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Abstract. The well-known arbitrary shape detection technology, generalized Hough tra-
nsform (GHT) has the drawbacks of heavy computations (one-to-many or 1-to-n map-
ping) and storage requirements (voting space and entry number). Some n-to-1 mapping
approaches have been proposed for improving the performance of GHT, such as the FGHT
(fast generalized Hough transform), ADPHT (Adaptive dual-point Hough transform) and
GFHT (generalized fuzzy Hough transform). The n-to-1 mapping approaches use n fea-
ture points as one set to produce one increment of the vote in the accumulator array.
Although the n-to-1 mapping approaches can efficiently reduce the spurious voting, the
improvement for the heavy computations is limited due to redundant mapping. In this
study, we propose the fast randomized generalized Hough transform (FRGHT), which
uses a randomized waypoint strategy to choose feature line segments randomly and con-
secutively. With this strategy, not only the required entry number of the table to avoid
redundant mapping can be reduced dramatically, but also the relationship between sets can
be found to reduce the spurious voting. The experimental results of FRGHT show better
performance than the previous modified GHT’s (FGHT and GFHT) in voting efficiency,
less computation costs and storage requirements (entry number).
Keywords: Generalized Hough transform, Random waypoint strategy, Arbitrary shape
detection

1. Introduction. Pattern recognition has been applied in many fields. For example, H.
Benitez-Perez and A. Benitez-Perez proposed a two-stage method for feature extraction
and classification for fault diagnosis patterns [1], Ohno and Murao constructed an image
retrieval system by using a similarity measuring method based on reference vectors [2],
and Miyata et al. constructed a road sign recognition system based on color feature
extraction and its components analysis by using dynamic image processing [3]. Shape
detection is crucial in pattern recognition. The generalized Hough transform (GHT) is
a well-known technology for arbitrary shape detection [4,5]. The main process of the
GHT is a kind of a brute voting strategy for evidence gathering [6,7]. On a template
image (T ), we first choose a reference point (R) inside the target shape. For each point
on the shape of T , we compute the geometric arrangements (e.g., gradient, orientation
and vector) based on its relative position to R. We build the reference table (R-table)
by setting the gradient as the entry, and the orientation and vector as the indexes. For
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the voting process of shape detection, the contour point in the input image (I), which
has the same entry information, will vote for all possible transformations (i.e., scaling,
rotation and translation) by computing the indexes. The most voted-for cell and its
related parameters specify the most likely transformation relationship between T and I.
However, spurious votes or wrong evidences may be generated during the voting process.
For each entry, only one index correctly presents the transformation, and the other ones
are wrong evidences. Unfortunately, wrong evidences are rich in practical applications. In
other words, the 1-to-n mapping for a shape point produces the increment of n cells that
may be spurious. We can see the main drawbacks of the GHT are heavy computations
(1-to-n mapping) and storage requirements (voting space and entry number).
Several strategies are proposed for improving the brute voting: 1) the randomized

strategy: a so-called randomized generalized Hough transform (RGHT) was proposed by
combining both the GHT and RHT [8]. Although the RGHT uses the randomized strat-
egy to improve the GHT, it still falls into the category of the 1-to-n mapping approach.
2) The geometric arrangement strategy for reducing spurious votes: Tsai proposed an
improved generalized Hough transform [9]. The improved GHT has two properties: a)
employ the circle fitting method as the constraint to eliminate false matches of points
as many as possible; b) employ the center position of a circle and object edge points to
form a vector for estimating the rotational angle and translations. However, the circle
approximation is insufficient for arbitrary shape. Some n-to-1 mapping approaches based
upon the geometric arrangement strategy have been proposed. The strategy uses geomet-
ric invariant properties and finds n feature points on a predefined pattern as a feature
set to produce only one increment in the accumulator array. The predefined patterns
can be any significant one, such as vertical forms [10], parallel forms [11,12] and triangle
forms [13-18]. Obviously, the invariant features of geometric arrangement strategy can
effectively reduce the amount of wrong evidence gathering [11].
Among previous mentioned forms, the pole-polar triangle is the most popular one since

