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Abstract. This paper deals with the problem of diagnosis of multiple sequential faults
using statistical test GLR. Based on the work of Willsky and Jones [50], we propose a
modified Generalized Likelihood Ratio (GLR) test, allowing detection, isolation and esti-
mation of multiple sequential faults. Our contribution aims to maximise the rate of good
decision of fault detection, using another updating strategy. This is based on a reference
model updated on line after each detection and isolation of one jump. To reduce the
computational requirement, the passive GLR test will be derived from a state estimator
designed on a fixed reference model directly sensitive to system changes. We will show
that the active and passive GLR tests give an interesting result compared with the GLR
of Willsky and Jones [50], and can be easily integrated in a reconfigurable Fault-Tolerant
Control System (FTCS) to asymptotically recover the nominal system performances of
the jump-free system.
Keywords: Generalized likelihood ratio, Sequential jumps detection, Augmented state
Kalman filter, Two-stage Kalman filter, Nuisance parameter, Fault-tolerant control sys-
tem

1. Introduction. The diagnosis of multiple faults in stochastic systems has been solved
by many approaches: observers, parity space and fault detection filters. All these ap-
proaches are interested by residual generation, but missing appropriate test for decision.
In this work, we will develop a method which takes into account the residual generation
problem based Kalman filter, associated with GLR test decision for multiple faults.

The GLR test has been used in a wide variety of applications including the detection of
sensor and actuator failures [15,49,50], electrocardiogram analysis [18], geophysical signal
processing [4] and freeways supervision [51]. For sequential jumps detection in discrete-
time stochastic linear systems, the GLR test is made of the following steps:

1) Detection and isolation of one possible jump by applying a GLR detector on the
innovation sequence of the Kalman filter designed on the jump-free system.

2) Updating of the Kalman filter using the jump magnitude estimate given by the GLR
detector.

3) Go to the Step 1 to detect, isolate and estimate another possible jump from measure-
ments immediately available after the detection time of the last jump.
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Following the notations used in [52] or in [5], the updating strategy of [50], based on
the incrementation of the state estimate x̂k and the state estimate error covariance matrix
Pk of the Kalman filter, works as follows:

x̂new
k = x̂old

k + [αj(k, r̂)− βj(k, r̂)] ν̂(k, r̂) (1)

P new
k = P old

k + [αj(k, r̂)− βj(k, r̂)]P
ν(k, r̂) [αj(k, r̂)− βj(k, r̂)]

T (2)

where (x̂new
k , P new

k ) and (x̂old
k , P old

k ) represent the new and the old state estimation of
the Kalman filter, αj(kj, r̂) and βj(kj, r̂) the jump signatures on the state and the state
estimate, r̂ the jump occurrence time estimate and (ν̂(k, r̂), P ν(k, r̂)) the jump magnitude
estimate given by the GLR detector. Immediately after the updating strategy (1), the
innovation sequence of the resulting Kalman filter is given by

γnew
k = γold

k − ρj(k, r̂)ν̂(k, r̂) (3)

Hnew
k = Hold

k + ρj(k, r̂)P
ν(k, r̂)ρj(k, r̂)

T (4)

where (γnew
k , Hnew

k ) and (γold
k , Hold

k ) represent the new and the old innovation sequence of
the Kalman filter and ρj(k, r̂) = C [αj(k, r̂)− βj(k, r̂)] the signature of jump. A GLR
detector is then applied on γnew

k to detect another possible jump. Some critics can be
made about this updating strategy:

• What is the significant meaning of (x̂new
k , P new

k ) and (γnew
k , Hnew

k ) consequently;
• What are the stability and convergence conditions of the resulting Kalman filter;
• The threshold level of the GLR detector must be chosen to solve a tradeoff between
fast detection and accurate jump estimation;

• γnew
k is not guaranteed to be minimum variance white innovation sequence, a neces-

sary condition to minimize the rate of false alarms;
• The Kullback divergence is not guaranteed to be maximized with respect to the new
possible jumps, a necessary condition to maximize the rate of good decisions [4].

The first part of the paper revisits the standard GLR test of Willsky and Jones [50]
in relation with the fault detectability indexes [27] describing the time delay between the
occurrence of a jump and its effect on measurements. In this part, we also derive a modified
form of the standard GLR test avoiding the tradeoff between fast detection and accurate
estimation. The necessary and sufficient conditions for multiple jumps detectability and
distinguishability are established.
The second part presents the active GLR test. We will show that the updating strategy

(1) and (2) have a significant meaning for the Kalman filter designed on a new reference
model including the original state vector of the system and the states of jumps detected
and isolated during the processing. The stability and convergence conditions of the aug-
mented state Kalman filter designed on the new reference model will be established and
linked with the multiple jumps detectability conditions given in part 1. Its innovation
sequence will be guaranteed to be a minimum variance white innovation sequence and the
Kullback divergence,

δnewi (k, r) =
k∑

t=r

[
ρnewt (t, r)TH−1

t ρnewt (t, r)
]
(νnew)2 (5)

depending to the new jump signatures ρnewi (k, r̂), will be maximized with respect to the
new possible νnew. By considering the old jumps (the jumps detected and isolated during
the processing) as nuisance parameters, the equivalence between the active GLR test and
the minmax test of basseville and Nikiforov [5] will be established. The active GLR test
will be made of the following steps:

1) Detection and isolation of one jump by the GLR detector;
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2) Updating the reference model of the system with the jump state initializing the aug-
mented state Kalman filter using the jump magnitude estimate given by the GLR
detector;

3) Go to the first step to treat another possible jump from measurements immediately
available after the detection time of the last jump.

To reduce the computational requirement of the active GLR test, the third part of
this paper presents the passive GLR test. Based on the augmented state Kalman filter
designed on a fixed reference model including all the states of hypothetical jumps at the
beginning of the processing, the updating strategy will be based on the incrementation
of the state estimate and the state estimate error covariance matrix after each detection
of one jump as in [50]. Less power than the active GLR test, we will show that it can be
mixed with the active GLR test to derive a complete strategy allowing the treatment of
the appearance and the disappearance of sequential jumps.

A Fault-Tolerant Control System (FTCS) is a control system that possesses the abil-
ity to accommodate system component failures automatically. The existing methods for
reconfigurable controller design can be classified as linear quadratic regulator [31], eigen-
structure assignment [24], multiple model [35], adaptive control [7], pseudo-inverse [8] and
model following [19]. In general, a FTCS works as follows: a suitable Fault Detection and
Isolation (FDI) strategy identifies the faults and their estimations are used to generate
additional input signals which are superimposed to the nominal control inputs in such a
way that the influence of the faults on the regulated variables is rejected. To integrate
the standard GLR test in a FTCS, Willsky [49] has proposed a control law of the form
uk = −Lx̂new

k . To do the same with our active GLR test, the part 5 proposes the design of

a linear Quadratic Gaussian (LQG) regulator [2] of the form uk = −LX̂k, where X̂k will
be the state prediction of the updated reference model, and thus reconfigurated on-line
after each detection and isolation of one jump.

The last part of this paper proposes a comparative study between the modified GLR
test presented in part 2 and the active GLR test for the treatment of sequential actuator
jumps in dynamic systems. We will show that the active GLR test is very power when
quick detections lead to bad jump estimations and thus very useful in a FTCS to maximize
the rate of good decisions specially in regard to the appearance of big jumps which may
greatly affect the nominal performance of the closed-loop system.

