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ABSTRACT. Since medical z-ray images are gray scale images with almost the same tez-
ture characteristics, conventional color or texture features cannot be used for appropriate
categorization in medical z-ray image archives. Therefore, for this type of images with
these special conditions, more complicated methods are needed to improve the classifi-
cation results. In this paper, with regard to medical z-ray images characteristics and
also to avoid the complexity, a novel feature is proposed which is the combination of
shape and texture features. The feature extraction process is started by edge and shape
information extraction from original medical z-ray images. Finally, Gabor filter is used
to extract spectral texture features from shape images. Furthermore, in order to study
the effect of feature fusion on the classification performance, different effective features
like local binary pattern and gray level co-occurrence matriz are utilized to combine with
novel features. In order to evaluate the proposed shape-texture feature and feature com-
bination in medical z-ray images categorization, a set of well-known classifiers such as
Euclidean distance matching criterion, probabilistic neural network (PNN) and support
vector machine (SVM) are applied. The proposed feature is extracted from 4402 medical
x-ray images in 21 classes of IRMA database and the best classification accuracy rate
becomes 88.77% by SVM. The classification accuracy rate of 94.2% for combination of
novel shape-texture feature, local binary pattern and gray level co-occurrence matriz has
been obtained by SVM.

Keywords: Classification accuracy rate, Feature extraction, Feature combination, Med-
ical x-ray images, Novel shape-texture feature (NSTF')

1. Introduction. Traditional classifiers and retrieval systems are based on text or key-
words. This means that keywords which explain contents of images are attached to the
images and guide the traditional search engines such as Google, Yahoo and AltaVista
search sites. With increment of multimedia information, annotation process would be
considerably time consuming. Furthermore, this process is an ambiguous task because
of different human perceptions. To solve this problem, researchers focused on the actual
contents of images. To access images based on their contents, several features such as
color, shape and texture are extracted from them. Content-based image retrieval (CBIR)
systems [1-4] are playing an important role in the clinical processes applications. Classi-
fication and indexing stages are main primary stages for CBIR systems which should be
done prior to any processing to offer a reliable and appropriate retrieval. On the other
hand, confident classification plays a great role in obtaining an effective retrieval. The ap-
plications of x-ray images for medical diagnostics are explosively increasing; therefore, the
need for powerful and reliable archiving, classification and retrieval tools for this type of
images has become a great and undeniable concern. In medical x-ray image classification
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application, several schemes and algorithms have been proposed in the literature [5-9]. In
[5], a hierarchical medical image classification method including two levels using a set of
various shape and texture features was proposed. These features were moment invariants,
Fourier descriptor, major axis orientation, eccentricity, major and minor axis length, gray
level co-occurrence matrix (GLCM), the tessellation-based spectral feature in multi-scale
space and the directional histogram in multi-scale space. These nine features were ana-
lyzed separately and the best feature for each class was selected through assigning a weight
to it. In each level of the hierarchical classifier, using a new merging scheme and multi-
layer perceptron (MLP) classifiers (merging-based classification), homogenous (semantic)
classes were created from overlapping classes in the database. The proposed algorithm was
evaluated on a database consisting of 9100 medical x-ray images of 40 classes. It provides
on accuracy rate of 90.83% on 25 merged classes in the first level. In [6], an automatic
detection of body parts in x-ray images was proposed. In the first step of this scheme,
average gray descriptor (AGD), color layout descriptor (CLD), edge histogram descriptor
(EHD) and local binary patterns (LBP) features were extracted and then the performance
of these five different feature types was evaluated by support vector machine (SVM). The
proposed feature extraction scheme was implemented on a set of radiographs of 116 classes
from IRMA database. 84.7% was the best classification accuracy rate obtained by eval-
uating local binary pattern. In [7], a classification method of x-ray images using grid
approach was proposed. This scheme consisted of 6 stages: object segmentation, identifi-
cation of the object boundary, transformation using grid approach, representation using
Freeman code, calculation and matching process. The best classification accuracy rate
obtained by Jeffrey divergence was 83%. In [8], x-ray chest image retrieval method based
on feature fusion was presented. In this scheme, color auto-correlogram, dominant color
of partition, GLCM, gray-gradient co-occurrence matrix and shape invariant moments
were extracted as retrieval features. After comparing retrieval results of these features,
feature fusion and relevance feedback were applied. This framework was evaluated on
122 x-ray chest images and the best obtained classification accuracy rate was 74%. In
[9], a multilevel feature extraction and medical x-ray images classification scheme was
introduced. In this scheme, first, features were extracted in three levels: global, local
and pixel. Then they were combined to generate one big feature vector. This feature
was extracted from 9000 training medical x-ray images and 1000 test ones in 57 classes
and evaluated by both SVM and K-nearest neighborhood (KNN) classifiers. The best
achieved classification accuracy rate was 89%. The significant and important shortage of
[5-9] is that the number of training images utilized for classification is much larger than
the number of test ones. In addition, in [5], assigning special weight to features, using
few medical x-ray image classes in [7,8], shows that utilized features are not general and
powerful enough to cover all varieties of images. Furthermore, in all mentioned methods,
the scale of images is an important point, and to extract practical features all the image
scales have to be normalized. The aim of this paper is to introduce an applicable and
effective novel feature extraction framework for medical x-ray images based on their spe-
cial characteristics and independent to their scales and gray levels. Medical x-ray images
are gray-scale images with quite similar texture characteristics; thus, color and texture
would not be appropriate features to classify them. Furthermore, as shown in Figure 1,
many of x-ray images categories, have similar shapes, e.g., cervical spine, coronal cranium
and coronal facial cranium, or even have unidentifiable shapes, e.g., pelvis angiography.
Therefore, it is difficult to find appropriate and applicable features based on only shape
features. With regard to these conditions and characteristics, in this paper, a novel fea-
ture extraction framework based on both shape and texture features for medical x-ray
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images categorization is proposed. In this framework, first, the shape and directional in-
formation are extracted from original images carefully. Then, texture feature is extracted
from shape and directional information and makes the shape-texture feature. This fea-
ture, called novel shape-texture feature (NSTF), is independent of image scales and gray
level intensities. Experimental results show that the proposed NSTF is an applicable
and appropriate classification criterion in comparison with other traditional features in
medical x-ray images classification. In order to demonstrate the capability and accuracy
of NSTF, three different classifiers consisting of Euclidean distance matching criterion,
probabilistic neural network (PNN) and SVM are utilized.