the building of the feature sets is based on computation (intersection of pole-polar re-
lationship) instead of brute-searching in particular geometric relationship [11]. Ser and
Siu proposed a dual-point generalized Hough transform (DPGHT) [14]. They examined
the index angle with one pre-defined relation (e.g., parallel gradient directions). The
performance is dependent on the pre-defined relation. However, it is not easy to find a
well relation for arbitrary shapes. Chau and Siu proposed an improved version of the
DPGHT [16]. They used statistics to find the best characteristic angle as the relation.
However, only one characteristic angle can be employed for voting process. For some
complex shapes, more than one relation will be needed to describe the shapes. Chau and
Siu proposed the adaptive dual-point Hough transform (ADPHT), which provided a way
to find multiple characteristic angles sequentially [17]. The ADPHT utilized the concept
that one entry per index is allowed to be stored inside the R-table to make the number
of entries per index as small as possible. It results in reducing the spurious votes, while
reducing the computational time for voting process. However, the ADPHT still uses the
point-based framework. This framework requires a time-consuming process to search the
characteristic angle, and it may not suitable for real-time applications [17].
Kimura and Watanabe proposed the fast generalized Hough transform (FGHT) based

on the geometric arrangement strategy [15], which was the extension of the chord-tangent
transform [13]. The FGHT divides the contour image (the template image, T ) into several
sub-blocks and then approximates the partial contour by a line segment in each block.
The “pole-polar triangle” of the n-to-1 mapping approach is then applied to estimate the
entry for the extended C-table. Each entry consists of two angles inside the pole-polar
triangle form. In addition, the FGHT uses the third line segment as a check to get rid
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of spurious votes. However, the voting process of the FGHT may be dispersed while the
vague noise appears near to the shape of objects. Its improved version, the generalized
fuzzy Hough transform (GFHT) was proposed to be suitable for noisy shape detection
[18]. The GFHT uses the Gaussian model as a membership function and collects all votes
in the fuzzy region. This fuzzy strategy improves the efficiency of the FGHT in noisy
and vague images. Although the FGHT and GFHT can reduce the spurious votes, the
redundant sets are still unavoidable when building the extended C-table. In this study,
the fast randomized generalized Hough transform (FRGHT) is proposed. It is an n-to-1
mapping based method that can reduce the spurious votes. Besides, it has the following
important properties:

(1) A novel “waypoint strategy” concept is applied for constructing entries randomly and
consecutively: it reduces the required storage space of the extended C-table.

(2) The “consecutive entry matching” approach is applied for voting process: it can
avoid redundant mapping dramatically; meanwhile, it can improve voting efficiency
and reliability.

This paper is organized as follows: Section 2 briefly summarizes the main scheme of
the FGHT; and Section 3 describes the analysis of the phenomena of the spurious votes
and redundant mapping of two line-based GHT’s (the FGHT and GFHT); Section 4
introduces the proposed method (the FRGHT); Section 5 demonstrates the experimental
results and discussions; and finally, the conclusions are shown in Section 6.

2. The Fast Generalized Hough Transform. Since the concept of the proposed
method (FRGHT) comes from the fast generalized Hough transform (FGHT), we sum-
marize three main steps of the FGHT in this section: “Line segment approximation”,
“Creation of the extended C-table” and “Shape Recognition.”

2.1. Line segment approximation. Let T and I be a template and an input contour
image, respectively. Each of them is divided into blocks (B × B pixels). Then, we
approximate the contour in each block region by a line segment. The sets of line segments
are defined as {Ti|i = 1, 2, . . ., N} in T and {Ij|j = 1, 2, . . .,M} in I.

