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ABSTRACT. A hierarchical genetic algorithm (GA) is proposed for the path planning
of manipulators. The proposed algorithm consists of a global path planner (GPP) and a
local motion planner (LMP). The GPP, which uses a MAKLINK-based approach, plans a
trajectory for a robot end-effector from the starting free-space to the goal free-space. A GA
with a non-random initial population is adopted to plan the manipulator configurations
along the path given by the GPP. Once the optimal configuration has been obtained, the
optimal chromosomes are reserved as the initial population for the next intermediate goal.
Since the initial population is non-random, the evolution is more efficient and the planned
path is smoother than those of the conventional GA. Simulation results show that the
proposed algorithm works well, specifically in terms of path smoothing and computation
efficiency. The proposed algorithm also significantly reduces the number of variations of
joint angles of the manipulator.

Keywords: Genetic algorithm, Path planning, Motion planning, Collision-avoidance,
Hyper-redundant manipulator

1. Introduction. For robotic manipulators, the goal of path planning is to determine
a collision-free trajectory from the original location and orientation (called the starting
configuration) to the goal configuration [1], as shown in Figure 1. In recent years, many
path planning algorithms have been proposed [1-32]. In general, the methods can be cat-
egorized into two basic types, namely the configuration space (c-space)-based approach
[3-8] and geometric-based algorithms [9-23]. The c-space-based approach considers both
the manipulator and the obstacles at the same time by identifying manipulator configu-
rations that intersect the obstacles. A point of a c-space indicates that configuration of
a manipulator. A configuration is usually encoded by a set of manipulator parameters,
i.e., the angles of the links of manipulators. The forbidden regions in the c-space are
points which imply manipulator configurations that intersect the obstacles. Thus, path
planning is reduced to the problem of planning a path from the start point to the goal
in free space [3]. The c-space algorithm is easy to implement and fast for manipulators
with few degrees of freedom (DOF). The algorithm can also deal with manipulators with
many DOF. Roadmap methods are the most popular type of c-space-based approach [4-6].
Many of the methods based on c-space can be applied to real robot systems. However,
the overhead of preprocessing and updating the c-space significantly degrades the perfor-
mance. In [5], the probabilistic roadmap planner (PRM), which does not need the entire
c-space to be constructed, proceeds in two phases, namely the learning phase and the
query phase. In the learning phase, the undirected graph is preprocessed to improve its
connectivity. In the query phase, the method first attempts to find a path from the start
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and goal configurations to two nodes of the roadmap. A graph search is then conducted
to find a sequence of edges that connects these nodes in the roadmap. In practice, PRM
has successfully solved many complex problems. The approach is also easy to implement
and fast. The main drawback of PRM is that it is a probabilistically complete algorithm.
In other words, the PRM algorithm will terminate under a time constraint even if the
solution exists and still has not been found.

Unlike c-space-based approaches, geometric algorithms directly use spatial occupancy
information of the workspace to solve path planning problems. Workspace-based algo-
rithms usually extract relevant information about the free space and use it together with
the robot geometry to find a path. In addition to collision avoidance, some approaches
try to find paths with the minimum risk of collision. To minimize such a risk, repulsive
potential fields between robots and obstacles were used in [17-20] to match their shapes
in the path planning. In [17,18], heuristic search algorithms for robots in potential-based
workspaces were proposed. The algorithms are more efficient than c-space approaches, but
they are not complete. Furthermore, the potential algorithms may stop at local minima
and fail to plan a complete path even if the path is available.