FIGURE 1. (a) Coronal cranium; (b) cervical spine; (c) coronal facial cra-
nium; (d) coronal pelvis angiography by cardiovascular system. (a)-(c) are
three sample classes with similar shape and (d) is a class with uncertain
shape.

This paper is organized as follows. In Section 2, the most commonly used conventional
features in medical application are introduced. In Section 3, the NSTF is entirely ex-
plained. In this section, all fundamental steps of the proposed feature are brought. In
Section 4, the utilized classification algorithms, i.e., Euclidean distance matching crite-
rion, PNN and SVM are described. Experimental results are brought in Section 5, and
Section 6 is designated to discussion and conclusion.

2. Conventional Features in Medical CBIR Applications. There are several fea-
ture extraction methods for different applications. However, in medical x-ray image pro-
cessing and classification application we have to use special features correspond to their
characteristics. As the medical x-ray images are gray scale images, the color feature would
not be appropriate for classification and we are ineluctable to use shape or texture feature
extraction methods. In this section, some of known and widely used shape and texture
features in medical CBIR. application are introduced.

2.1. Gray level co-occurrence matrix. Gray level co-occurrence matrix (GLCM) [10],
as one of the most known texture analysis methods, estimates image properties related
to second-order statistics. Each entry (z,y) in GLCM corresponds to the number of
occurrences of the pair of gray levels 7 and j which are a distance d apart in original
image. Assume [(7,j) is an image with size P x ) and a set of N, gray levels, co-
occurrence matrix F'(z,y,d, @) is defined as follows:

F(z,y,d,0) = 8{((i1, 1), (2, J2))
€ (P x Q) x (PxQ)| (2, )2) (1)
= (i1,71) + (dcosO,dsin ), I (i1, j1) = i, I(i2, j2) = 7,
1<z,y<Ng}
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where d and 6 denote the distance and the orientation aligning between pixels (i1, j;) and
(i, j2) in the image, respectively. “4” denotes the number of elements in the set. In order
to estimate the similarity between different gray level co-occurrence matrices, Haralick
[10] proposed 14 statistical features. To reduce the computational complexity, only some
of these features are selected. The description of 4 most relevant features that are widely
used in literature [5,11] is given in (2). Here, the distance d is set to 50 and the 6 varies
in 4 directions 0, 45, 90, 135 degree.

Ng Ny

Energy(d, 0) = ZZny,dH

xlyl

Contrast(d, 6) ZZ i—j)?F(x,y,d,0) (2)

=1 y=1
Ng Ng
> 2 (@ —=mi)(y —my)F(z,y,d,0)
Correlation(d, 0) = =l
0035
Homogenity(d, 0) ZZ T | pr— F(z,y,d,0)

z=1 y=1

where m;(m;) and o;(0;) are mean and standard deviation of pixels value in row (column)
direction of the GLCM, respectively.