2.2. Creation of the extended C-table. We arbitrarily choose a point from T as the
reference point, R = (Rx, Ry). In general, R can be the gravity center of the template
contour. For each line segment pair (Ta and Tb), we find their middle points (Pa and Pb)
as feature points. If the Euclidean distance Lab between feature points Pa and Pb is longer
than the predefined threshold Lth, they will be applied to construct the extended C-table.
Each element (qn) of the table is represented by six indexes as:

qn =
{
δa(n), δb(n), Lab(n), β(n), τc(n),

⇀
c(n),

⇀
r(n)

}
, (1)

where n = 1, . . ., Q, and Q is the entry number of the extended C-table. In Figure 1,
it shows the geometric arrangement of the indexes and the structure of the extended
C-table. The definitions of the six indexes are summarized as follows:

(1) δa, δb: The interior angles formed by two line segments whose middle points are Pa

and Pb, respectively.
(2) Lab: The Euclidean distance between Pa and Pb, i.e., the length of PaPb.
(3) β: The angle of PaPb.
(4) τc: The angle of the tangent line at Pc, where Pc is called the check point.
(5)

⇀
c : A vector from Pm to Pc, where Pm is the middle point of PaPb.

(6)
⇀
r : A vector from Pm to R, where Pm is the middle point of PaPb.
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(a)

(b)

Figure 1. The illustration of geometric arrangement of a triangle defined
by pole-polar relationship [18]: (a) a template image (T ); (b) the structure
extended C-table of (a) that including entry: δa and δb, connecting line: Lab

and β, check point: τc and (cx, cy), and vector (rx, ry) to R (reference point)

2.3. Shape detection. The shape detection is executed by a voting process in the pa-
rameter space. In general, the parameter space is represented by a 4-dimentional accu-
mulator array, A(vx, vy, k, θ), which is regarded as a voting array. The four parameters
describe the possible transformation of T and I: (vx, vy) is the correspondent coordinate
of reference point in I, k is the scaling factor and θ is the rotation degree between T and
I. The voting process includes four main steps: 1) Comparing with all entries to check
entry matching; 2) Calculating possible transformation for k and θ; 3) Checking process
and 4) Voting process for the A(vx, vy, k, θ).

(1) Comparing with all entries to check entry matching
For each line segment pair (Ia and Ib) in I, we find their middle points (P I

a and P I
b )

and compute their parameters to check whether “entry matching”. The correlative
data of the middle points of I are summarized as follows:
δIa, δ

I
b : The interior angles formed by two line segments whose middle points are

P I
a and P I

b in I, respectively.

LI
ab: The Euclidean distance between P I

a and P I
b , i.e., the length of P I

aP
I
b .

βI : The angle of P I
aP

I
b .

The “entry matching” is found when either of following conditions is:∣∣δIa − δa
∣∣ ≤ ∆th and

∣∣δIb − δb
∣∣ ≤ ∆th, (2)

or ∣∣δIa − δb
∣∣ ≤ ∆th and

∣∣δIb − δa
∣∣ ≤ ∆th, (3)

where ∆th is a predefined tolerance error between two angles.
(2) Calculating the possible transformation for k and θ

While “entry matching”, we obtain the following possible transformation:

θ = βI − β, (4)

k = LI
ab/Lab, (5)
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where θ and k denote possible scaling factor and rotation degree, respectively.
(3) Checking process

The possible transformations for scaling and rotation factors are confirmed by geo-
metric invariant matching with the check point (i.e., Pc in the table). A new point, P I

c ,
and its coordinates (cIx, c

I
y) are computed by the following geometry transformation:(

cIx
cIy

)
= k

(
cos θ − sin θ
sin θ cos θ

)(
cx
cy

)
+

(
xI
m

yIm

)
, (6)

where (xI
m, y

I
m) is the middle point of P I

aP
I
b . If a line segment exists near to P I

c whose
coordinate is (cIx, c

I
y) in I, and the angle of the tangent line at P I

c , τ
I , satisfies the

following condition: ∣∣τ I − τc − θ
∣∣ ≤ ∆th. (7)

Again, ∆th is a predefined tolerance error between two angles. The probable scaling
and rotation parameters are obtained and continue the following voting process.