Obstaclel o TH0H Obstaclel Target
s
End-Effector
Obstacle2 Obstacle?
Obstacle3
Base Position B&se Position

(2) (b)

FIGURE 1. Path planning of a five-link manipulator: (a) the initial config-
uration and (b) a 3-configuration path to the goal

Recently, some genetic algorithm (GA)-based methods [24-33] have been proposed for
robot path planning. In [24], the trajectories are derived using a pure GA. Therefore,
some configurations of the trajectories are close to the obstacles. In [32], the immune GA
was found to be more efficient than simple GAs for manipulator path planning. However,
obstacles are not considered in the algorithm. In [33], an individual chromosome was used
to describe the whole set of arm configurations of a trajectory. The evaluation function
with multiple criteria can plan a series of smoothing configurations from the start point
to the target point, but the search space is fairly large due to the large number of genes
of a chromosome. In general, GA-based path planning algorithms are complete. In other
words, they can find the path if it exists. However, GA-based approaches are slow because
they use evolution and have no heuristic method. In order to obtain a safe path efficiently,
the present study proposes a hierarchical GA for the path planning of manipulators. The
proposed algorithm includes a global path planner (GPP) and a local motion planner
(LMP). The rest of this paper is organized as follows. The GPP, which plans a trajectory
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for a robot end-effector from the starting free-space to the goal free-space by adopting
the MAKLINK approach, is introduced in Section 2. The GA with a non-random initial
population adopted for planning the manipulator configurations along the path given by
the GPP is described in Section 3. In Section 4, simulation results are presented for
the path planning of manipulators in various 2-D workspaces. Section 5 summarizes this
work.

2. Global Path Planning. Because global planning and local planning are coupled,
many path planning algorithms require complex searching and suffer from the local min-
imum problem. The proposed hierarchical algorithm consists of the GPP and the LMP.
The former determines the primary movement direction of manipulators and the latter is
a motion planner that derives a manipulator configuration with the given position of its
end-effector. Details of the two planning algorithms are given in the next section.

The GPP can be considered as a planner for point robots. In the present study, MAK-
LINK [2], which is based on the free link concept, is adopted since it is easy to implement
and has been shown to work well in many cases. The key idea of MAKLINK is the division
of the free workspace into several free spaces with free links. The free space is structured
as a free convex area using the developed free link approach, as shown in Figure 2. In
a convex area, any two points can be connected by a straight line. Thus, any point is
reachable directly.

FIGURE 2. Free-link division of a free workspace into several free spaces

First, we connect all vertices of an obstacle to other obstacles and workspace boundaries,
except if a connection intersects an edge of the obstacles. The free links of obstacle will be
selected from the connections later. Second, the lines at a corner of an obstacle are sorted
according to their length, from the shortest to the longest. Third, the outside angles of a
corner are checked. The line is the best free link if the two angles are less than or equal
to 180 degrees. Other links to the corner are ignored. Notably, if one of the two angles
is more than 180 degrees, the link is a free link and is added to the list of free links. For
such a corner, other links are needed to divide an outside angle which is more than 180
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FicUure 3. Graph representation of Figure 2, where free spaces are repre-
sented as vertices (V;) of graph G and free links are represented as edges
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degrees. Therefore, the shortest links are selected sequentially from the free link list to
divide the outside angles to be less than 180 degrees.

The selection of free links and the best free link is repeated for all obstacles. In Figure
2, the free workspace is divided into several free spaces, namely Vi, V5, and Vi;. The
segmented workspace of Figure 2 can be represented as the graph, G = {V;, Ei}, shown
in Figure 3. Free spaces are represented as vertices (V;) of G and free links are represented
as edges (E;) of G. The global path from the start (V2) to the goal (Vi) is obtained using
a simple search algorithm. The global path (E;, Eg, Es, E11) is the blue path in Figure
3 and the dashed-line path in Figure 4.

E » Vv, Ey
I | Base Position

FicUrE 4. Planned global path of Figure 3

3. Local Motion Planning. The GPP generates a global path (E;, Eg, Es, E1;) which
the end-effector of the manipulator should follow. In order to obtain fine trajectories,
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FicUure 5. Configuration of a manipulator represented as a chromosome
with the genes representing the joint angles

more middle points are interpolated within a free space. Then, a finer path is obtained
as (q1,92,q3, .- .,qn). For each position ¢;, the GA-based LMP plans a configuration for
the manipulator with the end-effector fixed at point ¢;. Thus, the ¢; can be represented
as an intermediate goal, IG;.