2. The GLR Test of Willsky and Jones. This part revisits the GLR test of Willsky
and Jones [50] in relation with the multi-hypotheses GLR test described in [52]. Assume
that the model of the “no jump” hypothesis h0 is given by

xk+1 = Axk +Buk + uk (6)

yk = Cxk + vk (7)

where xk ∈ ℜn is the state vector, yk ∈ ℜm the measurement vector, uk ∈ ℜr the input
vector. The zero mean white gaussian noises wk and vk satisfy

E

{[
ωk

υk

] [
ωT
j υT

j

]}
=

[
W 0
0 V

]
δk,j (8)

where W ≥ 0 and V > 0 and the Gaussian initial state x0, ˆ̄x0 = E(x0) and P̄0 =

E
(
(x0 − E(x0)) (x0 − E(x0))

T
)
. The jump hypotheses hi for i ∈ [1, . . . , N ] are modelized

by

xk+1 = Axk +Buk + fi(k, r)ν(k, r) + wk (9)

yk = Cxk + vk (10)
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where fi(k, r) is the fault distribution vector, ν(k, r) the scalar fault magnitude, r the
unknwon time of failure occurrence. Without lost of generality, the fault magnitude
ν(k, r) is assumed to follows a constant bias model: ν(k, r) = ν, (k ≥ r) with step profile:
fi(k, r) = fi, (k ≥ r) and fi(k, r) = 0, (k < r).
Let ρi = min(s : CAs−1fi ̸= 0, s = 1, 2, . . .) for i ∈ [1, . . . , N ].
The jump detectability indexes [27] and assume that ρi < ∞ signifying that the first

information about the jump hi, appearing at time r, will be present on measurement
yr+ρi . In the case where the jumps may occur relatively infrequently, the most likelihood
reference model at the beginning of the processing is the model of h0. So, under the
stability and convergence conditions

rang

[
zI − A

C

]
= n, |z| ≥ 1. (11)

and

rang
[
−ejwI + A W 1/2

]
= n, w ∈ [0, 2π] (12)

The Kalman filter which gives the maximum likelihood state prediction of the jump-free
system is given by

ˆ̄xk+1 = Aˆ̄xk +Buk + K̄k(yk − C ˆ̄xk) (13)

P̄k+1 = (A−KkC)P̄k(A−KkC)T +W + K̄kV K̄T
k (14)

H̄k = CP̄kC
T + V (15)

K̄k = AP̄kC
T H̄−1

k (16)

The additive effect of jump hi on the state prediction error ek+1 = xk+1 − ˆ̄xk+1 and on
the innovation sequence γ̄ = yk − C ˆ̄xk can be expressed as

ek+1 = ẽk+1 + ζi(k + 1, r)ν (17)

γ̄k = γ̃k+1 + ϱi(k, r)ν (18)

where ẽk+1 and γ̃k represent the state prediction error and the innovation sequence on the
jump-free system and where ζi(k, r) and ϱi(k, r) describes the additive effect of the jump
satisfying

ζi(k + 1, r) = (A− K̄kC)ζi(k, r) + fi, ζi(r, r) = 0 (19)

ϱi(k, r) = Cζi(k, r) (20)

In [52] or [5], ζi(k, r) = αi(k, r) − βi(k, r) where αi(k, r) and βi(k, r) describe the
additive effect of the jump on the state vector of the system and on the state vector of
the Kalman filter, respectively. Our formulation shows that the jump signatures (19) only
depend to the state prediction error of the Kalman filter and thus are decoupled from uk

(this property will be used in the design of the FTCS). The jump hypothesis hi can be
confronted to the “no-jump” hypothesis h0 as

H0 : E(γ̄t) = 0, t < r (21)

Hi : E(γ̄t) = ϱi(t, r)ν, k ≥ t ≥ r, i ∈ [1, . . . , N ] (22)

Since E
{
(γ̄k−t − E(γ̄k−t))(γ̄k − E(γ̄k))

T
}
= 0 ∀t < k, the likelihood ratio between (21)

and (22) gives

λi(k, r, ν) =
P (γ̄0/h0) . . . P (γ̄ri+ρi/hi) . . . P (γ̄k/hi)

P (γ̄0/h0) . . . P (γ̄ri+ρi/h0) . . . P (γ̄k/h0)
(23)
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From Equation (20), we have ϱi(r, r) = ϱi(r+ 1, r) = . . . = ϱi(r+ ρi − 1, r) = 0 leading
to

P (γ̄ri/hi) = P (γ̄ri/h0),

P (γ̄ri+1/hi) = P (γ̄ri+1/h0),

...

P (γ̄ri+ρi−1/hi) = P (γ̄ri + ρi − 1/h0)

(24)

and the likelihood ratio (23) can be rewritten

λi(k, r, ν) =
P (γ̄ri+ρi/hi) . . . P (γ̄k/hi)

P (γ̄ri+ρi/h0) . . . P (γ̄k/h0)
=

exp

(
−1

2

k∑
t=r+ρi

∥γ̄t − ϱi(t, r)ν∥2H̄−1
t

)

exp

(
−1

2

k∑
t=r+ρi

∥γ̄t∥2H̄−1
t

) (25)

Based on γ̄0, . . . , γ̄k, the maximum likelihood prediction of ν conditioned on a particular
assumed value of r is given by

ν̂(k + 1, r) =

[
k∑

t=r+ρi

ϱTi (t, r)H̄
−1
t ϱi(t, r)

]−1 k∑
t=r+ρi

ϱTi (t, r)H̄
−1
t γ̄t (26)

and the log-likelihood ratio Ti(k, r) = 2 log(λi(k, r, ν̂(k + 1, r))) can be written

Ti(k, r) = bi(k, r)
2ai(k, r)

−1 (27)

ai(k, r) =
k∑

t=r+ρi

ϱTi (t, r)H̄
−1
t ϱi(t, r) (28)

bi(k, r) =
k∑

t=r+ρi

ϱTi (t, r)H̄
−1
t γ̄t (29)

So, the decision rule of the GLR detector is as follows:

max
i∈[1,...,N ], r̃∈[0,...,k]

{Ti(k, r̃ − ρi)} > ε (30)

where ε is the decision threshold. For a practical implementation of the GLR detector
(30), the translated jump occurrence time r̃ must be constrained to belong to the sliding
windows W = [k −M ≤ r̃ ≤ k] of size M . In this case, (30) can be rewitten

max
i∈[1,...,N ], r̃∈W

{Ti(k, r̃ − ρi)} > ε (31)

if max{Ti(k, r̃ − ρi} > ε then one jump is detected at time k, isolated from (j, ˆ̃r) =

argmax{Ti(k, r̃−ρi)} where r̂ = ˆ̃r−ρj is the estimation of the jump occurrence time and
where

ν̂(k + 1, r̂) = aj(k, r̂)
−1bj(k, r̂) (32)

P ν(k + 1, r̂) = aj(k, r̂)
−1 (33)

represent the maximum likelihood prediction of the jump magnitude based on measure-
ments until time k under the assumption that ν has an infinite a priori covariance.

The second step of the standard GLR test, intuitively obtained from relation (17),
consists to update the Kalman filter (13) by prediction and covariance incrementation of
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the Kalman filter (13) as follows:

x̂new
k+1 = ˆ̄xold

k+1 + ζj(k + 1, r̂)ν̂(k + 1, r̂) (34)

P new
k+1 = P̄ old

k+1 + ζj(k + 1, r̂)Pζj(k + 1, r̂)T (35)

where the new state prediction (x̂new
k+1, P

new
k+1 ) is substituted in the Kalman filter (13) (see

Figure 1 in [50]. In the original version of the GLR test, the state variables of the matched
filters ζi(k, r) for i ∈ [1, . . . , N ] are reinitialized to zero immediately following the filter
incrementation leading to consider (x̂new

k+1, P
new
k+1 ) as a new initialization of the Kalman

filter more appropriate than the initial value given at the beginning of the processing [5].
With this implementation, Equation (32) cannot be used to improve the jump estimation
from measurements available after its detection leading to choose the threshold level ε by
solving a compromize between fast detection and accurate estimation.
To avoid this treadeoff, we can modify this implementation in such a ways that (x̂new

k+1,
P new
k+1 ) is not substituted in the Kalman filter but used to generate the auxiliary innovation

sequence γk = yk − Cx̂new
k and its covariance matrix Hk = CP new

k CT + V expressed

γk = γ̄k − ϱj(k, r̂)ν̂(k, r̂) (36)

Hk = H̄k + ϱj(k, r̂)P
ν(k, r̂)ϱj(k, r̂)

T (37)

where γ̄k and H̄k represent the innovation sequence of the Kalman filter (13) and its
covariance matrix. Now decoupled to the updating strategy, the Kalman filter (13), (32)
and (19) can be used to improve the jump estimation from measurements available after
its detection time and another possible jump can then be treated by the following GLR
detector

max
i∈[1,...,N ], i̸=j r̃∈W

{T̃i(k − ρi, r̃)} > ε (38)

with

T̃i(k, r) = b̃i(k, r)
2ãi(k, r)

−1 (39)

ãi(k, r) =
k∑

t=r+ρi

ϱTi (t, r)H
−1
t ϱi(t, r) (40)

b̃i(k, r) =
k∑

t=r+ρi

ϱTi (t, r)H
−1
t γt (41)

where the jump signatures ϱi(t, r) are computed from Equation (19) after having reini-
tialized ζi(k, r) for i ̸= j to zero immediately after the detection time of the first jump.
The active GLR test will give a significant meaning of the auxiliary innovation sequence
36 and 37.