(4) Voting process
For this parameter set, we compute the relative reference point, (vx, vy), in I:(

vx
vy

)
= k

(
cos θ − sin θ
sin θ cos θ

)(
rx
ry

)
+

(
xI
m

yIm

)
. (8)

A vote will be cast for the parameter set in the accumulator array. In the FGHT,
the vote value is equal to one, i.e., A(vx, vy, k) = A(vx, vy, k, ) + 1.

3. The Awkward Problem of the Fast Generalized Hough Transform. The ma-
jor time costs for the FGHT and GFHT are from redundant mapping and spurious voting.
Since either method encounters the same problems, we use the FGHT as an example to
explain it:

(1) Redundant mapping: in the FGHT, we pick up any two sub-blocks (approximated
by line segments) in the template image T as a set to build the extended C-table.
We use Figure 2(a) as an example. Let the template image T be divided into N
sub-blocks: P1, P2, . . ., PN . We pick a sub-block pair as a set to create information
(entries and indexes) in the extended C-table; i.e., the (P1, P2) form a pair; similarly,

(P3, P4) and (P5, P6) can used to form two pairs, and we will totally have

(
N
2

)
pairs

(i.e.,

(
N
2

)
= N(N − 1)/2 ≈ N2/2 entries) in the table. In the shape detection, if

the information created from a pair (for example, P I
a and P I

b in Figure 2(b)) of an
input image is found to match exactly the information of one set in the C-table, the
voting process should be continued until going through the whole table. That means

we have

(
N
2

)
− 1 redundant pairs for entry matching; i.e., redundant mapping.

(2) Spurious voting: in an ideal shape detection process, we should find just one set in the
C-table to match the pair, (P I

a and P I
b ), in the input image I. However, it is not the

case in practical applications. When the entry number of the extended C-table is big,
the chance of different sets having same (or very close) entry δa and δb is increased.
Taking Figure 2(a) as an example, only the pair, (P1, P2), is exactly matching with
the pair, (P I

a , P
I
b ). However, there are two redundant sets, (P3, P4) and (P5, P6), with

the same (or very close) entry δa and δb to the pair (P I
a , P

I
b ). More time is required

in the checking process to verify the indexes; meanwhile, the risk of spurious voting
is increased.
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(a) (b)

Figure 2. The illustration of the redundant mapping with similar entries:
(a) a template image (T ) with similar entries: (P1, P2), (P3, P4) and (P5, P6);
(b) an input image, I: only the pair (P I

a , P
I
b ) can match exactly with the

pair (P1, P2), and the other two pairs, (P3, P4) and (P5, P6), are redundant
mapping for spurious voting

Once the entry number of the extended C-table is reduced, the redundant sets
and spurious voting will be improved efficiently. If the relationships between sets are
found, we can reduce the spurious voting. In this paper, we extend the FGHT method
to efficiently reduce redundant mapping by using randomized waypoint strategy.

4. The Fast Randomized Generalized Hough Transform. In this paper, we pro-
pose the fast randomized generalized Hough transform (FRGHT), which uses a random-
ized waypoint strategy to choose feature line segments randomly (randomized point-
picking) and consecutively (consecutive entry matching). With this strategy, not only
the required entry number of the table to avoid redundant mapping can be reduced dra-
matically, but also the relationship between sets can be found to reduce the spurious
voting. The “randomized point-picking” is applied to modify the creation of the extended
C-table step (Subsection 2.2), and the “consecutive entry matching” is used to modify
the shape detection step (Subsection 2.3):

(1) Randomized point-picking
Step 1: Initialization

1) Start from the top of the extended C-table; i.e., let n = 1.
2) While Pa and Pb are too close to each other, we may not find a proper

pole-polar triangle because of δa ≈ 0 and δb ≈ 0 (see Figure 1). So, we
define a minimum distance criterion for Pa and Pb. By using four points on
the top, bottom, left and right points of the template image, the smallest
window W with four vertexes (v1, v2, v3 and v4) is easily obtained to cover
the target object in T , and the vertexes:

