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Abstract. Rapid development of data processing systems has made digital signatures
an essential application. A digital signature basically associates a signer with the mes-
sage. Its important characteristics are easy verification, unforgeability and undeniability.
However, conventional digital signature schemes generally consider only single signer
situations; this is impractical, because the authorized signatory in the business world is
generally composed of signatures of several people. Therefore, to enable co-signatories on
a document, several group signature schemes are hereby proposed in this paper, including
threshold group signature, anonymous ring signature, and group signature that incor-
porates ring signature technology. Since the aforementioned signature schemes are all
based on Elliptic Curve Cryptosystem (ECC), they have short key size, low computation
load, and little bandwidth requirement. Therefore, all the above schemes are consider-
ably efficient. Finally, analyses are carried out to prove that the proposed schemes can
withstand signature forgery attack and are signer undeniable, and thus meet the security
requirements.
Keywords: Digital signature, Group signature, Threshold group signature, Ring signa-
ture, Signcryption, Elliptic curve cryptosystem

1. Introduction. Advances in cryptography provide better information security on the
Internet. Encryption systems ensure confidentiality of message transmission, while digital-
signature technology ensures authenticity and integrity of information. These factors
play a significant role in information security. Conventional handwritten signatures are
increasingly replaced by digital signatures, which are widely used in the Internet society.
The digital signature method was proposed by W. Diffie and M. Hellman in 1976 [1],
since then various other digital signature methods have been developed, including RSA,
ElGamal and DSS, which form the basis of the methods presented in this study. However,
in practice, people have different requirements with regard to digital signatures. Various
digital signatures [36,37,39], such as group signatures, ring signatures [2], blind signatures,
proxy signatures [3], threshold signatures [4] and signcryption [5], have been designed to
meet different needs.
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Most of the past research focused on RSA-based or ElGamal-base group signatures.
Since these techniques showed the problems of over-computation and application restric-
tion as well as not being able to control dynamic in a threshold scheme members, dynamic
member access security could not be easily designed. The proposed group signature, based
on ECC, presents the same efficacy and features as previous group signatures. Besides, it
integrates the features of ring signatures that it has the advantages on the verification of
identity in signature. The integration therefore makes the technique to meet the security
requirements of availability, non-repudiation, anonymity, and confidentiality as a whole.
Further more, with the short session keys and low computation in the ECC cryptosystem,
the proposed technique displays better advantage on performance.
Owing to the fact that electronic signature applications are mostly used for business pur-

poses, legal signatory is generally composed of several signatures. To enable co-signatory,
group signature technology is increasingly gaining importance. This paper mainly focuses
on the research and development of various types of group signatures, including group
threshold signature, ring signature, and group anonymous signcryption based on ring
signature.

1.1. Group-oriented threshold signature. The concept of group-oriented cryptog-
raphy, introduced by Desmedt [20] in 1987, is related to secure communication between
different groups. Since then, group-oriented schemes have evolved into threshold signature
schemes. In relation to the application of the perfect secret sharing scheme [21] developed
by Shamir, Harn [22] constructed a (t, n) threshold signature scheme based on Lagrange
polynomials. The so-called (t, n) threshold signature scheme is that any t members of a
n-member group can represent the whole group and validly sign on behalf of the group,
where t represents the threshold and has a value that lies between 1 and n (1 ≤ t ≤ n).
Much research has been conducted in this area [23-29] in recent years.
Some schemes have no restrictions with regard to the verifiers. Wang et al. presented a

(t, n) threshold signature scheme with (k, l) threshold shared verification [30], requiring a
specified verifier. In other words, only the specified verifier can verify the group signature.
In his scheme, k members of a specific l-verifier group can verify the group signature,
where k is a threshold that lies between 1 and l (1 ≤ k ≤ l). In 2002, Hsu et al. showed
that the scheme violated the requirements for (k, l) threshold shared verification [31].
Namely, an attacker could validate the group signature without help from other members
of the verifier group. Hsu also stated that the private key of the signer could be easily
retrieved from the individual signature. Hsu proposed an improvement to overcome these
two security problems. His improvement specifies that a random number selected by a
system center (SC) to be included in the solution to solve the aforementioned problems.
This additional operation is performed every time an individual signature is generated.
Consequently, efficiency is affected. Therefore, a scheme based on ECC [32-35] that
provides both security and efficiency is presented in Section 3.1. The additional operation,
which involves the SC in the generation of each individual signature, is avoided.

