=1

Xp
((i−1,k),(i,j)) +

Ki+1∑
k=1

Rp−1
((i+1,k),(i,j))

)
×DR(i,j)

}
,

i = 2, 3, . . . , I; p = 2, 3, . . . , P ; j = 1, 2, 3, . . . , J

The restricted quantities apply to suppliers from the first to the last echelon, to meet
the customer demands.

X(i,j) = INT

{
Ki+1∑
k=1

Xp
((i,j),(i+1,k)) ×

(
1−DR(i,j)

)
×
(
1− TLR((i,j),(i+1,k))

)}
,

i = i; p = 1, 2, 3, . . . , P ; j = 1, 2, 3, . . . , J

X(i,j) = INT

{
Ki−1∑
k=1

Xp
((i−1,k),(i,j)) ×

(
1−DR(i,j)

)
×
(
1− TLR((i,j),(i+1,k))

)}
,

i = 2, 3, . . . , I − 1; p = 1, 2, 3, . . . , P ; j = 1, 2, 3, . . . , J

The transportation volume must not be larger than the maximum productivity of the
supplier and must not be less than the start-up productivity level.

MinCAP(i,j) ≤
Ki+1∑
k=1

Xp
((i,j),(i+1,k)) ≤ MaxCAP(i,j),

i = 1, 2, . . . , I − 1; p = 1, 2, 3, . . . , P ; j = 1, 2, 3, . . . , J

The transportation volume must be equal to or larger than 0 and an integer number.

Xp
((i,j),(i+l,k)) ≥ 0 and ∈ integer

for i = 1, 2, . . . , I; j = 1, 2, 3, . . . , J ; k = 1, 2, 3, . . . , K; p = 1, 2, 3, . . . , P

Using multi-echelon production, no non-conforming products can be returned to the
original manufacturer at the beginning of the production.

Rp
((i,j),(i−1,k)) = 0

for p = 1; i = 1, 2, . . . , I; j = 1, 2, 3, . . . , J ; k = 1, 2, 3, . . . , K

3. A Heuristic Method Based on PSO. To solve the optimization mathematical
model for the reverse logistics problem with specified returns, a heuristic method, PSOsm,
is proposed, which obtains a near optimal solution under minimal objective function
values. The step-wise description of PSOsm is as follows.

Step 1: Encoding scheme. Each particle is represented by a matrix-string of bits of
integer numbers (Figure 2), which is used to illustrate the scheme for a feasible solution.
Each bit represents the transportation quantity for each route between the upstream and
downstream partners.

Step 2: Setting the relevant control parameters. Particle population and iteration
times: larger particle populations and iterations times require extended computational
time, but also generate better objective function values [36]. Maximum speed: by fixing
the accuracy of particles in the solution space, if the speed of the particle is faster (larger
value), the convergence rate of the solution is also faster, which may prevent the discovery
of the optimal solution, due to the increased pace; if it is too small, it may not reach
the local search space. A learning factor: usually c1 = c2 = 2, or between 0 and 4; c1
regulates the flying step length of the particle towards its optimal location and c2 regulates
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Figure 2. Particle scheme

the flying step size of the particle towards the global optimal location. Inertial weight:
Shi and Eberhart [37] reported that w has a greater opportunity to discover the global
optima, when it is between 0.9 and 1.2.
Step 3: Generating the initial population: The initial speed and location of each par-

ticle are generated in a random fashion. The range is regulated by the constraints of the
mathematical models. These randomly generated values are called the parental genera-
tion. Each value has its own initial speed and location, substituting the particle swarm of
parental generation in the objective function to obtain a fitness function value and then
reordering and evaluating them to determine the optimal function value, f(gbest), of the
parental generation population.
Step 4: Updating the velocity and position of each particle: The formulae for velocity

and position updating process for each particle are

vi+1 = wvi + c1 × rand1()× (pbest− Si) + c2 × rand2()× (gbest− Si)