W = {vi = (xi, yi)|i = 1, 2, 3 and 4} . (9)

Instead of picking all pairs, we randomly pick a sub-block as a seed, Pa, be
companied with another sub-block, Pb, which is also randomly picked and
satisfied the following condition:

D(Pa, Pb) ≥ d ·max[D(Pa, vi)], (10)
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where i = 1, 2, 3 and 4, and D(•) denotes the Euclidean distance between
two feature points; i.e., D(Pa, vi) = ∥Pa − vi∥ and D(Pa, Pb) = ∥Pa − Pb∥.
Since the two closed feature points (the Euclidean distance is small) in input
image (I), it is easy to get spurious voting while entry matching. The distance
criterion in Equation (10) is applied to sift the two feature points which their
distance is small. From the empirical results, the value of d is suggested
between 0.4 and 0.6.

Step 2: Set replacement
We use the information obtained from Pa and Pb to build the entry and indexes
of one set of the table. For the next set (n is accumulated by one), we replace
Pa with Pb and find a new Pb. The new Pb is randomly picked from other
unpicked sub-blocks and must satisfy Equation (10).

Step 3: Iteration
Repeat Step 2 till we cannot find a new Pb at that iteration.

(a) (b)

Figure 3. The illustration of the proposed FRGHT: (a) the randomized
waypoint strategy for building the information within the extended C-table
in (b), where Pa and Pb denote the feature points of the line segment pair in
n set, and qn denotes the geometric arrangement information (six indexes)
that been defined in Equation (1) and illustrated in Figure 1

We use Figure 3 as an example. At Step 1, we find the smallest window W to cover
the target object. We pick P1 as Pa and find another sub-block P2 as Pb to satisfy
Equation (10). At Step 2, we use the information obtained from pair, (P1, P2), to
build the entry (δa and δb) and indexes (Lab, β, τc, (cx, cy) and (rx, ry)) of the set
n = 1. Let n be accumulated by one, i.e., n = 2. We replace Pa with P2 and find a
new Pb, i.e., P3; i.e., the pair, Pa(n = 2) and Pb(n = 2), are P2 and P3, respectively.
We repeat Step 2 and find the entry and indexes of the set n = 2. We repeat Step 2
till we cannot find a new Pb at that iteration. In this case, assume we cannot find a
new Pb for the iteration n = 5, the process is stopped. We totally find five sets (i.e.,
Q = 5) for the extended C-table.

(2) Consecutive entry matching
The “Shape detection” of the proposed method is similar to that of the FGHT,

except we use an adaptive vote weights (w), instead of a constant value.
Step 1: Entry matching

From the input image, we pick a feature pair (P I
a and P I

b ) and process the
“entry-matching (Subsection 2.3)” to find a possible matched set (Pa(n) and
Pb(n)) in the table with Equations (2) and (3). The possible transformations,
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k and θ are computed with Equations (4) and (5). Initially, the vote weights
are set to be one; i.e., w = 1.

Step 2: Consecutive checking process
We obtain the vector (cx, cy) from Pa(n+1) to Pb(n+1). Then, the coordinate
of the next consecutive point is computed,(

Nx

Ny

)
= k

(
cos θ − sin θ
sin θ cos θ

)(
cx
cy

)
+

(
Basex
Basey

)
, (11)

where (Basex, Basey) is the coordinate of P I
b . If a feature point with the

coordinate (Nx, Ny) in I is found, P I
N , and the angle of the tangent line at

P I
N , θN , satisfies the following condition:

|θN − θb − θ| ≤ ∆th, (12)

where the index θb is the angle of the tangent line at Pb(n + 1) and ∆th is
a predefined tolerance error of two angles. We let w be accumulated by one
(i.e., n = n+ 1) and repeat Step 2 till Equation (12) is un-satisfied.