3. Statistical and Geometrical Detectability and Distinguishability Conditions
of Jumps. The probability of false alarms is given by P F =

∫∞
ε

p(T = x/h0)dx where
P (T = x/h0) is the probability density of Ti(k, r) conditioned on h0 which follows a Chi-
squared density with one degrees of freedom. The probabilities PD

i of correct detection of
the jump hi are given by PD

i =
∫∞
ε

p(Ti = x/hi)dx where p(Ti = x/hi) is the probability
density of Ti(k, r) conditioned on hi which follows a noncentral Chi-squared density with
one degrees of freedom with the noncentrality parameter δi(k, r) = ai(k, r)ν

2. The proba-
bility of false isolations, i.e., the probability to detect a jump hi when the jump hj (j ̸= i)
is appeared on the system, is given by PD

ij =
∫∞
ε

p(Ti = x/hj)dx where p(Ti = x/hj) is the
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probability density of Ti(k, r) conditioned on hj which follows a noncentral Chi-squared
density with one degrees of freedom with the noncentrality parameter

δij(k, r) =

[
aij(k, r)

2ν2

ai(k, r)

]
(42)

with aij(k, r) =
k∑

t=r+ρi

ϱTi (t, r)H̄
−1
t ϱj(t, r).

The probabilities PD
i and PD

ij depend to the size the sliding window and the choice of
the decision threshold ε is the main drawback of the GLR detector [4]. In this paper, ε
will be only chosen to fixe the false alarms rate P F .

Theorem 3.1. Under Equations (11) and (12), the jump hypothesis hi is statistically
detectable and distinguishable from each other if and only if

rank
[
CAρ1−1f1 . . . CAρi−1fi . . . CAρN−1fN

]
= N (43)

rank

[
I − A f1 . . . fN
C 0

]
= n+N (44)

Proof: The jump hypothesis hi is statistically detectable and distinguishable from
each other if and only if the Kullback divergence (Kullback, 1959) defined by δ(k, r) =
νTa(k, r)ν satisfies δ(k, r) > 0 ∀k ≥ r with ν ∈ ℜN ̸= 0 where

a(k, r) =


a1(k, r − ρ1) . . . a1i(k, r − ρ1) . . . a1N(k, r − ρ1)

...
...

...
...

ai1(k, r − ρi) . . . ai(k, r − ρi) . . . aiN(k, r − ρi)
...

...
...

...
aN1(k, r − ρN) . . . aNi(k, r − ρN) . . . aN(k, r − ρN)

 (45)

Let

ζ(k, r) =
[
ζ1(k, r − ρ1) . . . ζi(k, r − ρi) . . . ζN(k, r − ρN)

]
(46)

ϱ(k, r) =
[
ϱ1(k, r − ρ1) . . . ϱi(k, r − ρi) . . . ϱN(k, r − ρN)

]
(47)

satisfying

ζ(k + 1, r) = (A− K̄kC)ζ(k, r) + F (48)

ϱ(k, r) = Cζ(k, r) (49)

with F =
[
f1 . . . fi . . . fN

]
.

We have

a(k, r) > 0 ⇔
k∑

t=r+1

ϱT (t, r)H̄−1
t ϱ(t, r) + ϱ(r, r)T H̄−1

r ϱ(r, r) > 0 (50)

where ϱ(r, r) =
[
CAρ1−1f1 . . . CAρi−1fi . . . CAρN−1fN

]
and a(k, r) > 0 is satisfied

under Equation (43).
Another jump detectability condition has been proposed by [60]: The jump hypothesis

hi is statisticaly detectable and distinguishable from each other if the Kullback divergence
a(k, r) strictly increases with time, in other words if

ã(k, r) > 0 ∀k > r where ã(k, r) = a(k, r)− a(k − 1, r) (51)

The Kullback increment is given by ã(k, r) = ϱ(k, r)T H̄−1
k ϱ(k, r). Under Equations

(11) and (12), A− K̄C has all its eigenvalues inside the unit circle (i.e., P̄ is a stabilizing
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solution of (14)) and Equation (48) gives

lim
|k|→∞

ϱ(k, r) = C
[
I − (A− K̄C)

]−1
F =

[
I + C(I − A)−1K̄

]−1
C(I − A)−1F (52)

If I − A is nonsingular, the relation C(I − A)−1F = 0 cannot be satisfied under
rank (ϱ(r, r)) = N and Equation (43), Equation (44) ensures that F does not belong
to the null space of C(I −A)−1. So, lim

|k|→∞
ã(k, r) > 0 and the Kullback divergence a(k, r)

is not satured.
What is the condition to have ã(k, r) > 0, ∀k > r with k < ∞ signifying that any

new observation bring new information about possible jump: Let P ν(k, r) = a(k− 1, r)−1

satisfy the following Riccati difference equation:[
P̄k+1 0
0 P ν(k + 1, r)

]
=

[
AP̄AT +W − K̄kCP̄AT 0

0 [I −Kν(k, r)ϱ(k, r)]P ν(k, r)

]
(53)

where Kν(k, r) = P ν(k, r)ϱ(k, r)T
[
CP̄kC

T + V + ϱ(k, r)P ν(k, r)ϱT (k, r)
]−1

or equiva-
lently

Ω(k + 1, r) = ĀΩ(k, r)ĀT + Γ̄W Γ̄T − ĀΩ(k, r)C̄T (C̄Ω(k, r)C̄T + V )−1C̄Ω(k, r)ĀT (54)

where

Ω(r, r) =

[
P̄r + ζ(r, r)P ν(r, r)ζ(r, r)T ζ(r, r)P ν(r, r)

P ν(r, r)ζ(r, r)T P ν(r, r)

]
,

Ā =

[
A F
0 I

]
, C̄ =

[
C 0

] (55)

and Γ̄ =

[
I
0

]
(the equivalence between (53) and (54) will be more clearly explained in

the design of the active GLR test). Under Equation (12), the pair
(
Ā, Γ̄W 1/2

)
has N

unreachable modes on the unit circle and the convergence condition of (53) to a strong
solution is given by

rank

[
Iz − Ā

C̄

]
= n+N, ∀z ∈ C, |z| ≥ 1 (56)

The detectability of the pair (Ā, C̄) corresponds to the geometrical detectability con-
dition of jumps given by Caglayan [8]. Under Equation (11), Equation (56) is reduced
to Equation (44) and ensures the asymptotical convergence of P ν(k, r) to zero with the
initial condition P ν(r, r) > 0. So, P ν(k + 1, r) < P ν(k, r) and ã(k, r) > 0, ∀k > r with
k < ∞. Under Equation (43), we conclude that the results of [60] coincide with the results
of [8].

4. The Active GLR Test. The first part of this chapter gives a significant meaning of
the auxiliary innovation sequence (36) and (37) used in the modified GLR test by showing
that Equations (1) and (2) are include in the augmented state Kalman filter[

x̂k+1

ν̂k+1

]
= X̂k+1 = ĀX̂k + B̄uk +Kkγk (57)[

P x
k+1 P xν

k+1

P νx
k+1 P ν

k+1

]
= Ωk+1 = ĀΩkĀ

T + Γ̄W Γ̄T − ĀΩkC̄
T
(
C̄ΩkC̄

T + V
)−1

C̄ΩkĀ
T (58)

Kk =

[
Kx

k

Kνj

k

]
= ĀΩkC̄

TH−1
k , Hk = C̄ΩC̄T + V (59)
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designed on the new reference model hj rewritten

Xk+1 = ĀXk + B̄uk + Γ̄wk (60)

yk = C̄Xk + vk (61)

with Xk =

[
xk

νk

]
, Ā =

[
A fj
0 1

]
, B̄ =

[
B
0

]
, C̄ =

[
C 0

]
and Γ̄ =

[
I
0

]
where

x̂k+1 = x̂new
k+1 and P x

k+1 = P new
k+1 represents the maximum likelihood prediction of the

original state xk but the belonging now to augmented state Xk.