Si+1 = Si + vi+1

where vi is the speed of the change in position of the particle i, vi+1 is the new speed of
the particle i, Si is the current position of the particle i, Si+1 is the new position of the
particle i, pbest is the best individual position of the particle i, gbest is the best position
of all of the particles, rand1() and rand2() are stochastic variables with a value between
zero and one, w is the inertial weight and c1 and c2 are learning factors. The calculation
shows that the population and individual optimal values are their current optimal location
and velocity. The rest of the particles are updated towards the optimal value.
Step 5: Saltation. The saltation mechanism is used to update the particle. Saltation

helps to broaden the area of the search space and prevents stalling at a local optimum.
The procedure for the saltation mechanism can be algorithmically stated as follows:

Procedure – Saltation mechanism
{Step 5.1: Randomly select n particles, Pn ∈ (P1, P2, . . . , PN);

//n = q ∗ r, q is the number of particles and r is the saltation rate; Pn is the
set of selected particles.//
Step 5.2: Randomly select k bits in each selected particle, Bk,Pn ∈ (B1,Pn , B2,Pn ,
. . . , BK,Pn); //Bk,Pn is the set of selected bits from particle Pn.//
Step 5.3: Set V alue Bnew

k,Pn
= V alue Bold

k,Pn
+ rand3(), for all k and Pn;

//V alue Bk,Pn is the value of the selected bit k from particle Pn, rand3() is
the independent random integer variable evenly distributed within [−Si,old, U ], U is
the upper bound of the transportation quantity.//
Step 5.4: If (constraints of the mathematical model are not satisfied) Then go to Step
3;
Step 5.5: Calculate the new fitness value fnew(Pn) of the selected particles;
Step 5.6: If (fnew(Pn) is not better than f old(Pn)) Then go to Step 3;
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Step 5.7: If (fnew(Pn) is better than f(pbest)) Then {pbest = Pn};
Step 5.8: If (fnew(Pn) is better than f(gbest)) Then {gbest = Pn};}
Step 6: Repeat Steps 4 and 5, until the termination condition is met; that is to say, a

new generation is generated.
Step 7: Obtain a suitable solution for the reverse supply chain network design problem

with specified returns.

4. Illustrative Example. In a supply chain network, non-conforming products are un-
avoidable. All companies, no matter how high their yield rate, cannot guarantee a 100%
yield. Product incidents in the manufacturing process and transportation losses in the
transportation process may lead to non-conforming products. These non-conforming
products may be returned to the original suppliers for rework using a reverse logistics
network model.

This study adopts the {3-3-4-4} network to simulate the return and rework of non-
conforming products. The final customer demands for the first period are 400, 350, 450
and 400 units, those for the second period are 400, 250, 450 and 500 units and those
for the third period are 400, 450, 400 and 350 units. Figure 3 shows the structure of
the reverse logistics network, the return course of the product and the relevant parameter
values, including production costs, transportation costs, inspection costs, quality, incident
rates for the supplier, loss rates and the upper and lower limits of the productivity used
in this case.

To solve this problem, experiments are carried out for different combinations of two
population sizes (10 and 50), two generations (500 and 1000), two maximum velocities
(0.95 and 1.25), two initial weights (1.25 and 2.15) and two saltation rates (0.07 and
0.08). The experimental results for all of the combinations are shown in Table 1. Using
these parameter settings and depending on the evolutionary states, these results show
that the minimum objective function is obtained when the settings are; population sizes
= 10, generations = 1000, max velocity = 1.25, initial weight = 2.15 and saltation rate =
0.07. The experimental results for supply chain planning for this problem using PSOsm
are shown in Tables 2-4. These results show that the best solution for all of the different
combinations is 735670 and that the time spent is less than 60 seconds. For the illustrative
case, the transportation quantities from 1.1 to 2.1, 2.2 and 2.3 are 407, 193 and 80,
respectively, in the first period. The reverse logistics occur in the second period and the
quantities shipped from 2.1 to 1.1, 1.2 and 1.3 are 11, 16 and 0, respectively. The detailed
planning results for the case are shown in Tables 2-4.