Step 3: Voting
We compute the reference point (vx, vy) in I for this parameter set with Equa-
tion (8). The accumulated vote will be cast for the parameter set in the ac-
cumulator array, i.e., A(vx, vy, k, θ) = A(vx, vy, k, θ) + w. Please be noted w
is always equal to one in the FGHT. We let w be an adaptive vote weights.

Step 4: Iteration of checking process
We reset the vote weights be one; i.e., w = 1. Let n = n + 1 and go to Step
2 till all sets in the table are checked.

Step 5: Iteration
Go to Step 1 till all feature pairs are picked.

5. Experiments and Discussions. In this study, all experiments are performed on
Windows Vista Operation System with Intel Core 2 Duo CPU (2.20 GHz) and executed
(C++ programming) by using Borland C++ Builder 6.0. Synthetic and realistic images
with 640×480 pixels are applied to test the performance of the proposed method, including
storage requirements and computation analysis. In the synthetic image experiment, a
synthetic image with an artificial created clipper is used as the target object, see Figure
4(a). Then, we impose different levels of pepper noises on the image, for example 15%
noise in Figure 4(b), for noise tolerance tests. In the realistic image experiment, a sketched

(a) (b) (c)

Figure 4. The synthetic image test with adding noises: (a) a template
image, T ; (b) an input image, I (640 × 480), with adding 15% noise; (c)
the detection result of (b) by using the proposed FRGHT
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kite template is used, see Figure 5(b), to create the extended C-table and detect a realistic
kite target image, see Figure 5(a).

(a) (b)

(c) (d)

Figure 5. The realistic image test: (a) a kite image (640 × 480); (b) a
template image, T ; (c) an input image, I: the edge of (a); (d) the detection
result by using the FRGHT. The CFRGHT in this experiment, is about 3.18
(×105), and the execution time is about 0.25 seconds for detection.

Table 1. The parameters settings of the GHT’s. The “×” denotes the
method does not need the parameter.

Parameters
Methods

FGHT GFHT FRGHT
B 8 8 8

∆th (degree) 10 10 10
Lth (pixels) 6 6 ×

d × × 0.4

Table 1 shows the parameter settings of the three methods in our experiments. B
denotes the block size, and it is set as 8 in all experiments based on previous work [18].
∆th is a tolerance error value described in Equations (2), (3), (7) and (12). Lth is a
predefined threshold for sifting the short line segment. d in Equation (10) is used to sift
two feature points with a short Euclidean distance between them. From the empirical
results, the suggested value of d is between 0.4 and 0.6. In this study, all experiments are
set as d = 0.4.

5.1. Storage requirements. The storage requirements include two parts: 1) the ex-
tended C-table and 2) the accumulator array:

(1) Memory size of the extended C-table: N feature points in T (template image) are
assumed. In the worst-case scenario, N − 1 pairs to be picked and built into the
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extended C-table during the “randomized waypoint” strategy:

QFRGHT = N − 1. (13)

For the same T , the Q’s of the FGHT and GFHT, QFGHT and QGFHT, in the
extended C-table can be approximated as:

QFGHT = QGFHT =

(
N
2

)
≈ N2

2
. (14)

Comparing the Q of the FRGHT to QFGHT and QGFHT, as seen in Equations (13)
and (14), we find that the ratio of QFRGHT to QFGHT and QGFHT can be estimated as:

QFRGHT

QFGHT

≈ QFRGHT

QGFHT

≈ 2

N
, (15)

where N is the number of feature points in T . In practical applications, N is signif-
icantly greater than 2 (N ≫ 2). It can be seen that the FRGHT requires the least
entry number than those of the FGHT and GFHT.
For example, a 640×480 template image, most 4,800 feature points (i.e., N = 4, 800)

be used to construct qn (please refer to Equation (1)) while B = 8. Each qn contains
nine 8-byte variables. The memory size required of the proposed FRGHT in the
extended C-table is approximated as 0.33 megabyte (i.e., (4800 − 1) × 9 variables ×
8 bytes ≈ 0.33 megabyte). On the other hand, the memory size required of the
FGHT and GFHT in the extended C-table is approximated as 790 megabyte (i.e.,(

