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ABSTRACT. Leakages in the air intake system (ALS) of gasoline engine can deteriorate its
performance causing poor fuel efficiency, air pollution and retarded driving performance.
The diagnosis and prognosis of air leakage becomes inevitable in order to enhance relia-
bility and improve fuel consumption. Currently, air leakages detection is hardly found in
any of the available On Board Diagnostic version-II (OBD-II) scanners. In this paper,
a challenging task of detecting manifold air leakage at early stage has been resolved by
employing discrete Hidden Markov Model (HMM). Discrete HMM is an stochastic clas-
sifier that has been exploited for the first time to generate useful information about AIS
condition based maintenance. The proposed fault diagnosis and prognosis (FDP) scheme
can detect air leaks and consequently the severity of air leakage is explored to update the
schedule of maintenance prior to any mishap. The validation of the proposed algorithm
s carried out on 1.3L production vehicle engine. The experimental results demonstrate
that HMM based FDP scheme accurately detects air leakage at early stage and informs
about its approzimate severity. The suggested scheme for leakage diagnosis is cheaper,
does not require any extra hardware installations and it remains valid for all OBD-II
compliant commercial vehicles.

1. Introduction. On-board condition monitoring of naturally aspirated automotive en-
gines is an integral part of Electronic Control Unit (ECU) equipped vehicles. This is
because of strict legislative regulations defined in OBD-II [1] and European On-Board Di-
agnostics. Automotive industry is constantly struggling to incorporate efficient on-board
fault diagnosis methodologies to overcome these legal requirements. Besides such require-
ments, end-user satisfaction is also a major concern of automotive industry. Fault free,
fuel efficient and environmental friendly vehicles are always preferred.

One of the main requirements of ODB-II for spark ignition (SI) engine is to monitor
the health of its AIS. Any OBD-II compliant vehicle will be equipped with Manifold Air
Pressure (MAP) or Manifold Air Flow (MAF), throttle position and angular speed sensor.
These sensors provide useful information to monitor the health of air intake system and to
diagnose/prognose malfunctioning of the components involved in AIS. The components
are air filter, intake manifold, throttle valve and installed sensors. A brief discussion will
give us an overview of the problems caused by AIS malfunctioning, its effect on engine
performance and how the researchers attempted to resolve the problem.

1.1. Air intake system fault diagnosis/prognosis. Engine fuel efficiency depends
on the Air to Fuel Ratio (AFR) of in-cylinder mixture that is required to be as close
to its stoichiometric proportions as possible. The standard stoichiometric ratio can be
maintained if AIS performance is ensured. Any malfunction in AIS will affect the amount
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of oxygen required for complete combustion, thus disturbing stoichiometric proportion.
One of the main factors that retard fuel efficiency is leakages in inlet manifold. Air leakages
in inlet manifold increase the amount of uncontrolled oxygen for combustion process, and
this may result in high engine rotational speed and unpredictable manifold pressure. This
malfunctioning may let end-user experience hissing noise, engine stumbling, rough /fast
idling or stalling, poor gas mileage and hesitation/poor pickup.

However, in actuality air leakages force MAP/MAF sensor to generate false measure-
ments that can result in deviation in AFR, that may cause emissions to increase (Pollu-
tion), lean or rich air fuel mixture, that may cause misfire (Rough Idle/Hesitation) and
loss of generated power, that may effect the quality of drivability (Engine Stumbling, etc.).
These symptoms are visible only after air leakage has occurred. The possible causes of
manifold leakages can be aging effects of hoses connecting manifold to other components
like Exhaust Gas Recirculation (EGR) hose, power brake booster hose. Other causes may
include EGR valve leaks, intake manifold gasket leaks, aging of throttle/butterfly valve
and other gaskets leaks. Figure 1 gives a brief idea of components attached to AIS, that
can cause air leakage. Besides leakage in AIS, components in connection with manifold, if
got ruptured, may cause air leaks too. For example, any damage to power brake booster
can cause air leakage in manifold.