Table 1. Experimental parameter combinations of PSOsm

Combination A B C D E F G H
Population Size 10 10 10 10 20 20 20 20
Generations 500 500 1000 1000 500 500 1000 1000
Max velocity 0.95 1.25 0.95 1.25 0.95 1.25 0.95 1.25
Initial Weight 1.25 2.15 1.25 2.15 1.25 2.15 1.25 2.15

c1, c2 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05
Saltation Rate 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07
Avg. Fitness 746047 748008 738068 735670 742623 744620 743274 743746

5. Evaluation of the PSOsm’s Solution Performance. To evaluate the performance
of PSOsm in designing the multi-echelon reverse supply chain network with specified re-
turns, the {3-3-4-4} network is chosen. The results for the PSOsm are compared with
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Figure 3. {3-3-4-4} reverse logistics network

those for the original GA and PSO. Table 5 shows the average value of the optimal pa-
rameter combinations for the GA and PSO, after obtaining the solution for the parameter
combination. As shown, for the PSO, the average fitness value of 736211 is the minimal
average fitness value of the parameter combinations. The optimal parameter combina-
tion is 10 particle populations, 1000 generation times, 1.25 maximal rate and 2.15 initial
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Table 2. Production plan through PSOsm (1st period)

To Echelon 1 Echelon 2 Echelon 3 Echelon 4
From P(1.1) P(1.2) P(1.3) P(2.1) P(2.2) P(2.3) P(3.1) P(3.2) P(3.3) P(3.4) P(4.1) P(4.2) P(4.3) P(4.4)

Echelon 1

P(1.1) 407 193 80
P(1.2) 601 99 247
P(1.3) 3 97 0

Echelon 2

P(2.1) 181 304 171 334
P(2.2) 29 197 55 105
P(2.3) 112 71 71 68

Echelon 3

P(3.1) 181 52 30 45
P(3.2) 81 23 186 253
P(3.3) 127 48 112 1
P(3.4) 15 238 131 117

Table 3. Production plan through PSOsm (2nd period)

To Echelon 1 Echelon 2 Echelon 3 Echelon 4
From P(1.1) P(1.2) P(1.3) P(2.1) P(2.2) P(2.3) P(3.1) P(3.2) P(3.3) P(3.4) P(4.1) P(4.2) P(4.3) P(4.4)

Echelon 1

P(1.1) 183 307 347
P(1.2) 155 156 29
P(1.3) Reverse 48 37 429

Echelon 2

P(2.1) 11 16 0 0 118 61 202
P(2.2) 2 1 1 63 117 13 295
P(2.3) 1 2 0 Reverse 67 507 87 123

Echelon 3

P(3.1) 5 1 3 12 0 61 52
P(3.2) 9 6 2 167 128 274 139
P(3.3) 3 1 1 14 40 85 16
P(3.4) 8 3 2 Reverse 203 85 25 304

Echelon 4

P(4.1) 4 2 3 0
P(4.2) 1 0 1 3
P(4.3) 1 6 3 4
P(4.4) 1 6 0 3

Demand 400 250 450 500

weight, with a linear decrease to 0.4 and 2.05 learning factors. The optimal parameter
combination for the GA is a parent population of 10, 1000 generation times, 0.8 crossover
rate and 0.07 mutation rate. Its minimal average fitness is 739964. The average minimal
fitness for the PSOsm of 735670, as shown in Table 5, is the smallest average fitness value
of the three algorithms. As can be seen, the average fitness value for the PSOsm is the
lowest of the three algorithms.

Tables 6 and 7 show the verification and comparison data tables for the three algorithms.
The data is collected from 30 iterations of independent calculations of the optimal param-
eters and ANOVA verification is performed on the fitness value to check whether there
are significant differences. Shen and Hsieh [38] used a single factor ANOVA to verify the
differences between the response of different visitors and various different projects at a
tourist attraction, in terms of satisfaction and loyalty. Scheffe’s Multiple Comparison test
was used to conduct the pairwise comparison [39-41]. If the diversity reaches a significant
level, Scheffe’s multiple comparison test is used to verify the differences between different
groups.