Theorem 4.1. In the two-stage Kalman filter of Friedland [16] which optimaly implement
(5), the updating strategy (1) rewritten

x̂k+1 = ˆ̄xk+1 + ζj(k + 1, r̂)ν̂(k + 1, r̂) (62)

Pk+1 = P̄k+1 + ζj(k + 1, r̂)P ν(k + 1, r̂)ζj(k + 1, r̂)T (63)

have the following significant meaning:
(
ˆ̄xk+1, P̄k+1

)
is the state prediction of the jump-free

system; (x̂k+1, Pk+1) is the reconfigurated state prediction of the faulty system (ν̂(k + 1, r̂) ;
P ν(k + 1, r̂)) is the prediction of the jump magnitude, and is optimal under r̂ extremely
well estimated if the augmented sate Kalman filter (5) is correctly initialized at the detec-
tion time of the jump with

X̂k =

[
I ζj(k, r̂)
0 1

] [
ˆ̄xk

ν̂(k, r̂)

]
Ωk =

[
I ζj(k, r̂)
0 1

] [
P̄k 0
0 P ν(k, r̂)

] [
I ζj(k, r̂)
0 1

]T (64)

from the quantities
(
ˆ̄xk, P̄k

)
, (ν̂(k, r̂), P ν(k, r̂)) and ζj(k, r̂) given by the GLR detector.

Proof: At time tj = r̂+ρj, (32) represents the minimum-time prediction of ν given by

ν̂(tj + 1, r̂) =
[(
CAρj−1fj

)T
H̄−1

tj

(
CAρj−1fj

)]−1 (
CAρj−1fj

)T
H̄−1

tj γ̄tj (65)

P ν(tj + 1, r̂) =
[(
CAρj−1fj

)T
H̄−1

tj

(
CAρj−1fj

)]−1

(66)

under the assumption that ν has an infinite a priori covariance since ϱj(k, r̂) = 0 for k < tj
and ϱj(tj, r̂) = CAρj−1fj. So, the updating strategy (1) and (2) applied at time tj gives
by

x̂tj+1 = ˆ̄xtj+1 + ζj(tj + 1, r̂j)ν̂(tj + 1, r̂) (67)

Ptj+1 = P̄tj+1 + ζj(tj + 1, r̂)P ν(tj + 1, r̂)ζj(tj + 1, r̂)T (68)

and can be used to define the Gaussian state prediction of the initial state Xtj+1 as

X̂tj+1 =

[
x̂tj+1

ν̂(tj + 1, r̂)

]
Ωtj+1 =

[
Ptj+1 ζj(tj + 1, r̂)P ν(tj + 1, r̂)

P ν(tj + 1, r̂)ζj(tj + 1, r̂)T P ν(tj + 1, r̂)

] (69)

The augmented state Kalman filter (5) can be implemented from the two-stage Kalman
filter of Friedland [16] described by

x̂k+1 = ˆ̄xk+1 + ζk+1ν̂k+1 (70)

Pk+1 = P̄k+1 + ζk+1P
ν
k+1ζ

T
k+1 (71)
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where
(
ˆ̄xk+1, P̄k+1

)
are given by the Kalman filter designed under h0

ˆ̄xk+1 = Aˆ̄xk +Buk + K̄k(yk − C ˆ̄xk) (72)

P̄k+1 = AP̄kA
T +W − AP̄kC

T (CP̄kC
T + V )−1CP̄kA

T (73)

K̄k = AP̄kC
T H̄−1

k (74)

H̄k = CP̄kC
T + V (75)

where (ν̂k+1, P
ν
k+1) are given the jump filter

ν̂k+1 = ν̂k +Kν
kγk (76)

P ν
k+1 = P ν

k − P ν
k ϱ

T
kH

−1
k ϱkP

ν
k (77)

Kν
k = P ν

k ϱ
T
kH

−1
k (78)

γk = γ̄k − ϱkν̂k (79)

Hk = H̄k + ϱkP
ν
k ϱ

T
k (80)

from the coupling equations

ζk+1 = (A− K̄kC)ζk + fj (81)

ϱk = Cζk (82)

From Equation (19), the initial values of the two-stage Kalman filter are[
ˆ̄xtj+1

ν̂tj+1

]
=

[
I −ζtj+1

0 1

]
X̂tj+1 =

[
ˆ̄xtj+1

ν̂(tj + 1, r̂)

]
(83)[

P̄tj+1 0
0 P ν

tj+1

]
=

[
I −ζtj+1

0 1

]
Ωtj+1

[
I −ζtj+1

0 1

]T
=

[
P̄tj+1 0
0 P ν(tj + 1, r̂)

]
(84)

with ζtj+1 = ζj(tj + 1, r̂).
After some manipulations, ν̂ can be rewritten in the form of a recursive filter

ν̂(k + 1, r̂) = ν̂(k, r̂) +Kν
kγk (85)

P ν(k + 1, r̂) = P ν(k, r̂)− P ν(k, r̂)ϱTj (k, r̂)H
−1
k ϱj(k, r̂)P

ν(k, r̂) (86)

Kν
k = P ν(k, r̂)ϱTj (k, r̂)H

−1
k (87)

γk = γ̄k − ϱj(k, r̂)ν̂k (88)

Hk = H̄k + ϱj(k, r̂)P
ν(k, r̂)ϱTj (k, r̂) (89)

We can verify that Equations (76) and (81) optimally implement Equation (85) closing
the proof of Theorem 4.1.
To avoid the tradeoff between fast detection and accurate estimation, we conclude that

the innovation sequence which must be used to detect, isolate and estimate a new jump is
the innovation sequence of the jump filter (85) and (89) equals to the auxiliary innovation
sequence (36) and (37) used in modified GLR test. This innovation sequence is also the
innovation sequence of the augmented state Kalman filter guaranted to be a minimum
variance white innovation sequence allowing the design of a GLR detector.

Theorem 4.2. After having initialized the augmented state Kalman filter (57) at the
detection time of the first jump with the help of Theorem 4.1, another possible jump can
be detected, isolated and estimated by the following GLR detector

max
i∈[1,...,N ], i ̸=j r̃∈W

{Ti(k, r̃ − ρi)} > ε (90)
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with

T new
i (k, r) = bnewi (k, r)2anewi (k, r)−1 (91)

anewi (k, r) =
k∑

t=r+ρi

[ϱnewi (t, r)]TH−1
t ϱnewi (t, r) (92)

bnewi (k, r) =
k∑

t=r+ρi

[ϱnewi (t, r)]TH−1
t γt (93)

where the new jump signatures ϱnewi (t, r) are recursively computed as

ζnewi (k + 1, r) = (Ā− K̄kC̄)ζnewi (k, r) +

[
fi
0

]
, ζnewi (r, r) = 0 (94)

ϱnewi (k, r) = C̄ζnewi (k, r) (95)

where ζnewi (t, r) represents the additive effect of a new jump on the augmented state pre-
diction error of the Kalman filter (5).