1.2. Ring signature. The ring signature scheme [2], developed by R. Rivest et al. in
2001, was created from the concept of “how to leak a secret”. Ring signature is an unusual
group signature that does not require creating a group. Although the scheme uses an
administrator, a signer can create a ring signature through his private key in combination
with a randomly chosen portion of the public keys of members. This signature method
significantly lowered the complexity of the mutual authentication process by allowing the
signer to remain anonymous, and thus protects the privacy of a signer.
Some researchers, who utilized elliptic curve cryptosystem and bilinear pairing cryp-

tosystem like Weil pairing [9] and Tate pairing [10], chose to employ applied hyper-elliptic
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curve on ring signature, for instance, the identity-based ring signature scheme [11,38] pre-
sented by F. Zhang et al. in 2002, its improvement method [12] presented by C. Y. Lin
et al. in the following year, and the identity-based threshold ring signature [13] presented
by S. Chow et al.

We briefly mention a number of other signature schemes as follows. J. Yu et al. [14]
proposed a ring signature scheme which is secure against the chosen message attack with-
out using the random oracle model. An efficient identity-based ring signature by S. Chow
et al. [15] is applicable to different group sizes. J. K. Liu et al. [16] introduced a separable
threshold signature scheme whose greatest contribution is that it is applicable in both
RSA-based as well as DLP-based public key cryptosystems. In general, the scheme sup-
ported the combination of public keys for all trapdoor-one-way type as well as three-move
type signature schemes.

1.3. Group anonymous signcryption. Signcryption is a kind of public key cryptosys-
tem that can both digitally and simultaneously encrypt and sign a message. Compared
with traditional systems like the PGP that signs and encrypts a message in sequential
procedures, its ability to simultaneously sign and encrypt makes the signcryption system
more secure and more efficient. To be specific, the signcryption system is 50% to 90%
more efficient than the traditional ones.

The concept of Signcryption was introduced by Zheng [5] in 1997. Since then, many
researchers have addressed and discussed many variations of signcryption schemes [6-8].
Lee and Mao presented a signcryption scheme based on RSA [6] and proposed security
proofs in the random oracle model aiming at privacy and unforgeability. Libert and
Quisquater presented an ID-based signcryption using bilinear pairing [7]. Additionally,
Yum and Lee proposed the new signcryption schemes based on KCDSA [8].

Nevertheless, the above-mentioned schemes were unable to meet the requirement of
anonymity for signers. Anonymous signcryption is useful in cases where the identity
of a sender must remain secret, yet the message verifiable. Thus, in Section 3.2, an
anonymous signcryption scheme based on the elliptic curve cryptosystem is presented;
the scheme encompasses all the advantages of a ring signature scheme. The application
of elliptic curve cryptosystem improves the performance by increasing the efficiency. As
for security, the proposed scheme not only ensures the confidentiality of the signer but
also possesses characteristics like unforgeability, anonymity, undeniability, and forward
secrecy.

2. Review of Previous Research.

2.1. Elliptic curve cryptosystem. Elliptic Curve Cryptosystem is known to provide
security equal in level to RSA or DSA in the discrete logarithm problem (DLP); it also
has lower computation overhead and smaller key size. Owing to ECC, the proposed
scheme attains high security and efficiency. The mathematic background of ECC [17,19]
is explained below.

As the name implies, ECC uses elliptic curves. With the variables and coefficients
of elliptic curves restricted to elements of a finite field, added efficiency is achievable in
the operation of ECC. Two families of elliptic curves, prime curves defined over Zp and
binary curves constructed over GF(2n), are used in cryptographic applications. Quoting
Fernandes [18], “prime curves are best for software applications because the extended
bit-fiddling operations needed by binary curves are not required; and that binary curves
are best for hardware application, where it takes remarkably few logic gates to create a
powerful, fast cryptosystem”.
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In this study, the applied elliptic curve over Zp, defined modulo a prime p, is the set
of solutions (x, y) to the equation Ep(a, b): y

2 = x3 + ax+ b(modp), where a and b ∈ Zp

and 4a3 + 27b2 mod p 6= 0. The condition 4a3 + 27b2 mod p 6= 0 is necessary to ensure
that x3 + ax + b(modp) has no repeated factors; meaning, a finite abelian group can be
defined based on the set Ep(a, b). The definition of an elliptic curve also includes a point
at infinity denoted as O. This point is the third point of intersection of any straight line
with the curve; such a line has points of intersection of the form (x, y), (x,−y) and O.
Not every elliptic curve over Zp can be applied in cryptographic applications. Figure 1
(taken from [19]) shows an example of the elliptic curve which is defined by the equation,
y2 = x3 + x+ 1 (mod 23).

Figure 1. Example of elliptic curve in case of y2 = x3 + x+ 1 (mod 23)

The example depicted in Figure 1 has a = 1 and b = 1, so that 4a3 + 27b2 mod 23 ≡ 8
mod 23 6= 0. Thus, the elliptic group E23(1, 1) consists of the points shown in Table 1,
extracted from [19].