N
2

)
× 9 variables× 8 bytes ≈ 790 megabyte). We can find that the memory size

of the proposed FRGHT is far less than that of the others.
(2) Memory size of the accumulator array: The accumulator array of the FRGHT is four-

dimensional array. The memory size of the accumulator array can be approximated
as:

Sx

B
× Sy

B
× Sk

kr
× Sθ

θr
, (16)

where Sx×Sy is the template image (T ) size. kr and θr are the resolutions of scaling
factor (Sk) and rotation factor (Sθ), respectively. For example, if the size of T is
640 × 480 pixels, Sx = 640 and Sy = 480. Assume the transformation of T and I
for scaling and rotation factors are predefined from 0.50 to 2.50 and from 0◦ to 179◦,
respectively. The resolutions of them are set as kr = 0.01 and θr = 1◦, respectively.
We can obtain Sk = 2.01 (= 2.50 − 0.50 + 0.01) and Sθ = 180◦ (= 179◦ − 0◦ + 1◦).
From Equation (16), we can obtain about S = 1.73 × 108 cells in the accumulator
array, while B = 8. Since each cell is defined as a 4-byte integer, the memory sizes of
all three methods are approximated as 660 megabyte.

5.2. Computation analysis. In the “Consecutive entry matching”, the worst of the
computation of the FRGHT for entry matching can be estimated as:

CFRGHT =

(
M
2

)
·QFRGHT =

M(M − 1)

2
· (N − 1) ≈ M2N

2
, (17)

where M and N denote the numbers of feature points in I (input image) and T (template
image), respectively. The computational times of the FGHT for entry matching, CFGHT,
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is:

CFGHT =

(
M
2

)
·QFGHT

≈ (MN)2

4

(18)

Comparing the computational time of the FRGHT to CFGHT, as seen in Equations (17)
and (18), we obtain the ratio:

CFRGHT

CFGHT

≈ 2

N
, (19)

where N is the number of feature points in T . In practical applications, N is significantly
greater than 2 (N ≫ 2). It can be seen that the FRGHT requires less computational
times than the FGHT.

Similarly, for the GFHT, since the number of feature points is calculated in a fuzzy
region for vote collection, we use an integer e ≥ 1 to estimate the feature point number
within the fuzzy region. The computation time of the GFHT for entry matching, CGFHT,
is:

CGFHT =

(
M
2

)
·QGFHT · e

≈ (MN)2 · e
4

.

(20)

Comparing the computational time of the FRGHT to CGFHT , as seen in Equations (17)
and (20), we obtain the ratio:

CFRGHT

CGFHT

≈ 2

N · e
. (21)

Again, N ≫ 2 and e ≥ 1. It still can be seen that the FRGHT requires less computation
(for entry matching) than the GFHT.

5.3. Experiments of synthetic and realistic images. Figure 4 is used as an example
to show the comparison. Since the FRGHT, FGHT and GFHT are line-based methods, we
add “line segment noise” to test them. All parameters are shown in Table 1. Figure 4(a)
shows the template image (T ), and Figure 4(b) shows the input image (I) with adding 15%
“line segment noise”. Figure 4(c) shows the detection result using the proposed FRGHT.
Moreover, we add noise from 3% to 24% to test all methods, and the experimental result
is shown in Figure 6. Even in adding heavy noise (i.e., 24%), the FRGHT still uses the
least iterations for entry matching. The main reason for that is the FRGHT uses the least
entry number, i.e., QFRGHT = 132 in Table 2.