2.2. Moment invariants. Moment invariant [3,5] was first introduced by Hu [1]. Tt was
derived from the theory of algebraic invariant. This technique is chosen to extract image
features which the generated features are Rotation Scale Translation (RST)-invariant.
Two-dimensional moments of a digitally sampled P x @ image I(i, ) is given as:

P-1Q-1
S P66 G)  pg=0,1,2,3,... (3)
=0 7=0

The moments I(i, j) shifted by an amount (a,b) are defined as:

P-1Q-1
=3 (i+a)(i+b)I(,5) p.g=0,1,23,... (4)
i=0 j=0
Thus, the central moments fi,, can be computed from (4) on substituting a = —i and
b=—j asz—ﬁ—;gandj—gg;,
P-1Q-1
Mpq:ZZ(i—i)P(j_j)q(i,j) pg=0,1,2,3,... (5)
i=0 j=0

When a scaling normalization is applied the central moments change as:
Hpg p+q
Mo = oo 0= { 5 ] + (6)

In particular, Hu defines seven values, computed by normalizing central moments
through order three, that are invariant to object scale, position and orientation. In terms
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of the central moments, the seven moments are given as follows:

My = 120 + No2

My = (20 — Mo2)” + 477,

Ms = (130 — 3m2)” + (3721 — 1o3)*

My = (30 + m12)* + (121 + 13

Ms = (n30 — 3ma) (m30 + m2)[(m30 + m2)® = 3(1m21 + 103)°] (7)
+(3m21 — M03) (21 + M03) (1130 + M12) — (1121 + 103)”]

Mg = (20 — m02)[(m30 + m2)? — (21 + m03)*] + 4m11(m30 + mi2) (M1 + 703)

Mz = (3121 — n03) (ns0 + ma2)[(1130 + m2)* — 3(1121 + 103)?]
(3712 — m30) (121 + 703) [3(7730 + m2)? = (21 + 7703)2]

2.3. Region properties. The common region properties, [5,12], are perimeter, eccen-
tricity, Euler number, area, major axis length, minor axis length and orientation of the
image. The major and minor axis lengths are lengths of the major and minor axes of the
ellipse that has the same normalized second central moments as the region or an object,
respectively. The eccentricity can be defined as the ratio of the smallest eigenvalue to the
largest one. The Euler number is the subtraction of number of connected components and
number of holes in the object or region. The orientation can be defined as the direction
of the largest eigenvector of the second order covariance matrix of a region or an object.
The perimeter is the number of pixels located on the object boundary and the area is the
number of pixels located in the region within the boundary.

2.4. Tamura feature. There are 6 different Tamura features: coarseness, contrast, di-
rectionality, linelikeness, regularity and roughness [13]. In the literature [14], the first
three features are used since they are strongly correlated with human perception.

2.5. Entropy. Entropy is a general statistical parameter. Log-Energy entropy, Sure
entropy and Shanon entropy [15,16], shown in (8), are generally used to extract features
[11].

P—1Q-1
Shanon entropy = — Z Z I(i,7)*log ([(i;j)z)
i—0 j—0
P-1Q-1
Sure entropy = N — £{(¢,7) | I(i,j) <7} + Z Zmin (I1(i,5)% %) (8)
i—0 j—0
P—1Q-1
Log-energy entropy = — Z Z log(1(i,7)?)
i—=0 j=0

where I(i,7), i =0,...,P—1and j = 0,...,Q — 1, is the image with size P x Q, T
is a constant where 7 > 1, N is the total number of pixels in image I and “4” denotes
the number of elements in the set. As the information theoretic features like Entropy,
depend on gray level intensities, the images gray level should be normalized before feature
extraction until exact and accurate features are generated. Hence, to normalize the gray
level intensities, (9) is utilized. If I(i,7) is the original image pixel, the normalization
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equation is:

- m+\/v><(f(iaj)—m°)2 if I(i, j) > m,
J(i,j) = m_\/vx(l(i,])_m0)2 if 1(i,7) < m, ’

Vo

where mg(m) and wvg(v) are the initial (desired) mean and variance of original image I,
respectively and .J(i,j) is the normalized image. In this paper, the desired mean and
variance are selected 100 and 2000 respectively. After normalization, three different types
of Entropy features are extracted which provide a three element feature vector.

2.6. Local binary pattern. Local Binary Pattern (LBP) [18] is a simple and efficient
texture descriptor with low computational complexity. It labels the pixels of input image
by thresholding the neighborhood of each pixel with the value of the center pixel and
considering the results as a binary number. The neighborhood is formed by a symmetric
neighbor set of P pixels on a circle of radius R. Formally, given a pixel at (i,7), the
resulting LBP code can be expressed in the decimal form as follows:

P-1
LBPpg(i,j) = s(I — I.)2" (10)
n=0
where n runs over the P neighbors of the central pixel, I, and I, are the gray level
values of the central pixel and the neighbor pixel, and s(z) is 1 if > 0 and 0 otherwise.
After labeling an image with LBP operator, histogram of the labeled image I;(i, j) can
be defined as:

H.=) F(I(i,j) =c) (11)
2%
where ¢ = 0,1, ..., L and L is the number of different labels produced by the LBP operator
and

F4) = 1, if A is true, (12)
~ 10, if A is false.