Table 1. Points over the elliptic curve E23(1, 1)

(0, 1) (6, 4) (12, 19) (0, 22) (6, 19) (13, 7) (1, 7) (7, 11) (13, 16)
(1, 16) (7, 12) (17, 3) (3, 10) (9, 7) (17, 20) (3, 13) (9, 16) (18, 3)
(4, 0) (11, 3) (18, 20) (5, 4) (11, 20) (19, 5) (5, 19) (12, 4) (19, 18)

Addition operation has been used over Ep(a, b). For all points P and Q ∈ Ep(a, b), the
rules for addition over Ep(a, b) are defined as follows.

(1) P +O = P , where O serves as the additive identity.
(2) If P = (xp, yp), then P + (xp,−yp) = O. The point (xp,−yp) is the negative of P ,

denoted as −P . For example, in E23(1, 1), for P = (6, 4), −P = (6, –4) is received.
Since –4 mod 23 ≡ 19, –P = (6, 19), which is also in E23(1, 1).

(3) If P = (xp, yp) and Q = (xq, yq) with P 6= −Q, then R = P +Q = (xr, yr) is in E23(1,
1) and is determined by the following rules.

{
xr = (λ2 − xp − xq) mod p
yr = (λ2(xp − xr)− yp) mod p

, where λ =


(
yq − yp
xq − xp

)
mod p, if P 6= Q(

3x2
p + a

2yp

)
mod p, if P = Q
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(4) Multiplication by an integer is defined by repeated addition; for example, 2P = P+P .

Addition in ECC is the counterpart of modular multiplication in RSA, and multiplica-
tion in ECC is the counterpart of modular exponentiation in RSA. A difficult computa-
tional problem is the key to a secure cryptographic system using elliptic curves over Zp.
Consider the equation Q = kP , where Q and P ∈ Ep(a, b) and k < p. Although it is
relatively easy to calculate Q given k and P , it is extremely hard to determine k given Q
and P . This is called the elliptic curve discrete logarithm problem (ECDLP).

Given an example taken from [19], suppose E23(9, 17) is the elliptic curve defined by
y2 = x3 + 9x + 17 (mod 23). Find the discrete logarithm k of Q = (4, 5) to the base P
= (16, 5). One solution is the brute-force method, in which multiples of P is computed
until Q is found. The elliptic group E23(9, 17) consists of the points shown in Table 2.

Table 2. Points over the elliptic curve E23(9, 17)

P = (16, 5) 2P = (20, 20) 3P = (14, 14)
4P = (19, 20) 5P = (13, 10) 6P = (7, 3)
7P = (8, 7) 8P = (12, 17) 9P = (4, 5)

Note that 9P = (4, 5) = Q, that is, the discrete logarithm k of Q to the base P is 9.
However, in practice, the brute force method is quite infeasible as p and k are so large
that the method would not be practical.

As it seems, the efficiency of an ECC depends on how fast Q = kP can be calculated
for some numbers k and a point P on the curve. The addition of elliptic curve points
only requires few modular calculations. As shown in [19], the prime p in ECC can be
of a much smaller value than the corresponding numbers in the other types of systems,
achieving an advantage with efficiency over integer factorization and discrete logarithm
systems.

2.2. Ring signature scheme. The original ring signature [2] makes signers sign docu-
ments anonymously to protect the identity of the signer. The concept of ring signature
scheme is similar to that of Fuzzy Theory. In a ring signature scheme, a signer can dy-
namically choose members and the number of members according to the situation, and
then uses the public key of other members and the secret key of the signer to generate
a ring signature for a particular message. Such a system does not require a manager to
handle affairs. A verifier can only determine the group that the signer belongs to but
not the identity of the signer. The above-mentioned property is also the major difference
between ring signature and group signature.

2.2.1. Ring signature algorithm and ring signature verification algorithm. Suppose that
the said scheme is based on Public Key Infrastructure (PKI). All users hold a public key
Pk, and the corresponding secret key Sk is registered with PKI certificate authority.

For the operation of ring signature algorithm, suppose the number of members of the
signer group (also called a ring) is r. The signer uses the chosen members’ public keys
P1, . . ., Pr and the individual secret key Ss to sign the message m by generating a ring
signature σ for the said message.

For the operation of ring verification algorithm, the verifier inputs (m,σ), and then
judges whether the signature is real or fraud according to the output, True or False.

2.2.2. Definition of combination function. Combination function, which is used not only
to improve performance but also to enhance security, must possess properties like one-
wayness, single input inversion, and multiple inputs in solvability. Firstly, an invertible
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combination function z, such as Equation (1) [2] below, is defined. It can be verified that
z is a combination function for any index value s using Equation (2).

z = Ck,v(y1, · · · , yn) = Ek(yn ⊕ Ek(yn−1 ⊕ Ek(· · · ⊕ Ek(y1 ⊕ v) · · · ))) (1)

ys = E−1
k (ys+1 ⊕ · · ·E−1

k (yn ⊕ E−1
k (z))⊕ (· · · ⊕ Ek(y1 ⊕ v) · · · )) (2)

The combination function can be employed to output a unique value ys as the public
key of the signer s, where the inputs involve an initialization value v, a symmetric key k,
and a series of variables of length l.