As shown in Table 6, the P-value is 1.65E-13, which is smaller than the confidence
level, α (The mean difference is significant at the α = 0.05 level). Therefore, it can be
inferred that the fitness values of these three algorithms display a significant variation,
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Table 4. Production plan through PSOsm (3rd period)

To Echelon 1 Echelon 2 Echelon 3 Echelon 4
From P(1.1) P(1.2) P(1.3) P(2.1) P(2.2) P(2.3) P(3.1) P(3.2) P(3.3) P(3.4) P(4.1) P(4.2) P(4.3) P(4.4)

Echelon 1

P(1.1) 46 75 316
P(1.2) 132 135 42
P(1.3) Reverse 596 216 141

Echelon 2

P(2.1) 4 4 1 93 304 91 266
P(2.2) 4 2 0 95 93 1 225
P(2.3) 5 0 7 Reverse 65 102 308 2

Echelon 3

P(3.1) 0 1 1 105 54 76 6
P(3.2) 4 4 16 235 7 237 0
P(3.3) 2 0 2 28 122 66 174
P(3.4) 6 9 4 Reverse 19 279 18 173

Echelon 4

P(4.1) 1 7 1 8
P(4.2) 0 1 0 1
P(4.3) 2 7 2 1
P(4.4) 1 4 0 8

Demand 400 450 400 350

Table 5. Experimental parameter combinations of PSO and GA

Combination A1 B1 C1 D1 E1 F1 G1 H1
Population Size 10 10 10 10 20 20 20 20

PSO Generations 500 500 1000 1000 500 500 1000 1000
Max velocity 0.95 1.25 0.95 1.25 0.95 1.25 0.95 1.25
Initial Weight 1.25 2.15 1.25 2.15 1.25 2.15 1.25 2.15

c1, c2 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05
Avg. Fitness 757887 743386 739371 736211 746459 745624 746092 743423
Combination A2 B2 C2 D2 E2 F2 G2 H2

Population Size 10 10 10 10 20 20 20 20
GA Generations 500 500 1000 1000 500 500 1000 1000

Crossover Rate 0.75 0.8 0.75 0.8 0.75 0.8 0.75 0.8
Mutation Rate 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07
Avg. Fitness 745835 747472 741094 739964 746964 745175 744937 745107

Table 6. Verified results for fitness value

Average Variance
PSO 735899.8 6801490
GA 740350.3 7841043
PSOsm 734215.7 6844191
P-value = 1.65E-13, Critical value = 3.101296

so Scheffe’s Multiple Comparison is used to conduct the pairwise comparison between
different algorithms. Its formula is(

xi − xj −
√
(k − 1)Fα(k−1)(n−k)

√
MSE

(
1

ni

+
1

nj

)
,

xi − xj +
√
(k − 1)Fα(k−1)(n−k)

√
MSE

(
1

ni

+
1

nj

))
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Table 7. Scheffe’s multiple comparison results for fitness value

FitµPSO FitµGA FitµPSOsm

FitµPSO (−,−) (+,+)
FitµGA (−,−) (+,+)
FitµPSOsm (+,+) (+,+)
FitµPSO: mean of fitness value of PSO
FitµGA: mean of fitness value of GA
FitµPSOsm: mean of fitness value of PSOsm

Xi and Xj are the average values of the projects to be compared, k is the freedom,
Fα(k − 1, n− k) is the critical value and ni and nj are the sample numbers.

When the obtained value is (+,+), µ1 > µ2 and that there is a significant difference;
when the obtained value is (−,+), µ1 = µ2 and there is no significant difference; when
the obtained value is (−,−), µ1 < µ2 and there is a significant difference. The result of
Scheffe’s Multiple Comparison is FitµPSOsm < FitµPSO < FitµGA, as shown in Table 7.
Therefore, the fitness value for the PSOsm is better than those of the PSO and GA.

6. Conclusions. This paper addresses a novel reverse supply chain network design prob-
lem, which also considers specified returns. After an extensive literature survey of studies
of forward and reverse supply chains, very few references were found to similar problems.
In this study, the problem was completely defined through an optimization mathematical
model. A modified PSO algorithm PSOsm is presented and is evaluated against the orig-
inal PSO and GA algorithms, through an experimental study. The main results of this
study show that the PSOsm has better performance on fitness value than the PSO and
GA. Possible extensions of this study could explore more complex multi-criteria decision
making algorithms and consider price discount and information sharing in the problem.
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