Therefore, in order to avoid such situations early diagnosis/prognosis of air leakages
becomes inevitable. Currently, automotive industry utilizes many experience and lookup
tables based techniques to monitor AIS health. As a consequence the available ODB-II
scanners are unable to detect manifold leakages. However, several researchers have devel-
oped methodologies to avoid above highlighted scenarios caused by manifold air leakages.
Nyberg et al. [2] identified manifold air leakage by proposing a physical model of air leaks
for turbo charged engine whose parameters were identified by Recursive Least Squares
(RLS). The identified parameters helped to check the severity of leakages. Dutka et al. 3]
presented mathematical model of an internal combustion engine to detect failures in the
intake manifold. The proposed fault detection and isolation method performed threshold
tests on the directional residuals. The residuals were generated by a combination of a
state-dependent Kalman filter, an open-loop observer and an unknown input estimator.
Franchek et al. [4] suggested diagnostic approach for air leakage based on a static air
path model, which was adapted online such that the model output matches the measured
output during steady state conditions. The resulting changes in the model coefficients
create a vector whose magnitude and direction were used for fault detection and isolation.
Sangha et al. [5] proposed Radial Basis Function (RBF) neural network based diagnosis
scheme for air leakages. MVEM was used to simulate air leaks and other faults to validate
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FIGURE 1. Schematic diagram of AIS showing connecting components that
may contribute in air leaks
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the scheme. The authors in [6], proposed classifier fusion approach for diagnosis of au-
tomotive systems. The methodology validation was limited to synthetic faults generated
by Computer aided multi-analysis system in Hardware In Loop Simulations (HILS).

It can be observed that an air leakage detection scheme compliant to OBD-IT stan-
dards is hardly available in literature. This time the authors propose a Hidden Markov
Model based scheme to detect manifold leakages for the first time. The key feature
of the proposed scheme is its compliance to OBD-II standards. The suggested HMM
based FDP scheme requires pressure and crankshaft sensor measurements acquired from
OBD-II scanner. Thus, the scheme can be incorporated in any OBD-II compliant scan-
ner software. This feature makes the scheme cheaper and readily implementable on any
ODB-II compliant production vehicle. Unlikely, other manifold leakage diagnosis schemes
as discussed above, were limited to simulated or synthetic data generated by HILS. Other
suggested methodologies involve lab setup of an engine equipped with expensive instru-
mentation and data acquisition cards. These aspects make current schemes more costly
and applicability of the schemes on production vehicles becomes difficult.

1.2. Hidden Markov model for fault diagnosis/prognosis. Fault diagnosis is an
active research area focused by many researchers [7, 8, 9, 10]. Among various faults diag-
nosis techniques, Hidden Markov Model has successfully proved its diagnosis capability
[11]. Hidden Markov Model is a statistical tool for modeling a wide range of time series
data. This powerful statistical tool is used for modeling generative sequences that can be
characterized by an underlying process producing an observable sequence. HMMs have
found application in many areas of signal processing like Speech recognition [12]. Besides
its application in signal processing, HMM is extensively used for estimation, Condition
Based Monitoring (CBM), fault diagnosis and prognosis of engineering systems [11]. For
ball bearing, Ocak and Loparo [13] introduced fault detection and diagnosis scheme based
on its vibration signals classification by HMM. The extracted features from amplitude
demodulated vibration signals were used for online health monitoring of bearing of an
induction motor driven mechanical system. Similarly, Kwan et al. [14] proposed HMM
based fault diagnosis methodology for monitoring ball bearing health. Principal Compo-
nent Analyzed (PCA) sensor data was used to generate codebook. The classified HMM
by the diagnosis scheme was investigated for fault prognosis. Zhang et al. [15] suggested
Remaining Useful Life (RUL) of ball bearings based on health degradation index returned
by HMM classifier. For machine tools FDP, Baruah et al. [16] employed sensor signals
from machine tools to analyze their health through HMM. For FDP in process industry,
Dong et al. [17] suggested hidden semi-markov model based framework for diagnosis and
prognosis. The authors predicted RUL of pumps through the proposed methodology.
The authors in [18] proposed HMM based algorithm for fault diagnosis with partial and
imperfect tests. Y. Xu et al. [19] presented an intelligent fault diagnosis system based on
HMM for process industry operations. The wavelet packet technique based extract fea-
tures served as input for HMM based classifier. The authors in [20] proposed an approach
combining variable moving window and HMM for online identification of abnormal oper-
ating conditions for Tennessee Eastman process. Bakhtazad et al. [21] combined wavelets
with HMM to detect abnormal behavior. Wavelets were used to generate the features,
and HMM was used for classification.

From the above discussion, it is clear that HMM is extensively used in industry for FDP
of various engineering systems, due to its low computation cost and ease of implementa-
tion. However, this is the first time that discrete HMM based fault classifier is proposed
for naturally aspirated automotive engine AIS. Currently, the proposed FDP scheme is
focused on air leakages detection; however, the scheme can be extended to monitor other
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faults as well. The implementation results demonstrate accurate diagnosis and prognosis
of incipient and abrupt air leakage in pressure manifold. Another aspect of the proposed
scheme is its prognostic framework, that helps to predict the leakages status in order to
ensure better fuel mileage and smooth driving.