2.2.3. Ring signature generation stage. Suppose signer s employs the secret key Ss and
the public keys P1, P2, . . ., Pr of all group members. Given a message m, the generation
of ring signature is as follows.

Step 1 Calculate corresponding symmetric key k = H(m) or k = H(m,P1, P2, . . ., Pr);
Step 2 Randomly select an initialization value v from {0, 1}b;
Step 3 Randomly select xi (1 < i < r, where r 6= s) from {0, 1}b and calculate yi as

follows;

yi = gi(xi), where


xi = qini + ri, 0 ≤ ri ≤ ni

gi(xi) =

{
qini + fi(ri) if (qi + 1)ni ≤ 2b

xi else

Step 4 Calculate ys using Ck,v(y1, y2, . . ., yr) = v;
Step 5 Calculate the invertible function xs = g−1

s (ys) of ys = gs(xs);
Step 6 Output the ring signature (P1, P2, . . ., Pr; v; x1, x2, . . ., xr) form as shown in Figure

2.

Figure 2. Ring signature

2.2.4. Ring signature verification stage. Upon receiving the ring signature (P1, P2, . . ., Pr;
v;x1, x2, . . ., xr) for m, the verifier verifies it as follows.

Step 1 Calculate yi = gi(xi), where i = 1, 2, . . ., r;
Step 2 Calculate the corresponding symmetric key k = H(m);
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Step 3 Take v and yi (i = 1, 2, . . ., r) into the ring signature verification equation below.

Ck,v(y1, y2, · · · , yr)
?
= v

If the equation is satisfied, the signature is taken as an authentic signature; oth-
erwise, the signature is rejected.

3. Proposed Schemes. In Section 3.1, a new scheme related to threshold signature
based on ECC is introduced. The new scheme achieves the security requirements of
signature, unforgeability and undeniability; it is also highly efficient. In Section 3.2, an
anonymous signcryption scheme that is also based on the ECC is presented; it integrates
the advantages of a ring signature scheme, which is another group-oriented signature
scheme. As to security, this proposed scheme not only meet confidentiality requirement
but also possesses characteristics like unforgeability, anonymity, undeniability and forward
secrecy.

The proposed technique presents the following advantages.

(1) Performance advantage: Since previous group signature schemes were on RSA or
ElGamal cryptosystem, the overall computing strength of the proposed method has
been enhanced by ECC. As ECC presents short session keys and low computation,
the proposed technique shows superior performance to the previous ones.

(2) The network application environment: Past techniques could not be widely applied
because of the burden of computation or the restrictions on application environment.
The fixed machine or the limited computation could be simply developed for single
technique or application. The proposed technique extends the range of applications
and can be flexibly applied in various network environments such as electronic com-
merce or electronic voting.

(3) Dynamic access for group signature: Previous group signature used to apply threshold
signature for a given group. The dynamic control on members was rather difficult and
the security was threatened. The proposed new technique could achieve the function
of group signature as well as enhance the dynamic access control on members.

(4) Anonymity and untraceability feature: The identities of group members can never
be traced under our proposed scheme. The privacy of individual is maintained and
anonymity and untraceability features are achieved.

3.1. The group-oriented threshold signature scheme. The proposed scheme re-
quires a system center (SC) to generate the necessary parameters of the system and the
users. Let a group of n signers be represented by Gs = {u1, u2, . . . , un}, an association
of any t members of which (1 ≤ t ≤ n) can validly sign a message for the whole group;
Let a group of l verifiers be represented by Gv = {uv1, uv2, . . . , uvl}, an association of any
k members of which (1 ≤ k ≤ l) can validate the received group signature on behalf of
the verifier group. Then, these t signers jointly elect a clerk (CLK) among themselves to
validate all individual signatures and combine t valid individual signatures into a group
signature. The proposed scheme contains the following three phases.

3.1.1. Parameter generation phase. The SC is responsible for generating the required
parameters of the system and the keys of the users. The generation phase involves the
following.