Proof: The jump hypotheses (9) and (10), noted hnew
i for i ∈ [1, . . . , N ] and i ̸= j, can

be modelized in relation with the new reference model (60) as

Xk+1 = ĀXk + B̄uk +

[
fi(k, r)

0

]
νnew(k, r) + Γ̄wk (96)

yk = C̄Xk + vk (97)

and can be confronted from the augmented state Kalman filter (57) as

hj : E(γt) = 0, t < r (98)

hnew
i : E(γt) = ϱnewi (t, r)νnew, k ≥ t ≥ r, i ∈ [1, . . . , N ] and i ̸= j (99)

where the additive effect of hnew
i on its state prediction error

[
exk
eνk

]
= Xk − X̂k and on

its innovation sequence γk = yk − C̄X̂k is described by Equations (94) and (95). We have

E{(γk−t − E(γk−t))(γk − E(γk))
T} = 0, ∀t < k (100)

and ϱnewi (r, r) = 0 and so until ϱnewi (r + ρi − 1, r) = 0 where ϱnewi (r + ρi, r) = CAρi−1fi
(the detectability indexes ρi have not lost their significant meaning). So, the likelihood
ratio between hnew

i (i ̸= j) and hj is given by

λnew
i (k, r, νnew) =

exp

(
−1

2

k∑
t=r+ρi

∥γt − ϱnewi (t, r)νnew∥2
H̄−1

t

)

exp

(
−1

2

k∑
t=r+ρi

∥γt∥2H̄−1
t

) (101)

Based on measurements until time k, the maximum likelihood prediction of νnew con-
ditioned on r is given by

ν̂new(k + 1, r) =

[
k∑

t=r+ρi

ϱnewi (t, r)T H̄−1
t ϱnewi (t, r)

]−1 k∑
t=r+ρi

ϱTi (t, r)H̄
−1
t γt (102)

Substituting Equation (102) in (101), we obtain the log-likelihood ratio

T new
i (k, r) = 2 log(λnew

i (k, r, ν̂new(k + 1, r))) (103)
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So, if max
i∈[1,...,N ], r̃∈[0,...,k]

{T new
i (k, r̃ − ρi)} > ε, then a new jump is detected and isolated

from (j, ˆ̃r) = argmax{T new
i (k, r̃ − ρi)} and its estimation is given by

ν̂(k + 1, r̂) = anewj (k, r̂)−1bnewj (k, r̂) (104)

P ν(k + 1, r̂) = anewj (k, r̂)−1 (105)

with r̂ = ˆ̃r − ρj closing the proof.

Theorem 4.3. The first step of the active GLR test described by Theorems 4.1 and
4.2 follows the minmax strategy developed by Basseville and Nikiforov [5]. The Kullback
divergence between hnew

i and hj given by

δnewi (k, r) =
k∑

t=r

[
ϱnewi (t, r)TH−1

t ϱnewi (t, r)
]
(νnew)2 (106)

is maximized with respect to νnew and satisfies δnewi (k, r) ≥ δ̃i(k, r) where

δ̃i(k, r) =
k∑

t=r

[
ϱi(t, r)

TH−1
t ϱi(t, r)

]
(νnew)2 (107)

is the Kullback divergence derived from the modified GLR test presented in part 2. The
rate of good decisions will then be always superior to those obtained by the modified GLR
test.

Proof: From the Kalman filter (13), the jump hypotheses hnew
i can be confronted as

hj : γ̄t = ϱtν
old, t < r (108)

hnew
i : γ̄t =

[
ϱi(t, r) ϱt

] [ νnew

νold

]
,

k ≥ t ≥ r + ρi, i ∈ [1, . . . , N ] for i ̸= j (109)

where νold can be viewed as a nuisance parameter. Using the optimal prediction of νold

under hj and hnew
i given by ν̂t+1 and ν̂t+1 + ζνi (t+1, r)νnew respectively where ζνi (t+1, r)

describes the additive effect of the new jump on the bias filter (76) given by

ζνi (t+ 1, r) = (I −Kν
t ϱt)ζ

ν
i (t, r)−Kν

t ϱi(t, r) with ζνi (r, r) = 0 (110)

the jump hypotheses (108) and (109) can be equivalently confronted as

hj : γ̄t = ϱtν̂t+1, t < r

hnew
i : γ̄t =

[
ϱi(t, r) ϱt

] [ νnew

ν̂t+1 + ζνi (t+ 1, r)νnew

]
,

t ≥ r + ρi, i ∈ [1, . . . , N ] for i ̸= j

(111)

or

hj : E (γ̄t − ϱtν̂t+1) = 0, t < r (112)

hnew
i : E (γ̄t − ϱtν̂t+1) = [ϱi(t, r) + ϱtζ

ν
i (t+ 1, r)] νnew (113)

t ≥ r + ρi, i ∈ [1, . . . , N ], i ̸= j

The likelihood ratio between (113) and (114) gives
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λnew
i (k, r, νnew) =

exp

(
−1

2

k∑
t=r+ρi

∥(I − ϱtK
ν
t ) (γ̄t − ϱtν̂ − [ϱi(t, r) + ϱtζ

ν
i (t, r)] ν

new)∥2
Q−1

t

)

exp

(
−1

2

k∑
t=r+ρi

∥(I − ϱtKν
t ) (γ̄t − ϱtν̂t)∥2Q−1

t

)
(114)

where

Qt = (I − ϱtK
ν
t )Ht(I − ϱtK

ν
t )

T (115)

since

γ̄t − ϱtν̂t+1 = (I − ϱtK
ν
t ) (γ̄t − ϱtν̂t) (116)

ϱi(t, r) + ϱtζ
ν
i (t+ 1, r) = (I − ϱtK

ν
t ) (ϱi(t, r) + ϱtζ

ν
i (t, r)) (117)

or

λi(k, r, ν
new) =

exp

(
−1

2

k∑
t=r+ρi

∥(γ̄t − ϱtν̂t − [ϱi(t, r) + ϱtζ
ν
i (t, r)] ν

new)∥2H−1
t

)
exp

(
−1

2

k∑
t=r+ρi

∥(γ̄t − ϱtν̂t)∥2H−1
t

) (118)

From the transformation Tk =

[
I −ζk
0 I

]
used in appendix 1, let Tkζ

new
i (k, r) =[

ζi(k, r)
ζνi (k, r)

]
. So, the new fault signatures (94) can then be equivalently computed as

Tk+1ζ
new
i (k + 1, r) = Tk+1(Ā−KkC̄)T−1

k Tkζ
new
i (k, r) + Tk+1

[
fi
0

]
ϱnewi (k, r) = C̄T−1

k Tkζ
new
i (k, r)

(119)

leading to [
ζi(k + 1, r)
ζνi (k + 1, r)

]
=

[
A− K̄kC 0
−Kν

kC I −Kν
kϱk

] [
ζi(k, r)
ζνi (k, r)

]
+

[
fi
0

]
,[

ζi(r, r)
ζνi (r, r)

]
= 0,

ϱnewi (k, r) = C
[
I ζk

] [ ζi(r, r)
ζνi (r, r)

] (120)

where Equation (120) gives ϱnewi (k, r) = ϱi(k, r) + ϱkζ
ν
i (k, r). We conclude that Equation

(118) is equivalent to Equation (101). From the two-stage Kalman filter results, we can
verify that P ν

i (k+1, r) = anewi (k, r)−1 satisfying the following Riccati Difference equation[
Ω 0
0 P ν

i (k + 1, r)

]
=

[
ĀΩĀT + W̄ −KkC̄ΩkĀ

T 0
0 [I −Kν

i (k, r)ϱ
new
i (k, r)]P ν

i (k, r)

]
(121)

whereKν
i (k, r) = P ν

i (k, r)ϱ
new
i (k, r)T

[
C̄ΩkC̄

T + V + ϱnewi (k, r)P ν
i (k, r)ϱ

new
i (k, r)T

]−1
min-

imizes the trace of P ν
i (k+1, r) (and where the gain of the augmented state Kalman filter

Kk minimize the trace of Ωk+1) and the Kullback divergence δnewi (k, r) = [P ν
i (k, r)]

−1

(νnew)2 is then maximized with respect to νnew. We have

[
Ωk+1 0
0 P ν

i (k + 1, r)

]
equiva-

lent to
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 P̄k+1 0 0
0 P ν

k+1 + ζνi (k + 1, r)P ν
i (k + 1, r)ζνTi (k + 1, r) ζνi (k + 1, r)P ν

i (k + 1, r)−1

0 P ν
i (k + 1, r)−1ζνTi (k + 1, r) P ν

i (k + 1, r)

 (122)

From Equation (122), the Kullback divergence between hnew
i and h0 can be expressed as[

νold

νnew

]T [
P ν
k+1 + ζνi (k + 1, r)P ν

i (k + 1, r)ζνTi (k + 1, r) ζνi (k + 1, r)P ν
i (k + 1, r)−1

P ν
i (k + 1, r)−1ζνTi (k + 1, r) P ν

i (k + 1, r)

]−1 [
νold

νnew

]
=

[
νold − ζνi (k + 1, r)νnew

νnew

]T [
P ν
k+1 0
0 P ν

i (k + 1, r)

]−1 [
νold − ζνi (k + 1, r)νnew

νnew

]
(123)

The Kullback divergence (123) gives its minimal value δnewi (k, r) = [P ν
i (k + 1, r)]−1