Rest of the paper is organized as follows. Section 2 explains how air intake system
is modeled under discrete HMMs and the properties of HMM required to exploit in or-
der to generate useful information about health status. Section 3 describes the overall
methodology for AIS FDP. The experimentation and validation of FDP algorithm is ex-
plained in Section 4. Section 5 contains the concluding remarks of the authors, followed
by references.

2. Hidden Markov Model for AIS. The main reasons for employing HMMs in fault
diagnosis of engineering systems are as follows. HMM is capable of characterizing a doubly
embedded stochastic process with an underlying stochastic process (hidden faulty system )
that, although unobservable, can be observed through another set of stochastic processes
(observations from sensors) [18]. The key problem in diagnosis is to choose the most likely
hidden state sequence, given the sequence of uncertain observations from installed sensors.
HMM is a parametric model containing state transition probabilities. These parameters
can be adaptively updated by the well-known Baum-Welch algorithm [12]. Therefore,
HMM provides a theoretical platform for a diagnosis scheme, capable of generating the
most likely faulty state sequence, while estimating model parameters within the same
theoretical framework. A theoretical overview will give the idea how HMM is used for
AIS health monitoring.

Hidden Markov Model is characterized by N hidden states of the model. For FDP
scheme explained in Section 3, three HMMs are employed to classify the health of AIS,
as it can be categorized as healthy AIS, Air leakage in manifold and other faults that
can be due to MAP sensor malfunctioning, etc. Each HMM defined for specific health
condition contains 4 hidden states. These four hidden states correspond to fault free
stage, intermediate fault Stage 1, intermediate fault Stage 2 and faulty stage.

The 4 hidden states in HMM for air leakage in manifold correspond to leakage area
in intake manifold. For the ease of visualization and comparison purposes, the leakages
have been quantified according to wide open throttle (WOT). The available throttle body
diameter, when the throttle valve is fully opened, is 5.4cm and this condition is typically
termed as WOT. The leakage is usually caused by hoses connecting manifold to other
automobile components as discussed earlier. The typical diameter of these hoses range
from .1em to 1em. Therefore, the hidden states in HMM for air leakage can be defined as

e State 1 (s;) for no air leakage (0% of WOT)

e State 2 (sg) for air leakage of .25cm (4.5% of WOT)
e State 3 (s3) for air leakage of .5¢m (9% of WOT)

e State 4 (s4) for air leakage of 1lem (18% of WOT)

s4 corresponds to major air leakage that cannot be ignored, whereas s, and s3 are minor
intermediate leakage stages, that remain unnoticed by end-user and can be tolerated.

Remark 2.1. As the hidden states are chosen according to the system under consider-
ation, an optimum number of hidden states has been selected as 4 to quantify the health
status of intake manifold. For large number of hidden states, one tends towards over-
fitting, loss of generalization and computationally extensive algorithm. Any leakage in
manifold will be accurately diagnosed and approrimately quantified by 4 states HMM for
air leakage. The quantified status will let the end-user know the severity of air leak.
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The transition probability distribution among these states is defined by A = [a;;], where
aij = Plgi = sjlgp =si] 1<4,j <N (1)
where ¢; is actual state at time ¢. M observation symbols are defined per state. For
the proposed FDP methodology, M corresponds to the size of the codebook generated
through vector quantization. The observation symbol probability distribution in state j
is given by B = b;(k), where
bj(k) = Plupattlgg=s;] 1<j<N )
1<kE<M 2)
where v}, is the k"™ observation symbol. The last requirement to define an HMM is initial
state distribution 7 = [m;], where
Therefore, for given N and M, we can use a compact notation to define an HMM as

)\c = (Ac; Bca 71') (4)

where A. and B, bear the structure according to pre-defined applications and ¢ =
1,2,3,...1is the number of HMMs defined for each health status.

2.1. Choice of HMM. For FDP through HMM, Bakis or Left-Right Model provides
the best logical grounds. The underlying fault propagation sequence is associated with
the property that as time increases the fault grade may increase (or stays the same), i.e.,
the transition is always from left to right. The fundamental property of all Bakis HMMs
is that the state transition coefficients have the property

Qi = 0 j <1 (5)
Another constraint on A defined by Bakis Model is
aij:() ]>Z+A (6)

where A is the maximum number of jumps between the hidden states. With these con-
straints, the structure of A, for AIS FDP with A = 2 comes out to be

aipr a2 aiz 0

_ 0 axp ax axy
A= 0 0 asz an 9

0 0 0 44

Figure 2 gives a visualization of HMM used for FDP with the above defined constraints.
It can be observed that air leakage, if evolved, will remain constant or increase with time.