(1) a field size p, which is a large odd prime;
(2) two field elements a and b ∈ Fp, which define the elliptic curve equation E over Fp,

(i.e., y2 = x3 + ax+ b(modp) where p > 3 and 4a3 + 27b2 6= 0(modp));
(3) a finite point G = (xg, yg) whose order is a large prime number, where G 6= O (O

denotes an infinite point);
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(4) the order of G = q;
(5) a one-way hash function h;
(6) two secret polynomials fs(x) = at−1x

t−1+at−2x
t−2+ · · ·+a1x+a0 mod q and fv(x) =

ck−1x
k−1+ck−2x

k−2+· · ·+c1x+c0 mod q, where ai, cj ∈ [1, q−1] for i = 0, 1, 2, . . . , t−1
and j = 0, 1, 2, . . . , k − 1;

(7) a group private key fs(0) = a0 and a group public key Ys = fs(0)G for Gs; and a
group private key fv(0) = c0 and a group public key Yv = fv(0)G for Gv;

(8) an individual private key fs(xi) and a public key yi = fs(xi)G for each signer ui in
Gs, where i = 1, 2, . . . , n and xi is the public value associated with each signer ui.
Assume that x1, x2, . . . , xn are distinct.

(9) an individual private key fv(xvi) and a public key yvi = fv(xvi)G for each verifier uvi

in Gv, where i = 1, 2, . . . , l.

Then, the SC declares the system parameters p, E, G, q, h, yi (for i = 1, 2, . . . , n), yvi
(for i = 1, 2, . . . , l), Ys and Yv public.

3.1.2. Individual signature generation and verification phase. Consider an arbitary as-
sociation of t signers {us1, us2, . . . , ust}. To validly a sign message m, each signer usi

(i = 1, 2, . . . , t) generates an individual signature, as follows.

Step 1: Randomly select an integer bsi ∈ [1, q − 1], compute Bsi = bsiG, and send Bsi to
the associates via a broadcast channel;

Step 2: Combine all received Bsi (i = 1, 2, . . . , t) to obtain B as follows.

B =
t∑

i=1

Bsi = (xb, yb)

Step 3: Compute the commitment value rsi using the private key fs(xsi), the group public
key Yv of Gv, and the random integer bsi; then send rsi to the associates via a
secure channel;

rsi =

(
bsi + fs(xsi)

t∏
j=1,j 6=i

0− xsj

xsi − xsj

)
Yv

Step 4: Derive the common session key r of Gs and of Gv using the received rsi (i =
1, 2, . . . , t) to generate all individual signatures si and send si to the CLK, where

r =
t∑

i=1

rsi = (xr, yr)

si = xbh(m)fs(xsi)
t∏

j=1,j 6=i

0− xsj

xsi − xsj

− xrbsi mod q,

Upon receiving all individual signatures for the message m, the CLK must validate each
signature Si using the following signature verification equation;

xbh(m)
t∏

j=1,j 6=i

0− xsj

xsi − xsj

ysi
?
= siG+ xrBsi

If the equation holds, the individual signature si is validated.

Theorem 3.1. If the individual signature was generated by a valid signer, the signature
verification equation holds.
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Proof:

si = xbh(m)fs(xsi)
t∏

j=1,j 6=i

0−xsj

xsi−xsj
− xrbsi mod q

⇔ siG = xbh(m)fs(xsi)
t∏

j=1,j 6=i

0−xsj

xsi−xsj
G− xrbsiG

⇔ siG = xbh(m)
t∏

j=1,j 6=i

0−xsj

xsi−xsj
ysi − xrBsi

⇔ xbh(m)
t∏

j=1,j 6=i

0−xsj

xsi−xsj
ysi = siG+ xrBsi

3.1.3. Group signature generation and verification phase. If all of the t individual signa-
tures are validated, the CLK computes the group signature s for the message m and sends
it to the verifier group Gv as follows.

s =
t∑

i=1

si mod q

The CLK must declare B as public so that when the verification group Gv verifies
the received group signature s, any k verifiers can verify it on behalf of verifier group.
Each verifier uvi (i = 1, 2, . . . , k) computes a commitment value rvi using the private key
fv(xvi), the public parameter B, and the group public key Ys of Gs; he or she then sends
rvi to the associates via a secure channel, where

rvi = fv(xvi)
k∏

j=1,j 6=i

0− xvj

xvi − xvj

(B + Ys)

To validate the group signature for message m, each associated verifier computes r after
receiving all rvi (i = 1, 2, . . . , k) as follows.

r =
k∑

i=1

rvi = (xr, yr)

We note that this r value is equal to the r value computed by the signer group in Step
4 of the preceding subsection.

If the following verification equation holds, the group signature for message m is vali-
dated.

xbh(m)Ys
?
= sG+ xrB

Theorem 3.2. If the group signature indeed results from the valid signer group, the
signature verification equation holds.

Proof:

Since siG = xbh(m)fs(xsi)
t∏

j=1,j 6=i

0− xsj

xsi − xsj

G− xrbsiG

t∑
i=1

siG =
t∑

i=1

(
xbh(m)fs(xsi)

t∏
j=1,j 6=i

0− xsj

xsi − xsj

G

)
−

t∑
i=1

(xrbsiG) We have

⇔ sG = xbh(m)Ys − xrB
⇔ xbh(m)Ys = sG+ xrB
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3.2. Group anonymous signcryption. Elliptic curve cryptosystem has the advantages
of high security, low computation load, and small bandwidth requirement, while ring sig-
nature protects the signer with its anonymity feature. Integrating elliptic curve cryp-
tosystem and ring signature herein, the result is a system with highly secure and efficient
anonymous signcryption scheme. The process comprises four steps, namely system con-
struction, generation of signcryption text, verification of signcryption text, and conversion
of signcryption text to standard signature.