(νnew)2 for νold = ζνi (k + 1, r)νnew. So, we conclude that the first step of the active GLR
test follows a minmax strategy (see appendix) closing the proof of Theorem 4.3. Based
on an inductive reasonning with the help of Theorems 4.1 and 4.2, the proposed active
GLR test is then derived leading to a GLR detector of the form

max
i∈[1,...,N ], i ̸=[jumps already treated] r̃∈W

{T new
i (k, r̃ − ρi)} > ε (124)

where the state vector Xk =
[
xT
k (νold)T

]T
of the reference model (96) includes the

q states of jumps νold
k =

[
ν1
k ... νq

k

]T
detected and isolated during the recursive pro-

cessing. In [5], the off-line statistical decoupling of nuisance parameters is reduced to a
static decoupling problem in a regression model. Our active GLR test solves on-line a
dynamic statistical decoupling problem by rejecting the nuisance parameters which are
statistically significant (see also appendix).
Under the multiple jumps detectability and distinguishability conditions of Theorem

3.1, the augmented state Kalman filter is guaranted to be stable at each step of the
recursive treatment. With this implementation, the estimation of jumps detected and
isolated during the processing will be improved from measurements available after their
detection. In the case where the old jumps are extremely well estimated (the jump
prediction errors does not converge exponentially to zero as the state prediction of the
jump-free system but only asymptotically), then δnewi (k, r) = δ̃i(k, r) and the GLR test
coincides with the modified GLR test.

5. The Passive GLR Test. The passive GLR is based on the assumption that the
jumps occur frequently. So assume that the fixed reference model noted HN is described

Xk+1 = ĀXk + B̄uk + Γ̄wk (125)

yk = C̄Xk + vk (126)

with Ā =

[
A F
0 1

]
, B̄ =

[
B
0

]
, Γ̄ =

[
I
0

]
, C̄ =

[
C 0

]
and Xk =

[
xk

νk

]
, the

augmented state model including all jump’s states νk =
[
ν1
k . . . νj

k . . . νN
k

]
that we

wish to detect and isolate. From Equations (125) and (126), the jump hypothesis hj

described by Equations (9) and (10) can be viewed as an impulsive abrupt change on the
jth hypothetical jump’s state, modelized as

νj
k+1 = νj

k +∆νδkr, ∀j ∈ [1, . . . , N ] (127)

where r is the unknown occurrence time of impulsive abrupt change, ∆ν the jump’s state
increment and δkr is the Kronecker operator.
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Substituting Equation (127) in (125), we obtain the impulsive jump hypotheses, noted
h∆
j , described by

Xk+1 = ĀXk + B̄uk + f∆
j (k, r)∆νj(k, r) + Γ̄wk

yk = C̄Xk + vk
(128)

with ∆νj(k, r) = ∆νjδkri , f
∆
j (k, r) = f∆

j δkri with f∆
j =

[
0
Ij

]
and ITj = [0 . . . 1 . . . 0]

has one at the jth position and zero elsewhere. Based on an approach very similar to the
modified GLR test of part 4, let

X̂k+1 = ĀX̂k + B̄uk +Kk(yk − C̄X̂k)

Ωk+1 = ĀΩkĀ
T + Γ̄W Γ̄T − ĀkΩkC̄

T
(
C̄ΩkC̄

T + V
)−1

C̄ΩkĀ
T

Kk = ĀΩkC̄
TH−1

k

Hk = C̄ΩkC̄
T + V

(129)

the augmented state Kalman filter designed on the reference model Equations (125) and
(126). The additive effect of the impulsive jump hypothese h∆

j on the state prediction
error and on the innovation sequence of the augmented state Kalman filter propagates as

ek+1 = ẽk+1 + ζ∆j (k + 1, r)∆ν (130)

γk = γ̃k+1 + ϱ∆j (k, r)∆ν (131)

where ẽk+1 and γ̃k represent the state prediction error and the innovation sequence on the
jump-free system and where ζ∆j (k + 1, r) and ϱ∆j (k, r) propagate as

ζ∆j (k + 1, r) = (Ā− K̄kC̄)ζ∆j (k, r), ζ∆j (r, r) = f∆
j

ϱ∆j (k, r) = C̄ζ∆j (k, r)
(132)

So, we can apply the following GLR detector

max
j∈[1,...,N ], r̃∈W

{T∆
j (k − ρj, r̃)} > ε (133)

with

T∆
j (k, r) = b∆j (k, r)

2a∆j (k, r)
−1 (134)

a∆j (k, r) =
k∑

t=r+ρj

ϱ∆T
j (t, r)H−1

t ϱ∆j (t, r) (135)

b∆j (k, r) =
k∑

t=r+ρj

ϱ∆T
j (t, r)H−1

t γt (136)

if max
j, r̃

{T∆
j (k − ρj, r̃} > ε, then (i, ˆ̃r) = argmax

j,r̃
{T∆

j (k, r̃ − ρj)} and the implusive jump

h∆
i is declared to be occurred at time where r̂ = ˆ̃r − ρi, where

∆ν̂(k + 1, r̂) = a∆i (k, r̂)
−1b∆i (k, r̂) (137)

P∆ν(k + 1, r̂) = a∆i (k, r̂)
−1 (138)

represents the maximum likelihood prediction of the jump increment ∆ν (under the as-
sumption that ∆ν has an infinite a priori covariance). At the detection time of the first
jump, the tracking ability of the augmented state Kalman filter (129) can be improved
from the updating strategy as

X̂new
k+1 = X̂old

k+1 + ζ∆i (k + 1, r̂)∆ν̂(k + 1, r̂)
Ωnew

k+1 = Ωold
k+1 + ζ∆i (k + 1, r̂)P∆ν(k + 1, r̂)ζ∆i (k + 1, r̂)T

(139)
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In our case, the state of the matched filters given by ζ∆j (k, r) are spanned in the tra-
jectory space of the augmented state Kalman filter’s prediction errors. So, Equation
(139) substituted in the augmented state Kalman filter (129) improves its tracking ability
without to produce a possible instability on the resulting filter (under the stability and
convergence conditions of the augmented state Kalman filter given by Jamouli (2007)).
The treatment of another impulsive jump is then obtained by applying GLR detector
(133) on the resulting filter after having reinitialized ζ∆j (k, r) = 0, ∀j ∈ [1, . . . , N ] im-

mediately after the filter incrementation. The new initialization (139) allows E(X̂new
k ) to

reach the true state of the system very quickly (and E(γt) to reach zero for jump com-
pensation, consequently) avoiding the detection of the same jump several times. From an
inductive reasonning, the passive GLR test is then derived and consists of the following
steps:

1) Detection, isolation and estimation of one impulsive jump with the GLR detector (133),
2) Updating of the augmented state Kalman filter (129) with (139) to improve its tracking,
3) Go to Step 1.

The sequential multiple decision theory is not complete and the choise of the threshold
level ε is not studied in this paper. However, some simulation results not presented in this
paper show that only statistical tuning parameter ε can be fixed at the beginning of the
processing (this is not the threshold level which is adaptive but the augmented Kalman
filter).
If the updated reference model (60) is substituted to the fixed reference model (125),

the jump hypothesis h∆
i can modelize another jump on the old changes or also the disap-

pearance of the old jumps. In this case, a mixed active/passive GLR test can be derived
for a complete strategy allowing the treatment of the appearance and the disappearance
of sequential jumps.

6. Results. To illustrate the proposed approach we considered the following system de-
scribed by the matrix

A =


0.6 0.2 0 0
0 0.2 0.1 0
0 0 0.4 0.1
0 0 0 0.5

 , B =


0 1
1 0
0 1
1 0

 (140)

C =

 1 0 0 0
0 1 0 0
0 0 1 1

 , F =


1 0
1 1
1 1
0 1

 (141)

W = 0.01 ∗ Id(4, 4) and V = 0.5 ∗ Id(3, 3) (142)

The faults isolability is satisfied with rank [CAf1 CAf2] and F = [f1 f2]. The statis-
tical variables describing the performances of the reconfigurable FTCS coincide with the
statistical variables describing the performances of the statistical test. So, to simplify
the Monte Carlo simulation, the proposed example will be realized in open loop. In the
field od dynamic systems, the signal-to-noise ratio δi(k, r) are generally more greater than
the signal to noise ratio treated in the fields of electrocardiogram analysis or geophysical
signal processing and the size M of the sliding window W = [k −M ≤ r̃ ≤ k] can be
generally chosen small. In our example, we take M = 0 (we do not optimize r̃ at all
and we fixe the following rate of false alamrs: P F = 0.005 from a table of Chi-Squared
distribution.
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In first, we suppose one fault occurred at 350 with magnitude 2, we obtain the following
results.
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Figure 1. First state component and its estimation given by Willsky algorithm
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Figure 2. Second state component and its estimation given by Willsky algorithm
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Figure 3. Third state component and its estimation given by Willsky algorithm

In the first case, the results shows that the proposed state estimation giving by our
filter is more adaptive to the fault occurence than the Willsky algorithm.