The derived LBP histogram contains information about the distribution of local fea-
tures, such as edges, spots and flat areas over the image. It can be used to statistically
describe image characteristics. In this paper, P and R are set to 24 and 3, respectively.

2.7. Wavelet feature. Wavelet transform has been one of the most widely used and
powerful texture feature extraction methods in medical images classification application
[11,17]. In this paper, in order to extract wavelet features, energy of LH and HL sub
bands of one level Symlet 4 wavelet coefficients are computed.

3. Proposed Novel Shape-texture Feature. In this section, the NSTF is compre-
hensively introduced. In order to overcome the weakness of existing traditional feature
extraction methods, we proposed a novel feature which is the combination of shape and
texture features. As it is shown in Figure 2, in the first step of proposed feature extrac-
tion method, the histogram of all images are adjusted. Then, after removing noise from
adjusted images, the edge and shape information are extracted. Afterwards, the shape
images are splitted to 25 sub images and the Gabor features are extracted from these sub
images. In the following subsections, the fundamental steps of proposed shape-texture
feature are given.
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Original Histogram Noise Edge and boundary Phase congruency
image adjustment Removal extraction computation

Splitting to 25

Applying Gabor
sub images

transform

I |

Shape-texture
feature extraction

Original Phase congruency
image computation

F1GURE 2. Fundamental steps of the proposed NSTF extraction framework

3.1. Histogram adjustment. In order to emphasize and highlight the details of input
images and to justify their gray level histogram, in the first step of proposed feature
extraction method, the histogram of input images is adjusted. In this case, the contrast
of all images is increased by mapping the values of the input intensity image to new values
such that, 1% of the data is saturated at low and high intensities of the input data.

3.2. Noise removal. To get rid of noise and unnecessary information, the anisotropic
diffusion filter as proposed by P. Perona and J. Malik [19] is utilized. The filter removes
noise from input image while preserves important parts of image contents such as edges
and major boundaries. The filtered image is modeled as the solution to the anisotropic
diffusion equation as follows:

ou(z,y,t)
ot

where u(z,y,t) : 2 x [0,400) — R is a scale image and ¢(| Vu |) is a decreasing function
depending on the gradient of w.

= div(g(| Vu(z,y,1) [)Vu(z,y,1)) (13)

3.3. Edge and boundary extraction. In order to extract the edges and boundaries
from images, Canny edge detection algorithm [20] is utilized. Canny edge detection op-
erator finds optimum edge detection algorithm which includes the following steps [20]:
smoothing, finding gradients, non-maximum suppression, double thresholding and edge
tracking by hysteresis. In this task, Canny edge detection is chosen between 6 differ-
ent edge and boundary detection algorithms, i.e., Sobel, Prewitt, Roberts, Laplacian of
Gaussian (LOG) and Zero-crossing, [21-23] methods, because of its considerable capability
and acceptable results.

3.4. Phase congruency computation. As shown in Figure 2, to remove unnecessary
and redundant edges and boundaries and also to increase the edge features accuracy, the
phase congruency of shape image and original image are computed. Then, these two
resultant images are multiplied. Phase congruency is a measure of feature importance in
images; it is a method of boundary detection that is especially robust against changes in
illumination and contrast. The measure of phase congruency developed by Morrone et al.
[24] is:

| E(2) |
PC(z) = =——— (14)

>0 An(z)
where | E(z) | (local energy), is the magnitude of the vector from the origin to the
end point and A,(z) is the amplitude of local, complex valued, Fourier components at
a location x in the signal. Figure 3 shows the effect of applying phase congruency to
the original image and the shape image of Step 3 and their noticeable multiplication
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result. As it is illustrated in this figure, most of the unnecessary and redundant edges
and boundaries are entirely omitted or taken low intensity.

@

(®)

FIGURE 3. Phase congruency (P.C.) computation results: (a) computing
phase congruency of edge images; (b) computing phase congruency of origi-
nal images; (¢) multiplication results of shape images phase congruency and
original images phase congruency

3.5. Splitting to 25 sub images. The medical x-ray images have complex edge and
directional information variations which are entirely dependent to spatial location in the
image. Therefore, considering total shape of an object in each image as shape feature
may not be a good strategy. In order to have an exact and effective feature, the processed
image of previous subsection is splitted to several sub images. In Figure 4, image splitting
circumstance to 25 sub images is illustrated. Also, in order to avoid omitting the available
information on the sub images boundaries, selected sub images have overlap.