3.2.1. System construction. Let q denote a large prime number, E denote an elliptic curve,
P denote a base point on the elliptic curve E with order q, and H denote a one-way hash
function, where q, E, P and H are public parameters, and Zq is a finite field with q
elements.
Let a group member set be A = {U1, U2, . . ., Un} under the ECC, the private keys of

Q1, Q2, . . . , Qn are d1, d2, . . . , dn respectively. The corresponding public keys Q1, Q2,
. . . , Qn satisfy Qi = diP , where i = 1, 2, . . ., n. The private and public keys of verifier Uv

are dv and Qv = dvP , respectively.

3.2.2. Generation of signcryption text. Let a member Ui in A send the signcryption text
of a message m to the verifier Uv. Ui executes the process of generating signcryption text
as follows.

Step 1: Randomly select k ∈R [1, q − 1] and r ∈R [1, q − 1];
Step 2: Calculate (xi, yi) = Ti = kP , (xr, yr) = R = rP , and (xe, ye) = Te = rQv;
Step 3: Select st ∈R [1, q − 1], where t = i+ 1, i+ 2, . . ., n, 1, . . ., i− 1;
Step 4: Calculate sequentially ct = H(m||xt−1) and (xt, yt) = Tt = stP + ctQt, where

t = i+ 1, i+ 2, . . ., n, 1, . . ., i− 1, and use t− 1 = n when t = 1;
Step 5: Calculate ci = H(m||xi−1) and si = k − dici (mod q);
Step 6: Encrypt the message m to m′ = Exe(m) using the secret symmetric key xe;
Step 7: Send the signcryption text σ = (m′, c1, s1, s2, . . ., sn, R) to the verifier Uv.

3.2.3. Verification of signcryption text. Upon receiving the signcryption text σ = (m′, c1,
s1, s2, . . ., sn, R), the verifier Uv performs the following steps to verify.

Step 1: Let (xr, yr) = R, calculate (xd, yd) = dvR and m′′ = E−1
xd

(m′);
Step 2: For t = 1, 2, . . ., n− 1, calculate (xt, yt) = Tt = stP + ctQt and ct+1 = H(m′′||xt);
Step 3: Calculate (xn, yn) = Tn = snP + cnQn and c′1 = H(m′′||xn);
Step 4: If c′1 = c1, confirm that σ = (m′, c1, s1, s2, . . ., sn, R) is a valid anonymous signcryp-

tion text from the group A = {U1, U2, . . ., Un}; otherwise, reject the signcryption
text.

3.2.4. Conversion of signcryption text to standard signature. Upon receiving signcryption
text σ = (m′, c1, s1, s2, . . ., sn, R), the verifier Uv applies the verification process in Sec-
tion 3.2.3 to confirm the validity of signcryption text σ. Thus, m′′ denotes the signed
message from a group, and σ′ = (m′′, c1, s1, s2, . . ., sn) denotes the standard ring signature
converted from σ, which is an ECC-based ring signature. Only verifier Uv can perform
the signature conversion process. Any third party can verify the validity of the converted
signature.

4. Analysis of Security.

4.1. Analysis of group-oriented threshold signature. The security of the proposed
scheme in Section 3.1 is based on the difficulty of solving the elliptic curve discrete log-
arithm problem (ECDLP). Analyses of possible attacks and the security of the proposed
scheme are presented below.
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4.1.1. Plaintext attack. The plaintext attacks can be launched in different ways, such as
by deriving individual private keys fs(xsi) and fv(xvi) using the individual public keys
ysi = fs(xsi)G and yvi = fv(xvi)G, or by deriving group private keys fs(0) and fv(0), using
the group public keys Ys = fs(0)G and Yv = fv(0)G. An attacker may attempt to derive
a signer’s private key fs(xsi) or the verifier’s private key fv(xvi) from the commitment

value rsi =

(
bsi + fs(xsi)

t∏
j=1,j 6=i

0− xsj

xsi − xsj

)
Yv or rvi = fv(xvi)

k∏
j=1,j 6=i

0− xvj

xvi − xvj

(B + Ys).

Such attacks are infeasible against the ECDLP.

4.1.2. Forgery attack. Assume that an attacker intends to forge the individual signature
Si of the signer usi. Firstly, the attacker may randomly select an integer bsi and compute
the corresponding Bsi = bsiG; then he forges a commitment value rsi. Since he doesn’t
hold the signer usi’s private key fs(xsi), he fails to generate a valid signature si to satisfy
the following verification equation:

xbh(m)
t∏

j=1,j 6=i

0− xsj

xsi − xsj

ysi
?
= siG+ xrBsi.