Time Propagation

FicUrE 2. Bakis model used for air leakage diagnosis and prognosis



4666 Q. AHMED, A. IQBAL, I. TAJ AND K. AHMED

The corresponding stages of leakages (Hidden States) can be seen in Figure 5 on Page
4670.

The defined HMMs will be helpful in decoding the observation sequence O = O, O, .. .,
Or (sensor measurements) by relating it to hidden states of each HMM. This can be
done by resolving three basic steps associated with HMM, i.e., Evaluation, Decoding and
Learning.

2.2. HMM evaluation. For given HMM models and sequence of observations, to com-
pute the probability that the observed sequence was produced by which HMM. This is
resolved by the Fvaluation procedure defined for HMM. Forward Backward algorithm,
is used for the evaluation of HMMs [12]. For the given observation sequence (codebook
generated by Vector Quantization (VQ)), P(O|\.) gives the measure of how close is the
observation ‘O’ to the given model ‘).’ that is trained for specific health status. P(O|\.)
can be calculated as

P(O|X.) Z a (i) By (4) (8)

where the forward variable oy (i) is defined as at( ) = P(O1,0s,...,0q; = s, Ac) and it
can be calculated as

CVt—l—l [ § CVt az]

bj(Opp1) 1<t<T -1

(9)
1<j<N

Similarly, the backward variable (i) is defined as £;(i) = P(Oy1,Opra,...,0r|q =
Si, Ae) and it can be calculated as

N
i) =Y B (7)aihi (1)
=1

t=T-1,T-2,...,1, 1< <N (10)
Further details can be found in [12]. Besides evaluating any HMM model, o and (3 are
extensively helpful for HMM decoding and learning.

2.3. HMM decoding. Evaluation of HMMs generates an exact solution, but HMM
decoding is related to generate optimal hidden state sequence associated with given ob-
servation sequence. The probability (v,(i) = P(q; = 5|0, Ac)) of being in state s; at time
t, given that the observation sequence O and the model A. can be defined under Forward
Backward (FB) algorithm as

a (4) By (i)

) = Sy 11
0= Pon,) (ay

Using (i), we can solve for individually most likely state ¢; at time ¢, as
@ =1oien ()] 1<t<T (12)

2.4. HMM learning/training. The third requirement is to train model parameters
(Ae = (Ae, B, m)) for FDP of AIS. This can be done by giving a finite observation sequence
as training data. The training data is acquired for different stages of air leakage from
OBD-II scanner (More details of data acquisition can be found in Section 4.1). The
data constitutes of pressure and crankshaft sensor measurements and was collected under
steady state conditions. The leakage was introduced by a hole of lem (18% of WOT)
in intake manifold. The hole was then reduced to collect data sets of 4 leakage stages
identified earlier (Experimental conditions are explained in Section 4.1). As OBD-II
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scanner provides data at variable sampling rate (Data acquisition rate of available OBD-
IT scanner software varies between 1.5 to 1.8 seconds), the length of the training data can
be quantified by the acquired samples. Each training data set was acquired for 100 to 150
samples for 4 times. Hence, the data contains approximately training 600 samples.

For the training of HMMs, one can choose A. such that P(O]\.) is locally maxi-
mized using iterative procedure. These iterative procedures include Baum-Welch/EM
(Expectation-Modification) method and gradient methods. Each of the HMM () is first
initialized with prior knowledge, that can iteratively updated with observation sequence
using EM algorithm [12]. Once the HMMs are trained the model parameters for HMM
for air leakage (A\y) converge to

0.9996 0.0003 0.0001 0
0 0.7469 0.2421 0.0110
Az = 0 0 0.0516 0.9484 (13)

0 0 0 1

0.981 0.019 0.0001 0
0 09973 0.0027 0
By = 0 0 0.7804 0.2196 (14)

0 0 0 1

Now fault diagnosis and prognosis for inlet manifold air leakage can be carried out effi-
ciently.

3. HMM Based Fault Diagnosis and Prognosis. For diagnosis/prognosis, resolving
each of the three steps of HMM can be exploited to generate comprehensive information
for AIS health. The learning step is exploited to train three HMMs for AIS fault diagnosis.
Later on trained HMMs are used in proposed diagnosis and prognosis methodology.