In second case, we suppose two sequentiel faults occurred at 350 and 400 with magni-
tudes 2, we obtain the following results.
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Figure 4. Fourth state component and its estimation given by Willsky algorithm
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Figure 5. GLR test applied on Willsky algorithm
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Figure 6. First state component and its estimation given by our adaptive
filter algorithm
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Figure 7. Second state component and its estimation given by our adap-
tive filter algorithm
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Figure 8. Third state component and its estimation given by our adaptive
filter algorithm
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Figure 9. Fourth state component and its estimation given by our adap-
tive filter algorithm
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Figure 10. GLR test applied on our adaptive filter
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Figure 11. First state component and its estimation given by Willsky
algorithm with presence of two sequential faults
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Figure 12. Second state component and its estimation given by Willsky
algorithm with presence of two sequential faults
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Figure 13. Third state component and its estimation given by Willsky
algorithm with presence of two sequential faults
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Figure 14. Fourth state component and its estimation given by Willsky
algorithm with presence of two sequential faults
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Figure 15. GLR test applied on Willsky algorithm with presence of two
sequential faults
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Figure 16. First state component and its estimation given by our adaptive
algorithm with presence of two sequential faults
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Figure 17. Second state component and its estimation given by our adap-
tive algorithm with presence of two sequential faults
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Figure 18. Third state component and its estimation given by our adap-
tive algorithm with presence of two sequential faults

In case of two sequential faults, the GLR detector applied on the passive augmented
model allows to detect the first at 350s and the second faults at 400s. The Willsky GLR
detect just the first fault at 350, and cannot detect the second.

Remarks and Discussion

• We have also computed the rate of false alarms and the rate of good detections with
105 Monte Carlo trials. We have obtained P̂ F ≃ 0, 01; P̂D ≃ 0, 85 for the modified
GLR test and P̂ F ≃ 0, 0055, P̂D ≃ 0, 91 for the passive GLR test clearly much power.
We conclude that the passive GLR test is very power when quick detections lead to
bad jump estimations and thus very usefull for FTCS to maximize the rate of good
decisions specially in reguard to the occurrence of a big jump which may greatly
affect nominal performance of the system.
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Figure 19. Fourth state component and its estimation given by our adap-
tive algorithm with presence of two sequential faults
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Figure 20. GLR test applied on adaptive algorithm with presence of two
sequential faults

• We can improve this approach of detection and isolation with an active GLR based
on free model which it will be augmented after each detection and isolation. The
faults already detected and isolated will considered as perturbation and the we will
update the new GLR in order to detect another fault.

The sequential multiple decision theory is not complete and the choise of the threshold
level ε is not studied in this paper. However, some simulation results not presented in this
paper show that only statistical tuning parameter ε can be fixed at the beginning of the
processing (this is not the threshold level which is adaptive but the augmented Kalman
filter).

7. A Reconfigurable Fault-Tolerant Control System. The purpose of the chapter
is to show how the active and passive GLR test can be used in a FTCS. Our FTCS is
only designed to reach the unique goal:

E(yk) = 0
k→∞

under r < ∞ (143)

in order words to asymptotically reject the effect of jumps on the output of the system
(the reference input will be maintained equals to zero avoiding the need of a reconfigurable
feedforward control law). The proposed FTCS is based on the active GLR test integrated
via a reconfigurable control law designed on the model

Xk+1 = ĀXk + B̄uk + Γ̄wk (144)

yk = C̄Xk + vk (145)

where the main problem to reach our goal is that the pair (Ā, B̄) has N uncontrollable
modes (under (A,B) controllable). The reconfigurable control law of the form uk =
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un
k −Gν̂k will be designed in such a way that the nominal control un

k = −L̄̂̄xk of the jump-
free system (6;7) (obtained by a LQG approach on an infinite horizon) is reconfigured
on-line after each detection and isolation of one impulsive jump by the additive term Gν̂k.
In order to design G in relation with the available nominal control law, we assume that
the implementation of the active GLR test is based on the two-stage Kalman filter, the
only optimal filter which gives the state prediction of the jump-free system ̂̄xk. So, let

uk = un
k −Gνk (146)

the control law that we wish to design for a physical rejection of jumps νk. Under the
state transformation [

x̄k

νk

]
=

[
I T
0 I

] [
xk

νk

]
(147)

the system (141) with (144) can be expressed as[
x̄k+1

νk+1

]
=

[
A (I − A)T + F
0 I

] [
x̄k

νk

]
+

[
B
0

]
(un

k −Gνk) (148)

yk =
[
C −CT

] [ x̄k

νk

]
(149)

and the physical rejection of jumps will be obtained if and only if T let G satisfy the
algebraic equations

(I − A)T + F = −BG (150)

CT = 0 (151)

Under the existence condition of a solution of (148) given by

rang

[
A− I B −F
C 0 0

]
= rang

[
I − A B
C 0

]
(152)

the gain G of the control law (143), solution of (148) gives

G = [C(I − A)−1B]−1C(I − A)−1F (153)

and T = (I − A)−1(BG− F ). Under Equation (150), Equation (145) gives[
x̄k+1

νk+1

]
=

[
A 0
0 I

] [
x̄k

νk

]
+

[
B
0

]
un
k +

[
I
0

]
wk (154)

yk =
[
C 0

] [ x̄k

νk

]
+ vk (155)

where x̄k represent the state of the jump-free system. So, under (A,B) controllable,
the LQG regulator un

k = −L̄ˆ̄xk can be designed on the jump-free system h0 (from the
separation principle) to obtained the nominal system performances (not defined here).
The reconfigurated control law, which reject the q jump’s uncontrollable modes is given
by

uk = −L̄ˆ̄xk −Gν̂k (156)

from the two-stage Kalman filter or equivalently

uk = −
[
L̄ G

] [ I −ζk
0 I

] [
I ζk
0 I

] [
ˆ̄xk

ν̂k

]
= −

[
L̄ G− L̄ζ

] [ x̂k

ν̂k

]
(157)

from the augmented state Kalman filter. Note that after each detection and isolation of
one jump, the nominal control law un

k = −L̄ˆ̄xk is not affected by the active GLR test but
only corrected by the additive term Gν̂k depending to the old jumps estimation (improved
from measurement available after their detection). The active GLR test depends only to
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the state prediction errors of the Kalman filter decoupled from uk and we can propose the
following reconfigurable FTCS scheme:

  Actuators  Sensors  
Two-stage 

Kalman 

GLR  
Control  

law 

Plant  
y 

�̂ 
�� � 

Figure 21. The reconfigurable FTCS scheme based on the active GLR test

The reference model used for the design of the control law GLR test coincides with
the reference model used by the GLR Test. After each detection and isolation of one
jump, the reference model is updated with the new state of jump and the three parts of
the FTCS, i.e., the GLR detector, the Kalman filter, the control law, can be reconfigu-
rated in harmony by the reconfiguration mechanism. To reduce the the computational
requirement, the passive GLR test working on a fixed reference model can be used but the
statistical performances of the reconfigurable FTCS will be closely related by the rates of
false alarms and good decisions of the used statistical test.