1/3P
+—>
HNRE 1
13Q | f4-1——»
|
! --
! Q
5
v
< >

p

FIGURE 4. Splitting image to 25 sub images
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FIGURE 5. Fourier spectrum differences: (a), (c) original images Fourier
spectrum; (b), (d) shape images Fourier spectrum

3.6. Applying Gabor transform. The spectral characteristics of x-ray images are con-
siderably located in low frequencies. However, Gabor filtering extracts features which
belong to mid frequency bands or higher. Hence, feature extraction from Gabor filtering
cannot give distinguishable features. As illustrated in Figure 5, edge extraction of any
image causes the spectrum to become more spread. In this case, Gabor filtering will be
more efficient and produce more effective features. For a given image I(i,j) with size
P x @, the discrete Gabor transform [25] is given by a convolution:

Gmn(lvj) :ZZI(Z—S,]—t)d);n(S,t) (15)

where s and ¢ are the filter mask size variables, and ¢, is the complex conjugate of ¢,
which is a class of self-similar functions generated from expansion and rotation of the
following mother wavelet:

Prnn = ! exp {—% <x2 + g—i)] exp(j2rwz) (16)

- =)
2mo,0y (o J

where w is the modulation frequency. The self-similar Gabor wavelets are obtained
through the generating function:

¢mn(x1y) = aim¢(jag) (17)

where m and n indicate the scale (frequency) and direction of the wavelet respectively,
withm=0,1,.. M —-1,n=0,1,...,N — 1, and

=a ™ (zcosf + ysin )
=a "(—xsinf + ycosh) (18)

=

<
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where a > 1 and § = nn/N. The variables in the previous equations are defined as
follows:

a = (Uy/Up) 7=

Wm,n = CLmUl
1)v2In2
Ozmn = (a+ ) = (19)
N 2ma™(a — 1)U
1
Oymmn =

U 1 >
o t ( ) h
ran 2n \/21n2 <27raz,m,n>

Here, U; = 0.05, U, = 0.4, M =3, N =6, s and ¢ range from 0 to 33. Please note that,
the Gabor filter bank is applied to each of 25 sub images of shape images.

3.7. Shape-texture feature extraction. In the final step, features are extracted from
filtered sub images. In this paper, Diagonal moment, Entropy, Sure Entropy (8), Log
energy Entropy (8), Norm Entropy and Standard Deviation [15,16], (20), are chosen as
shape-texture features in order to extract the final information from Gabor transform.

M - |Z—J|I'ZJ)
Diagonal moment = \/

1= 0 j= 0
M-1N-1
Entropy = — Z Z I'(i, 7) log(I'(i, 7)) (20)
i=0 j=0
M-1N-1
Norm Entropy = — Z Z | I'(i,7) |”
i=0 j=0
M—-1N-1
(I'(¢, ) — m)?
. . 1=0 7=0
Standard deviation = VA ]

where I'(,j), (i=0,...,M —1and j =0,... N — 1), is a pixel value in a sub image and
T is a constant where 7 > 1 and m is the mean values of I’.

4. Classification Methods. In order to evaluate capability of NSTF and to compare it
with existing features for content based medical images retrieval (CBMIR), three different
classifiers including Euclidean distance, probabilistic neural network (PNN) and support
vector machine (SVM) are utilized.

4.1. Euclidean distance. An image feature vector with fixed size L can be shown by
v = {z',2% ... 2}, The Euclidean distance dg(z1,7s) [26] between feature vectors z;

and x, is defined as:

(21, 22) Z - x2 = (21 — 29)" (21 — 29) (21)

k=1

Here, x; is the feature vector of a test image and x, is the average of feature vectors of
training samples for each class. T in this case denotes the transpose of the term (z; —3).
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4.2. Probabilistic neural network. The probabilistic approach to neural networks has
been developed in the framework of statistical pattern recognition [27]. The design of
probabilistic neural network (PNN) is based on approximating the class-conditional prob-
ability distributions by finite mixtures which can be used to make Bayesian decision. The
mixture parameters can be computed by means of expectation maximization algorithm.
The PNN network, as described in Figure 6, includes an input layer, two hidden layers
(one each for example/pattern and a class/summation layers) and an output layer.

’O""' M WIN
O/P
| %_ e
I ;)O/
[~ &(f
Input Example Class Decision

FIGURE 6. Structure of PNN

4.3. Support vector machine. In this paper, the one-against-one Multiclass Support
Vector Machine (SVM) training framework for image classification is utilized. The SVM
have been developed by Vapnik [4,28] which gained popularity because of many promis-
ing features such as better empirical performance. SVM is a set of classification and
regression related supervised learning methods and belongs to a family of generalized
linear classifiers. On the other hand, it is a classification and regression prediction tool
that uses machine learning theory to maximize predictive accuracy. SVM can be defined
as linear classifier in a high dimensional feature space, trained with a learning algorithm
from optimization theory that implements a learning bias derived from statistical learning
theory.