Table 2. The experimental result of Q’s (Entry number) of the three meth-
ods in the synthetic and realistic images

Experiments
Methods

FGHT GFHT FRGHT
Figure 4(a) 22,273 22,273 132
Figure 5(b) 5,207 5,207 65

Similarly, a realistic image is used in Figure 5(a): a sketched kite image. Figures 5(b)
and 5(c) show the template image (T ) and the edge of the kite image (be treated as the
input image, I), respectively. The detection result is shown in Figure 5(d), and the CFRGHT

in this experiment only needs about 3.18 × 105 iterations for entry matching (please be
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Figure 6. The computational times of the FGHT, GFHT and FRGHT in
the synthetic image test (See Figure 4. The CFRGHT’s in this experiment
are about 1.13, 2.37, 4.39, 7.07, 9.66, 12.8, 16.68, 19.41 and 25.17 (×105),
respectively. The computation of the FRGHT is far less than that of the
FGHT and GFHT.

noted that the execution time is approximated as 0.25 seconds). The proposed FRGHT
not only can detect the target kite, but also can efficiently sift redundant mapping for
entry matching to decrease the execution time required. The main reason for that is the
FRGHT uses the least entry number, i.e., QFRGHT = 65 in Table 2.

5.4. Discussions of the spurious voting. Two indexes are used for estimating the effi-
ciency of reducing spurious votes: 1) voting efficiency, Veff and 2) voting entry reliability,
Rve.

(1) Voting efficiency Veff

The voting efficiency, Veff , is defined as the ratio between the number of correct
votes and the number of total votes [17]. The higher Veff means higher voting effi-
ciency. We redo the synthetic image test in Figure 4 and show the result of voting
efficiency in Table 3; obviously, the proposed FRGHT has the highest voting efficiency
than the FGHT and GFHT.

Table 3. The experimental result of the synthetic image test (see Figure
4: the voting efficiency, Veff (%), of the three methods

Adding noise (%)
Methods

FGHT GFHT FRGHT
0 0.119 0.134 3.874
3 0.065 0.077 1.410
6 0.041 0.044 0.725
9 0.026 0.031 0.638
12 0.017 0.021 0.220
15 0.013 0.014 0.134
18 0.010 0.011 0.095
21 0.007 0.008 0.131
24 0.006 0.007 0.068

(2) Voting entry reliability Rve

While computing the total computational times in Equation (17), the possible entry
matching times may include picking noised object (or non-target). That will increase
the computation times and decrease the voting efficiency simultaneously. We use the
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(a) (b) (c)

Figure 7. The result of voting entry reliability (Rve): (a) the clipper is
the target (template) in the input I; (b) the Rve images of the proposed
FRGHT. The higher illumination denotes more entry matching times are
obtained, and we can see the bright pixels are mostly on the target clipper;
(c) if we treat the triangle as our target (template), it still can be seen that
the bright pixels are mostly on the target triangle.

following ratio to denote the reliability of voting entry:

Rve =
the entry matching times of target pairs

the entry matching times of noise pairs
. (22)

The higher value of Rve means the higher vote weights on the target object in the
voting process. In Figure 7(a), there are three objects (clipper, triangle and ellipse)
in the image. Assume our target is the clipper. Figure 7(b) shows the experimental
results of entry matching times of the possible pairs of the proposed FRGHT. The
higher illumination denotes more entry matching times are obtained. While the Rve

value of the FRGHT is about 13.74, the Rve’s of the FGHT and GFHT are respectively
about 1.51 and 1.66, which are much less than that of the FRGHT. While the triangle
is used in Figure 7(a) as the target (template) and repeat the experiment, most of
bright pixels are on the target triangle, in Figure 7(c).

6. Conclusions. In this paper, we propose the fast randomized generalized Hough trans-
form (FRGHT), which uses a randomized waypoint strategy to choose feature line seg-
ments (its middle points) randomly and consecutively. With this strategy, a feature pair
only provides one entry in the extended C-table. Moreover, consecutive entry matching
can reduce the effect of spurious voting. The experimental result shows that the FRGHT
needs less computation and storage (the entry number) requirements than the FGHT and
GFHT.

Although the FRGHT obtain the higher voting efficiency than the previous modified
GHT by using consecutive entry matching, it still requires a four-dimensional array for
voting process. In the future work, we will reduce the array dimension to improve the
voting process.
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