8. Numerical Example. Consider the following discrete-time stochastic system

A =

 0.5 2 0.2
0 0.4 1
0 0 0.1

 , B =
[
B1 B2

]
=

 1 0
0 1
−1 0

 , C =

[
1 0 1
0 1 0

]
(158)

V = 2I and W = I. Subject to two possible abrupt changes h1 and h2 on actuators
modelized by f1 = B1, f2 = B2 with ρ1 = 2 and ρ2 = 1. From Theorem 3.1, the two
jumps are statistically detectable and distinguishable, i.e., (11) and (12) hold with

rank
[
CAf1 Cf2

]
(159)

and

rank

[
I − A f1 f2
C 0

]
= 3 + 2 = 5(I). (160)

We can remark that the rank condition (I) guaranties the existence condition of the
reconfigurable FTCS given by (149) for any jump’s scenario. The statistical variables
describing the performances of the reconfigurable FTCS coincide with the statistical vari-
ables describing the performances of the statistical test. So, to simplify the Monte Carlo
simulation, the proposed example will be realized in open loop.
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In the field of dynamic systems, the signal-to-noise ratio δi(k, r) are generally more
greater than the signal to noise ratio treated in the fields of electrocardiogram analysis or
geophysical signal processing and the size M of the sliding window W = [k −M ≤ r̃ ≤ k]
can be generally chosen small. In our example, we take M = 0 (we do not optimize r̃ at
all) and we fixe the following rate of false alarms: P F = 0.005 from a table of Chi-Squared
distribution. The first jump ν = 10 appearing at time instant k = 50 has been chosen
sufficiently important to ensure that the rate of correct decisions is very closed to one.
The statistical comparaison will be made on the second jump ν = 3 occurring at time
instant r = 60.

We have computed the rate of false alarms and the rate of good detections with 105

Monte Carlo trials. We have obtained P̂ F ≈ 0.01, P̂D ≈ 0.85 for the modified GLR
test and P̂2 ≈ 0.0055, P̂D ≈ 0.91 for the active GLR test clearly much power. Many
other simulations not presented in this paper, realized in the case where the second jump
appears at times r = 70, 80, . . . have shown that the active GLR test always gives better
results but with less significant results. In the limite case where the second jump appears
after the first jump with a very long time delay, the two GLR tests have given the same
results. We conclude that the active GLR test is very power when quick detections lead
to bad jump estimations and thus very usefull for FTCS to maximize the rate of good
decisions specially in reguard to the occurrence of a big jump which may greatly affect
nominal performance of the system.

9. Conclusion. Derived from the works of Willsky and Jones [50], this paper has pre-
sented the active GLR test for sequential jumps detection in stochastic discrete-time linear
systems. From a new updating strategy based on the statistical rejection of the jumps
detected and isolated during the recursive treatment, the rate of false alarm has been
minimized and the rate of good decisions maximized. The active GLR test has been
integrated in a reconfigurable Fault-Tolerant Control System by using an LQG regulator
designed on the jump-free system where the nominal control law is corrected on line to
asymptotically reject the influence of jumps.
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Appendix 1. The predictive form of the Friendland’s two-stage Kalman Filter which
optimaly implement the following augmented state Kalman filter[

x̂k+1

ν̂k+1

]
= X̂k+1 = ĀX̂k + B̄uk +Kkγk (161)[

P x
k+1 P xν

k+1

P νx
k+1 P ν

k+1

]
= Ωk+1 = ĀΩkĀ

T + Γ̄W Γ̄T − ĀΩkC̄
T
(
C̄ΩkC̄

T + V
)−1

C̄ΩkĀ
T(162)

Kk =

[
Kx

k

Kνj

k

]
= ĀΩkC̄

TH−1
k , Hk = C̄ΩC̄T + V (163)

with X̂0 =

[
x̂0

ν̂0

]
and Ω0 =

[
P x
0 P xν

0

P νx
0 P ν

0

]
, where Ā =

[
A F
0 I

]
, B̄ =

[
B
0

]
, C̄ =[

C 0
]
and Γ̄ =

[
I
0

]
is given by

x̂k+1 = ˆ̄xk+1 + ζk+1ν̂k+1 (164)

Pk+1 = P̄k+1 + ζk+1P
ν
k+1ζ

T
k+1 (165)

where
(
ˆ̄xk+1, P̄k+1

)
are given by the bias-free filter

ˆ̄xk+1 = Aˆ̄xk +Buk + K̄kγ̄k (166)

P̄k+1 = AP̄kA
T +W − AP̄kC

T (CP̄kC
T + V )−1CP̄kA

T (167)

K̄k = AP̄kC
T H̄−1

k (168)

γ̄k = yk − C ˆ̄xk (169)

H̄k = CP̄kC
T + V (170)

where (ν̂k+1, P
ν
k+1) are given the bias filter

ν̂k+1 = ν̂k +Kν
k (γ̄k − ρkν̂k) (171)

Kν
k = P ν

k ρ
T
k (H̄k + ρkP

ν
k ρ

T
k )

−1 (172)

P ν
k+1 = P ν

k − P ν
k ρ

T
k (ρkP

ν
k ρ

T
k + H̄k)

−1ρkP
ν
k (173)

with the coupling equation

ζk+1 = (A− K̄kC)ξk + F (174)

ρk = Cζk (175)

The initial conditions of the two-stage Kalman filter are given by[
ˆ̄x0

ν̂0

]
=

[
I −ζ0
0 I

] [
x̂0

ν̂0

]
(176)

and [
P̄0 0
0 P ν

0

]
=

[
I −ζ0
0 I

] [
P x
0 P xν

0

P νx
0 P ν

0

] [
I −ζ0
0 I

]T
(177)

with ζ0 = P xν
0 (P ν

0 )
−1. The zero mean white innovation sequence of the bias-filter equals

to the innovation sequence of the augmented state Kalman filter since γk = yk − C̄X̂k =
γ̄k − ρkν̂k where Hk = H̄k + ρkP

ν
k ρ

T
k is its covariance matrix. The optimality of two-

stage Kalman filter can be proved under the transformation Tk =

[
I −ζk
0 I

]
with ζk =
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P xν
k [P ν

k ]
−1 applied on the augmented state filter

X̂k+1 = ĀX̂k + B̄uk +

[
Kx

k

Kν
k

]
(yk − C̄X̂k) (178)

Ωk+1 =

(
Ā−

[
Kx

k

Kν
k

]
C̄

)
Ωk

(
Ā−

[
Kx

k

Kν
k

]
C̄

)T

+ Γ̄W Γ̄T +

[
Kx

k

Kν
k

]
V

[
Kx

k

Kν
k

]T
(179)

as

Tk+1X̂k+1 = Tk+1ĀT
−1
k TkX̂k + B̄uk + Tk+1

[
Kx

k

Kν
k

]
(yk − C̄T−1

k TkX̂k) (180)

Tk+1Ωk+1T
T
k+1 = Tk+1

(
Ā−

[
Kx

k

Kν
k

]
C̄

)
T−1
k TkΩkT

T
k (T

T
k )

−1

(
Ā−

[
Kx

k

Kν
k

]
C̄

)T

(181)

+Γ̄W Γ̄T + Tk+1

[
Kx

k

Kν
k

]
V

[
Kx

k

Kν
k

]T
T T
k+1

From

[
ˆ̄xk

ν̂k

]
= TkX̂k,

[
P̄k 0
0 P ν

k

]
= TkΩT

T
k and under the assumption that Kν

k =

K̄k + ζk+1K
ν
k with ζk+1 = P xν

k+1[P
ν
k+1]

−1, we obtain[
ˆ̄xk+1

ν̂k+1

]
=

[
A− K̄kC 0
−Kν

kC (I −Kν
kρk)

] [
ˆ̄xk
ν̂k

]
+ B̄uk +

[
K̄k

Kν
k

]
yk (182)[

P̄k+1 ×
× P ν

k+1

]
=

[
A− K̄kC 0
−Kν

kC (I −Kν
kρk)

] [
P̄k 0
0 P ν

k

] [
A− K̄kC 0
−Kν

kC (I −Kν
kρk)

]T
+

[
K̄k

Kν
k

]
V

[
K̄k

Kν
k

]T
+

[
W 0
0 0

]
(183)

and with K̄k = AP̄kC
T H̄−1

k minimizing the trace of P̄k+1.
The trace of P ν

k+1 is minimized by Kν
k = P ν

k ρ
T
k (H̄k + ρkP

ν
k ρ

T
k )

−1 and the proof that
Kx

k = K̄k + ζk+1K
ν
k where ζk+1 = P xν

k+1[P
ν
k+1]

−1 is given in Keller and Darouach (1997).
Note that the existence condition of ζk = P xν

k [P ν
k ]

−1 given by P ν
k > 0 is always satisfied

under (21.a).