4.4. Support vector machine. In this paper, the one-against-one Multiclass Support
Vector Machine (SVM) training framework for image classification is utilized. The SVM
have been developed by Vapnik [4,28] which gained popularity because of many promis-
ing features such as better empirical performance. SVM is a set of classification and
regression related supervised learning methods and belongs to a family of generalized
linear classifiers. On the other hand, it is a classification and regression prediction tool
that uses machine learning theory to maximize predictive accuracy. SVM can be defined
as linear classifier in a high dimensional feature space, trained with a learning algorithm
from optimization theory that implements a learning bias derived from statistical learning
theory.

SVM is originally designed for binary pattern classification. For multi-class pattern
recognition, a combination of binary SVMs and a decision strategy to decide the class
of the input test image are commonly used. Each SVM is independently trained. The
training data set (x,, c,) consists of L examples belonging to K classes. ¢,, € 1,2,..., K
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are the classes labels. The one-against-one method was first introduced on SVM as
pairwise SVM. In this approach, a SVM is constructed for each pair of classes. Thus,
the number of SVMs used in this approach is K(K —1)/2. A SVM for a pair of classes
(k,1) is constructed using training examples belonging to these two classes. The desired
output, y,, for a training example, x,,, is defined as follows:

+1, ife, =k
=1tk ) 22
Y {—1, if = L. (22)

5. Experimental Results. In this section, the former features and the NSTF will be
evaluated by three known and widely used classifiers. First, the utilized database will
be introduced and then the feature extraction details and the features evaluation will be
thoroughly explained.

5.1. Utilized database. The utilized images in this paper are chosen from an TRMA
database [29], containing 9100 medical x-ray images in 57 classes. In our task, to evaluate
the proposed novel shape-texture feature and to compare it with other features, 21 classes
out of these 57 classes are selected. These classes are introduced in Table 1. Note that
they may have different scales with different contrasts even in one class. In addition, they
may be corrupted, rotated or contain signs such as L or R. Some examples of images
with these conditions are shown in Figure 7. With regard to these conditions, proposed
features are extracted from them to make a comprehensive result.

TABLE 1. The 21 utilized classes of IRMA database medical x-ray images

Class Number Anatomic Part Direction

Pelvis

1 (cardiovascular system ) Coronal

2 Left Breast Axial

3 Right Breast Axial

4 Knee Axial

5 Chest Coronal

6 Elbow Sagittal

7 Elbow Coronal

8 Ankle joint Coronal

9 Knee Coronal
Pelvis

10 (musculoskeletal system ) Coronal

11 Cervical Spine Coronal

12 Lumber Spine Coronal

13 Chest Sagittal

14 Neuro Cranium Sagittal

15 Facial Cranium Coronal

16 Cranium Coronal

17 Cervical Spine Sagittal

18 Lumber Spine Sagittal

19 Thoracic Spine Sagittal

20 Lowe1-" Leg Coronal
(cardiovascular system )

21 Ankle joint Sagittal
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FiGure 7. Examples of some images in utilized database

5.2. Feature evaluation. To evaluate and compare the features, they are all applied to
4402 medical x-ray images of 21 classes, shown in Table 1, containing 315 training images
and 4087 test ones (15 training images and 20 to 2000 test images for each class). Note
that the training and test images of each class are not the same. The other important
point is that the number of test images is much more than that of training ones. The
GLCM, moment invariants, region properties, LBP and Tamura features are extracted
from whole original images and the Entropy feature is extracted from whole normalized
images as they are introduced in Section 2. In this paper, in order to improve the capability
of wavelet feature, instead of extracting it from original images, it is extracted from shape
images. The classification result of extracting wavelet feature from shape images was
improved by near 26% in comparison with classification results of extracting it from
original images. As discussed in Subsection 3.6, extracting spectral texture features from
shape images will improve the capability of those features; therefore, improvement of the
reformed wavelet feature classification results has been predictable. Hence, in this paper,
the reformed wavelet feature is selected to be compared with NSTF. Finally, the NSTF
is extracted from medical x-ray images as it was introduced in Section 3. In this case,
the scales and gray levels of medical x-ray images do not play great role in classification
result. On the other hand, the NSTF is independent to scales and gray levels of the
medical x-ray images. After feature extraction, in order to reduce the feature space
dimensionality and computational complexity and also to increase the features capability,
the principal component analysis (PCA) algorithm is utilized [30]. PCA is theoretically
the optimal linear scheme, in terms of least mean square error, for compressing a set of
high dimensional vectors into a set of lower dimensional vectors and then reconstructing
the original set. The lenght of moment invariants, region properties, Entropy and Tamura
feature vectors become 7, 7, 3 and 4 after feature extraction, respectively; hence, reducing
these short feature vectors by PCA algorithm is not necessary. The remaining feature
vector lengths before and after reducing by PCA are brought in Table 2. The shortened
features are evaluated by means of three common classifiers, consequently. In Table 3,
the classification results of these features including the NSTF are brought. As it is clearly
apparent in Table 3, the NSTF has the most accurate classification result amongst others.
In the next subsection, the combination of features is studied.