Alternatively, the attacker may intend to forge a group signature s for any arbitrary
message m to satisfy the following verification equation of group signature:

xbh(m)Ys
?
= sG+ xrB

First, he may randomly select an integer xr, a false signatures and a point B = (xb, xb)
to compute a valueQ, where Q should satisfy both Q = h(m) and the verification equation
of group signature. Nevertheless, due to the onewayness property of hash function and
the difficulty of solving the ECDLP, the possibility of successful forging of a valid Q is
extremely small. An attacker may randomly select two integers xr and h(m) and a point
B = (xb, xb) and derive a value s that satisfy the verification equation of group signature.
However, the difficulty of solving the ECDLP makes it infeasible.

4.1.3. Equation attack. Assume that an attacker intends to derive the signer usi’s private
key fs(xsi) and secret parameter bsi from the generating equation of individual signature
si below:

si = xbh(m)fs(xsi)
t∏

j=1,j 6=i

0− xsj

xsi − xsj

− xrbsi mod q

Since both fs(xsi) and bsi in the equation are parameters unknown to the attacker,
such attack is thus in feasible. The attacker may try to derive fs(xsi) from a set of
generating equations with a set of plaintextsm′ and the corresponding individual signature
si’. However, each such equation contains a unknown parameter b′si. Consequently the
number of unknown secret parameters is always greater than the number of equations
which makes the equation attack infeasible. Also, the attacker may derive both the group

private key fs(0) and the secret parameter
t∑

i=1

bsi by combining t individual signatures

into one equation as follows:
t∑

i=1

si mod q =

(
xbh(m)fs(0)− xr

t∑
i=1

bsi

)
mod q

Since this equation contains two unknown fs(0) and
t∑

i=1

bsi, the attacker cannot suc-

cessfully break the equation.
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4.1.4. Conspiracy attack. Assume that there are t − 1 members who conspire to derive
the private key of some signer and the group private key of the signer group Gs. These
t − 1 conspiring members have to first reconstruct the polynomial function fs(x), then
compute their target’s private key fs(xsi) via his public value xsi in the signer group or
derive the group private key fs(0) of Gs. The reconstruction of the polynomial function
fs(x) requires at least t members’ private keys fs(xi). Therefore, though these t − 1
conspiring members share their private keys fs(xi) with each other, they still cannot
successfully reconstruct the polynomial function fs(x), or derive their target’s and the
group’s private keys. The same arguments also apply to the verifier group Gv; any k − 1
or fewer conspiring members will fail to derive the others’ private keys.

4.2. Analysis of group anonymous signcryption. This proposed method combines
the ECC-based system, ring signature and symmetric encryption, attaining properties
such as confidentiality, unforgeability, anonymity, undeniability and forward secrecy.

4.2.1. Confidentiality. Message m is sent in ciphertext form so that only those with a
secret symmetric key can decrypt it. As to the session key, it is encrypted using the
public key of the verifier before it is sent to the verifier. So far an ECC-based public key
infrastructure remains secure, thus only verifier Uv can decrypt the message m from the
ciphertext.

4.2.2. Unforgeability. We first argue that an ECC-based ring signature is unforgeable in
the random oracle model. It the follows that our proposed ECC-based signcryption is
also unfogeable.
(1)Unforgeability of an ECC-based ring signature
In a random oracle model, consider the ring signature algorithm SIG of the proposed

method along with the one-way hash functionH as an oracle. Supposing that an algorithm
A applies the public keys Q1, Q2, . . ., Qn as inputs with no knowledge of a valid private
key, it then makes requests to SIG and H using a polynomial sequence. That is, A might
be able to forge the ring signature for a message m with non-negligible probability. Also,
consider an algorithm B, which employs a random point Q over the elliptic curve E as
input and calculates s with non-negligible probability satisfying Q = sP , attempting to
solve the ECDLP.
Assume that the algorithm B can perform a black-box interview with algorithm A and

has total control over the requests from the algorithm A. B demands that A makes its
request toH by following the direction of the ring built for the forged signature on message
m; otherwise, the probability of the forged signature passing verification is negligible [2].
Assume that A sends a request to H following a clockwise or anti-clockwise direction.
After A making a polynomial sequence of requests (testing several messages m in the
process), B can guess, with non-negligible probability, that A forged the signature on
message m. However, B can neither guess which requests were proposed by A in the
latest forged signature nor determine the order of requests on the ring. For the other
mj, algorithm B can easily imitate SIG to produce a signature; vector (c, s1, s2, . . ., sr) is
output as the ring signature; the order of the random responses are simultaneously mixed
up to enable the signatures of these messages to pass verification. Since B randomly
selects the value following the ring structure to generate the signature for mj, A cannot
propose requests that prevent B from selecting a value that A can guess in advance.
Algorithm B randomly selects an insertion point for Q following the direction of the

ring, and uses the insertion point to fill the gap between the input and the output values
of two continuous hash operations in generating the final forged signature. This approach
also forces A to provide the corresponding s, which satisfies to Q = sP , thus the gap is
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sealed during the signature forgery process. Since only B knows the random value Q, A
does not recognize this “trap” and refuses to provide the forged signature.