The GA is used for finding optimal solutions in the whole solution space; it thus avoids
becoming trapped in local minima. To apply a GA search for the optimal configuration
for manipulators, the joint angles of the manipulator configuration are encoded into one
chromosome. A configuration of a k-link manipulator is denoted it terms of its joint
angles (6, 0s,..., 0;). Each joint angle is represented as a gene of a chromosome. For
each chromosome, the Cartesian coordinates of the end-effector can be determined. The
chromosome is then constructed as shown in Figure 5. The proposed GA is shown below:

Algorithm Non-Random-Initial-GA

Begin
i = 1; /* Initialize the first intermediate goal */
t = 0; /* Initialize the genetic generations */
Randomly Generate an initial population P;(¢);
fitness(P;(t));
repeat until (reach final goal ¢,) Do
Bia(t) = Pi(t);
repeat until (reach intermediate goal ¢;) Do
select P;(t + 1) from P;(t);
crossover(P;(t +1));
mutate (P;(t+1));
fitness(P;(t +1));
t=1t+1;
end
=1+ 1;
end
End

The basic procedure of the proposed algorithm can be simplified as five steps:

i. Step 0: Initialization of the population for IG;. If © = 0, the initial population is
generated randomly; otherwise, the initial population is the offspring of IG;_;.
ii. Step 1: Selection. The population is sorted by fitness and the top 50% of chromo-
somes are preserved for crossover and mutation.
iii. Step 2: Crossover. The crossover operation generates new offspring from two parent
chromosomes.
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iv. Step 3: Mutation. The mutation operation locally adjusts genes with different prob-
abilities to generate new offspring.

v. Step 4: Evaluation of the population. If the optimal solution is found, set i = ¢ + 1
and go to Step 0 to begin a new evolution for the next intermediate goal IG;,1;
otherwise, go to Step 1 to begin the next generation.

The implementation details of the five steps are given below.

3.1. Step 0: Initialization of the population. The population, P;(0), of the first in-
termediate goal is generated randomly, and the initial populations, (P;(0),: > 1), of other
intermediate goals are obtained from the last generation of the preceding intermediate
goal; that is, they are randomly generated. Since these initial populations are eugenic
and inherit from the ancestor, the evolution time is reduced and the obtained path of the
manipulator is smoother.

Chromosome
Geney | Gene, | Genes | -+ | Goene,
I Chromosome; I
Geney | Genes | Genes | -+ | Gene,

F1GURE 6. Crossover operator defined as the exchange of similarly posi-
tioned genes of a pair of chromosomes

3.2. Step 1: Selection. Selection in a genetic algorithm preserves the optimal chro-
mosomes and abandons suboptimal chromosomes. Generally, selection is performed ac-
cording to the fitness of every chromosome, where the fitness evaluation is an objective
function for the chromosomes. Generally, there are several types of selection, including
roulette, tournament, best, random, and top percent. Here, the top percent scheme is
adopted. In this step, the top 50% of chromosomes in the population are preserved for
Step 2 and Step 3 to generate new offspring.

3.3. Step 2: Crossover. The reproduction operators, crossover and mutation, generate
new offsprings for the next generation. Crossover is performed between two selected
chromosomes, called parents, by exchanging parts of their genomes to form two new
chromosomes, called offspring. The most popular types of crossover operations are one-
point, two-point, uniform, and blending. Here, since the i-th gene of a chromosome
represents the i-th link of a manipulator, the crossover operator is defined as the exchange
of similarly positioned genes of a pair of chromosomes, as shown in Figure 6.