5.3. Feature combination. Considering the classification results shown in Table 3, the
idea of the feature combination is studied. In this case, different combinations of features
are considered. As the classification accuracy rate of NSTF is much more than others, the
NSTF is decided to be the permanent part of the combination. First, dual combination
of NSTF and each remaining features is evaluated. Note that these features are exactly
the same as features evaluated in the previous subsection. In order to evaluate this
combination, after feature extraction from 4402 images, first the feature vector lengths
are reduced by PCA, separately. The reduced feature vector lengths are shown in Table
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TABLE 2. Feature vector length before and after reducing by PCA for classification

Foatures Length before | Reduced length
reduction by PCA
Novel shape texture feature (NSTF) 2700 240
GLCM 52 30
Reformed wavelet feature 50 25
LBP 78 20

TABLE 3. The classification accuracy rates of 8 features for 4402 medical
x-ray images in 21 classes obtained by SVM, PNN and Euclidean distance

Features SVM | PNN | Euclidean Distance
GLCM 65.4% | 35.21% 53.02%
Moment Invariants 4.76% 5% 16.93%
Region properties 41.04% | 22.74% 17.56%
Tamura features 27.02% | 33.65% 28.96%
Entropy 25.23% | 24.62% 21.44%
LBP 56.9% | 28.66% 46.09%
Reformed wavelet feature 41.9% | 15.76% 34.86%
The novel shape-texture feature | 88.77% | 64.01% 83.55%

2. After feature vector length reduction, the two feature vectors are joined to each other
and make a unique feature vector. Now, to evaluate the feature combinations, three
different classifiers are utilized. The classification accuracy rates of dual combination are
illustrated in Table 4. The results shown in Table 4 indicate that the combination of the

TABLE 4. The classification accuracy rates of dual combination of the novel
shape-texture feature and other 7 features for 4402 medical x-ray images in
21 classes obtained by SVM, PNN and Euclidean distance

Features SVM | PNN | Euclidean Distance
NSTF+ GLCM 90.89% | 81.1% 89.52%
NSTF+ Moment Invariants 88.77% | 64.01% 83.55%
NSTF+ Region properties 55.35% | 22.74% 17.56%
NSTF+ Tamura features 59.69% | 34.42% 28.96%
NSTF+ Entropy 86.68% | 75.86% 65.51%
NSTF+ Reformed wavelet feature | 88.53% | 63.62% 84.01%
NSTF+ LBP 89.9% | 64.43% 84.55%

NSTF and GLCM improves the total classification result. Therefore, in order to study
the other combination conditions, triple combination of the NSTF plus GLCM and other
6 remaining features are evaluated. The triple feature combination classification results
are shown in Table 5. The results indicate that the combination of three features, i.e.,
NSTF, GLCM and LBP improves the dual combination classification result by almost
4%. The obtained classification result of combining only three features for 4402 medical
x-ray images is really marvelous. In order to further study, quad combination of features
is evaluated. The evaluation results of quad combination of the NSTF, GLCM, LBP and
5 other remaining features by three classifiers are shown in Table 6. As the results show,
further combination of features can not improve the classification accuracy rates, i.e.,
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TABLE 5. The classification accuracy rates of triple combination of the
novel shape-texture feature plus GLCM and other 6 features for 4402 med-
ical x-ray images in 21 classes obtained by SVM, PNN and Euclidean dis-

tance
Features SVM | PNN | Euclidean Distance
NSTF+ GLCM + Moment Invariants 90.89% | 81.1% 89.52%
NSTF+ GLCM + Region properties 55.54% | 22.74% 17.56%
NSTF+ GLCM + Tamura features 60.1% | 34.42% 28.96%
NSTF+ GLCM + Entropy 89.73% | 79.58% 68.93%
NSTF+ GLCM + Reformed wavelet feature | 90.66% | 77.37% 89.32%
NSTF+ GLCM + LBP 94.2% | 78.58% 90.36%

TABLE 6. The classification accuracy rates of quad combination of the novel
shape-texture feature, GLCM, LBP and other 5 features for 4402 medical
x-ray images in 21 classes obtained by SVM, PNN and Euclidean distance