The main difficulty is that A can determine the inverse using a one-way hash function
and can seal the ring using the SIG algorithm by following the direction that is the easiest
to compute. This difficulty can be overcome by noting that a gap always exists between
the two H values in any signatures forged by A. Irrespective of the order followed by A
when sending requests to B, B can still respond to these requests. Additionally, B can
answer the second of two adjoining requests based on the input and the output of the
previous similar requests. Under this method, B needs only perform an addition operation
on the two ends to obtain the desired value of Q, which also forces A to compute s such
that it satisfies Q = sP in the final forgery process to seal the gap.

B cannot determine which request was applied by A to the final forgery of signature,
and can only make guesses. However, B can only attempt two guesses. The probability of
success is 1/2T , where T denotes the total number of requests made by A. Consequently,
B can compute, with non-negligible probability, the corresponding s that satisfies Q = sP
and thus successfully solve the ECDLP.

Above arguments imply that if A can successfully propose forged signature to B with a
non-negligible probability, B has a non-negligible probability of solving the ECDLP. This
contradicts our current knowledge of ECDLP. Therefore, the ECC-based ring signature
cannot be forged.

(2) Unforgeability of an anonymous ECC-based signcryption
If a user U successfully forges an anonymous signcryption text, then he will be able

to convert the signcryption to a ring signature to create a forged ECC-based ring signa-
ture. This contradicts the results of Section 4.2.2 (1); that is, anonymous signcryption is
unforgeable.

4.2.3. Anonymity. The main difference between the proposed scheme and other signcryp-
tion schemes lies in anonymity of the signer. Upon receiving the signcryption information,
a verifier can authenticate the validity of the signcryption information, but cannot iden-
tify the signer. As to the anonymity between the signer and third party, after the verified
signcryption information has been converted to a ring signature, a third party can only
check which group the signature is produced, and whether the signature is issued by a
valid member of that group; the third party cannot determine the identity of the signer.
In other words, neither the verifier nor the third party can identify a signer using the
signcryption information.

4.2.4. Undeniability. When a conflict arises, the verifier can convert the signcryption text
to a standard ring signature. Any third party can validate this ring signature and confirm
the source of the signature. Although the identity of the signer cannot be determined,
the group to which the signer belongs can be identified. The signcryption could neither
be forged by the verifier, nor be generated by a non-member. Therefore, undeniability of
signature can be established since the group members cannot deny the signature.

4.2.5. Forward secrecy. With regard to the forward secrecy security feature provided by
signcryption, an attacker cannot use the signer’s long-term private key, a previously trans-
mitted signcryption text σ, or related public information to carry out the calculations to
obtain the plaintext intended for the verifier. In the proposed scheme, because the corre-
sponding key xe of the final encrypted plaintext is generated with a random number r, a
different decryption key is generated every time. Thus, even if the long-term private key
di of a signer Ui is revealed, previous documents remain secure, achieving forward secrecy.
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5. Conclusions. RSA-based or ElGamal-based group signature schemes utilized the
mathematical differently in solving discrete logarithm problem to satisfy the security
requirement. In practical applications, they required large module and heavy computa-
tion load. Consequently, these schemes sometimes failed to work smoothly, especially in
environments without excellent computing ability. Our proposed group signature scheme
is a ECC-based scheme which also incorporates the features of ring signature. The basic
requirements of availability, non-repudiation, anonymity, and confidentiality are proved
to be satisfied by our group signature scheme. The integration of ring signature therefore
is the key reason that the proposed technique presents the efficacy and features of group
signature as well as the advantages of short session keys and low computation, reduces
operated resources, and enhances system performance. It further reveals advantages on
business applications, such as trade transactions among banks or electronic commerce
applications which require more efficient information security protection.
The proposed group-oriented threshold signature scheme can specify a verifier group.

That is, only a specific verifier group can verify the group signature. Moreover, the in-
tegration of the ECC into the system makes the cryptosystem more secure and efficient.
The other group signature related anonymous ECC-based signcryption has anonymity
as its main property. The anonymity factor through the integration of the attributes
of ring signatures–protecting the privacy of signers by signing anonymously is achieved.
Furthermore, this proposed scheme also achieves the requirements of confidentiality, un-
forgeability, undeniability, and forward secrecy.
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