3.4. Step 3: Mutation. For the mutation operator, an arbitrary bit in a genetic se-
quence is changed with a given probability. Mutation maintains genetic diversity from
one generation to the next while attempting to avoid local minima. However, for ma-
nipulator motion planning, a small angle change of the base link of a manipulator will
cause a large manipulator movement further away from the base. Here, the probability
of mutation for every link is thus different. The probability of mutation increases from
the base link to the distal link.
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3.5. Step 4: Evaluation criteria. In this paper, an optimal chromosome (a configura-
tion of a manipulator) should produce a path that is collision-free and that reaches the
goal. Therefore, the fitness function can be defined as:

F = fcollision . Ds (1)
where F' is the cost function and f.ouision 1S the collision coefficient, which is equal to 1
if the motion is collision-free and equal to Vj.x (punishment cost) otherwise. The cost
of a collision-free configuration (D) is defined as (2), which is the distance between the
end-effector and intermediate goals.

D, = \/(xg — Tep)? + (Yg — Yep)? (2)

where (x,,y,) are the coordinates of the intermediate goal and (., y,) are the coordi-
nates of the end-effector. (z.p,y.,) can be derived as:

o] [ty e S [ ) [t o 0] [6]
A I O R A S S e R A RN
" cosf; —sinfh; 0 " I -|
+ | sinf; cosf; O 0
{ 0 0 1_{1J

where [; is the length of link . If the lengths of all links are equal to [, (3) can be simplified
as:

Tep cosf, —sinf, 0 cosfly —sinfy 0
Yep | = sinfl, cosf, O | +---+ | sinfly cost O
1 0 0 I 0 0 1
k ko (1)
cosf) —sinf; 0] l ;COSHZ‘ —i;smﬁi 0 l
4+ | sinf; cosf; O 0| = k. k 0
sin 6; cosf; 0
o o 1])[1 2z 2z 1
0 0 1
Thus: )
Tep =2, (cosB; x ;) =D cosb; x 1
=1 =1 (5)
k k
Yep = Z (sinﬂi X lz) = ZSngi x [
i=1 i=1

4. Experimental Results. In this section, simulation results are presented for path
planning implemented using the open-source Java genetic algorithms and genetic pro-
gramming package (JGAP) API (http://jgap.sourceforge.net). It provides basic genetic
mechanisms that can be easily used to apply evolutionary principles to problem solutions.

The first example is a 6-link manipulator in a workspace with three obstacles. As shown
in Figure 7, a smooth trajectory is obtained. Figures 7(a)-7(c) show partial trajectories
of the 6-link manipulator. Figure 7(d) shows the whole planned trajectory. The popula-
tion size was 100 and the maximum number of generations was 600. 10% of the initial
population was non-random.

Figure 8 and Figure 9 show the average variations of each link between any two contigu-
ous configurations of the trajectories of Figures 7(b) and 7(c), respectively. The dashed
line was obtained by the conventional GA and the solid line was obtained by the proposed
GA. The variation of the trajectory obtained by the proposed algorithm is smaller than
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FIGURE 7. Path planning example of a 6-link manipulator
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FIGURE 8. Average variations of each link between two contiguous config-
urations of the trajectories obtained by the conventional GA and the pro-

posed GA of Figure 7(b), the average on the z-axis is the average variation
of the six links

that of the trajectory obtained by the conventional GA. In other words, the trajectory
obtained by the proposed GA is smoother and more efficient.

Another example is a 6-link manipulator in a workspace with two obstacles. The
partial trajectories of this example are shown in Figures 10(a)-10(f). The whole trajectory
obtained by the conventional GA is shown in Figure 11. Since all populations of the
conventional GA are randomly generated, some unfeasible configurations are derived (e.g.,
the three configurations that go over the larger obstacle). The trajectory obtained by the
proposed GA is smoother than that obtained by the conventional GA. Figure 12 shows the
average variations of each link between two contiguous configurations of the trajectories
of Figure 10(g) and Figure 11, respectively. The variation of the trajectory obtained by
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FIGURE 9. Average variations of each link between any two contiguous
configurations of the trajectories obtained by the conventional GA and the

proposed GA of Figure 7(c), the average on the x-axis is the average vari-
ation of the six links
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FIGURE 10. (a)-(f) Sequence of partial paths of a 6-link manipulator

the proposed algorithm is smaller than that of the trajectory obtained by the conventional
GA.