Features SVM | PNN Eu.clldean

Distance
NSTF+ GLCM + LBP + Moment Invariants 94.2% | 78.58% 90.36%
NSTF+ GLCM + LBP + Region properties 55.85% | 22.74% | 17.56%
NSTF+ GLCM + LBP + Tamura features 59.5% | 34.43% | 28.96%
NSTF+ GLCM + LBP + Entropy 89.94% | 79.2% 71.28%
NSTF+ GLCM 4 LBP + Reformed wavelet feature | 91.53% | 76.95% | 90.61%

adding the fourth feature does not provide additional discriminatory information suitable
for classification improvement. Therefore, utilizing the combination of three features,
i.e., NSTF, GLCM and LBP as classification criterions is the best choice to classify the
medical x-ray images. Classification accuracy of 94.2% obtained by SVM, for combination
of three features confirms the capability of them in medical x-ray images classification. In
addition, the selected features are general for this variety of medical x-ray images, because
they are not needed to be assigned special weights for each class. Classification accuracy
rates of 21 classes for combination of these three features are separately shown in Table
7.

5.4. Computational complexity order of shape-texture feature. As the NSTF
extraction includes several steps, in order to compute its computational complexity, we
have to analyze each step separately and then compute the total complexity.

e The anisotropic diffusion process computational complexity order is (P x Q)Ny,
where N;; is the number of iteration in the anisotropic diffusion process and P x ()
is the size of the image.

e The Canny edge detector is a projection operator GG,, that when convolved with a
2D image I, the zero-crossings of the resulting function G, * I are the edges of the
image. Hence, the computational complexity order of applying Canny edge detector
is (P x Q)(k x 1), where P x @) is the image size and & x [ is size of the projection
operator.

e The phase congruency computational complexity order for an image with size P x @)
is (P x Q).

e The 2D Gabor kernel can be represented as a convolution of two orthogonal 1D
components. These components are: a Gaussian g(z) and a Wavelet w(z) (a complex
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TABLE 7. Evaluating the combination of novel shape texture feature,
GLCM and LBP for 4402 medical x-ray images in 21 classes by SVM,
Euclidean distance and PNN classifiers

Class Number | SVM | Euclidean Distance | PNN
1 100% 100% 90%
2 95% 95% 95%
3 95% 100% 90%
4 95% 95% 85%
5 88.22% 83.38% 75.26%
6 100% 95% 65%
7 90% 80% 40%
8 95% 85% 80%
9 95% 75% 70%
10 90% 75% 65%
11 95% 85% 90%
12 100% 100% 100%
13 91.59% 93.64% 40.23%
14 88.38% 80.63% 64.79%
15 100% 100% 70%
16 95% 100% 100%
17 85% 5% 5%
18 90 % 90% 90%
19 100% 95% 75%
20 95% 100% 100%
21 95% 95% 90%

Accui‘;;alRates 94.2% 90.36% 78.58%

wave enveloped by a Gaussian), defined respectively by:

1) = 5w 3 (5] (23)

w(z) = g(z) exp(j2rwe) (24)

where w is the frequency of the wavelet. These functions describe the separable
components of a Gabor filter kernel. It follows that convolution of a Gabor kernel
with an image can be calculated separably. For example, a horizontally aligned n xn
Gabor kernel K can be written as:

K=gxw (25)

where g and w are n x 1 vectors whose elements are define by regularly sampling
g(z) and w(zx) across intervals centered at x = 0. The convolution of K with an
image I is then:

I«+K=Ix(g*xw)=(Ixg)sxw (26)

The 2D convolution computation is O((P x Q)n?) for an n x n kernel and an image
with P x ) pixels.

To implement this research the utilized system was Pentium 4 with 3 GHz CPU and 1

GB RAM and all programs have been implemented in MATLAB software.
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6. Conclusion. In this paper, a new feature extraction framework for medical x-ray
images is proposed. Medical x-ray images have unique characteristics so the common
features may not be proper classification criterions for this type of images. With regard
to medical x-ray images characteristics, an effective and powerful combination of shape
and texture features, called novel shape-texture feature (NSTF) is introduced. The results
brought in experimental results section, express the efficiency of this novel feature. We
can enumerate the advantages of proposed framework as following points:

a) The shape texture feature in comparison with other widely used features in medical
images classification application showed a marvelous capability;

b) Combination of only three features for a large group and variety of medical x-ray
images without specifying a weight to each feature, expresses the generality and
capability of them:;

c¢) Utilizing few training samples and examining large number of test ones proves the
great capability and efficiency of proposed features;

d) The low computational complexity and straight forward implementation.

With regard to these advantages we can strongly claim that the proposed feature in
this paper is the most powerful and reliable feature for medical x-ray images classification.
Finally, to study the feature combination effect on classification results, two other effective
features are examined and added to the proposed feature which resulted magnificent
classification accuracy rates. The utilized data base has many deficiencies like severe shift
or rotation. The proposed shape-texture feature is dependent to shapes and directional
information; hence, if the objects in the images are extremely shifted or rotated, using
novel shape texture feature may result in misclassifications. Of course, this deficiency is
not common for x-ray imaging systems.
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