The numbers of generations required to obtain optimal configurations for intermediate
goals (IGs) are shown in Figure 13. In most simulations, the optimal configurations
of some intermediate goals (e.g., 1G24, 1G25, and IG26) obtained by the conventional
GA are far from the intermediate goals. These optimal configurations are also infeasible
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FIGURE 11. Path obtained by the conventional GA for the workspace in
Figure 10
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FIGURE 12. Average variations of each link between two contiguous con-
figurations of Figure 10 and Figure 11, the average on the x-axis is the
average variation of the six links

configurations which go over the obstacle, as shown in Figure 11. In Figure 13, the
numbers of unsuccessful configurations of the conventional GA are not considered. As
shown in Figure 13, the proposed algorithm requires fewer generations to reach the optimal
configuration.

In the proposed algorithm, the initial generation is eugenically generated by the pop-
ulation of the preceding IG. The approach is different from the conventional GA, whose
initial population is randomly generated. Figure 14 shows the convergence for popula-
tions of various sizes. The convergence greatly depends on the size of the population, but
not on the mutation probabilities and crossover probabilities. An example of a crowded
environment is shown in Figure 15. In this simulation, the manipulator passes through a
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narrow passage to the goal. The proposed algorithm works well in terms of smoothness
and efficiency.
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FIiGUurE 13. Numbers of generations required to obtain optimal configura-
tions for intermediate goals (IGs)
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Ficure 14. Convergence populations of various sizes

Figure 16 shows the path planning results for an example similar to that shown in [33].
In our simulation, a chromosome consists of 3 genes, whereas a long encoded chromosome
with 120 genes is used in [33] for a 40-configuration trajectory from the given starting point
to the goal. The search space, which is proportional to the exponential function of the
number of genes in a chromosome, of the approach in [33] is thus fairly large. Furthermore,
if a finer trajectory with more configurations is needed, the algorithm proposed in [33]
must extend its chromosomes, further extending the time required to obtain results. In
contrast, the proposed algorithm is scalable because it can plan additional configurations
without changing the chromosome coding.
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FiGure 15. Path planning example of a 6-link manipulator within a narrow passage

FIGURE 16. Path planning results for example similar to that shown in [33]

5. Conclusion. A hierarchical GA path planner for hyper-redundant manipulators was
proposed. Unlike most planning algorithms for manipulators that consider path planning
and motion planning together, the proposed algorithm consists of a global path planner
(GPP) and a local motion planner (LMP). The GPP plans a trajectory for the end-
effector and the LMP plans manipulator configurations along the path. Since the proposed
algorithm processes path planning and motion planning individually, the complexity of
the proposed GA is reduced. Furthermore, since the initial population of the GA is non-
random, the continuity of the manipulator’s configurations is maintained and the obtained
trajectories are smooth.

Simulation results show that the proposed algorithm is able to plan a smooth trajectory
to the goal while reducing evolution time. The smooth path is very efficient since it
reduces the variations of the joint angles of the manipulator by 50%. In addition, the
infeasible configurations which may be obtained by the conventional GA are avoided.
The proposed algorithm has better convergence than the conventional GA, making it
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more computationally efficient. In most cases, the conventional GA requires more time
to plan an optimal configuration.

Since the major difference between 2D manipulator and 3D manipulator is the type
of joints (which are encoded as genes in our algorithm), the proposed algorithm can
be extended to 3D workspaces without significant changes. In future works, the fitness
function of robot configurations will be modified for 3D coordinate systems.
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