3.1. Feature selection. The fore-most requirement of FDP scheme is the selection of
features such that the health status can be classified efficiently. In literature, for different
applications researchers have selected and extracted feature using wavelets, PCA, etc. In
air intake system, among various features like mass air flow, manifold pressure, angular
speed, throttle position and load torque, manifold pressure and angular speed of engine
carry necessary information for the classification of AIS health. The increase in leakage
diameter enhances uncontrolled amount of air to enter into combustion chamber, this
results in high engine angular speed. Therefore, these features without any transformation
can be utilized to generate codebook through vector quantization. Figure 5 on Page 4670
shows the feature vectors facilitating in the identification of clusters for various stages
of air leaks. The throttle angle is kept constant at 9.8°, while the pressure and angular
speed feature vectors assist to reveal 4 hidden states corresponding to leakages defined in
Section 2.

3.2. Preprocessing and codebook generation. The FDP procedure is designed for
active diagnosis under steady state conditions. In order to ensure steady state data, the
outliers in acquired data are filtered out before vector quantization. Similarly, transients
in the data acquired from OBD-II scanner are processed out to retain the efficiency of
the FDP scheme. The preprocessed data is then quantized to generate codebook. VQ is
used to generate a code sequence that represents AIS health signature. Using VQ, the
scalar data acquired from OBD-II scanner is assigned to a specific region defined by a
vector. This assignment results in the generation of code for each sample. The resultant
codevectors provide the codebook that can be used as input to discrete HMM based
classifier.
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3.3. Diagnosis. The solution for HMM evaluation is utilized to diagnose air leaks or
any other fault in air intake system. Figure 3 describes the steps required to diagnose
manifold health.

Measurements from the MAP and crankshaft sensor installed in engine assembly serve
as input features for the proposed scheme. These measurements carry stochastic infor-
mation about the inlet manifold health, that needs to be classified by trained HMMs.
After the pre-processing of acquired data from sensors, vector quantization is carried out
to generate codebook for the input sequence. This input sequence is supplied to all the
three trained HMMs. The trained HMMs are: A; for healthy AIS, A\, for AIS with air
leakage and A3 for AIS with other faults like MAP sensor fault, etc. Each of these HMM
will generate P(O|\.), that will help in measuring how close the observation is to any
of the trained HMMs. The index of the maximum P(O|\.) will diagnose and isolate the
system health status. Once the fault is identified, the in-depth analysis of the respective
classified HMM will prognoses fault severity.

| Engine Air Intake System |

L]

Rotational Speed Sensor | | Manifold Pressure Sensor
1 |

[ Pre-Processing |

Y
| Vector Quantization |

Codebook

HMM for Healthy Condition |—#

_ - System
HMM for Manifold Air Leaks |—{ max P(O/A) [ "0° "

HMM for Other Faults ’—»

Ficure 3. Fault diagnosis methodology for air intake system
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FIGURE 4. Fault propagation through hidden states in classified HMM
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3.4. Prognosis. FEach of the classified HMM by the FDP scheme in Figure 3 comprises
of 4 intermediate stages. In Section 2, for Ay the corresponding 4 air leakage stages have
been identified. One can have more hidden states for precise information but due to
reasons in Remark 2.1, the number of hidden states is restricted to four. s, is considered
as faulty state, that needs to be treated in any case. The intermediate states (s9, s3) are
either not harmful or not noticed by end-user. Therefore, these intermediate states carry
a hidden information about the health of the intake manifold. This information can be
captured by decoding of HMM. The classified HMM will be decoded to reveal the hidden
intermediate fault stage. Figure 4 demonstrates one of the cases that informs how the
fault may progress in the system. Any of the intermediate states will predict how near
inlet manifold leaks to s4. This early information of air leaks will let the end-user to
decide for maintenance well in time.

4. Experimental Trials.

4.1. Experimental setup. The proposed scheme has been applied for the early diagnosis
of air leakages in the intake manifold of commercial 1.3 production vehicle engine. The
engine is OBD-II compliant ECU. The air intake path of the vehicle is equipped with
pressure sensor to measure pressure inside the intake manifold. The pressure is sensed
due to change in electrical resistance as the silicon chip in the sensor flexes with variable
pressure. The rotational speed of the engine is measured by hall effect based crankshaft
sensor. Similarly, throttle valve manipulations can be measured by the installed position
sensor. The sensors measurements provide enough information for any leakage in the AIS.
Each sensor is communicating with ECU and one can acquire these sensor measurements
using OBD-II scanner. The whole communication network is exchanging the information
using [SO 9141-2 protocol. The OBD-II scanner connects the computer to ECU using
OBD-II cable. By OBD-II scanner, the experiment data can be recorded and analyzed
for engine health status. The available ODB-II scanner has variable data acquisition rate
with the sampling rate is between 1.5 to 1.8 seconds.

Remark 4.1. The experimentation for health diagnosis was performed under steady state
operating conditions in which each fault (Manifold leakages, pressure sensor fault, etc.)
that can occur in engine exhibits uniquely. Usually, engine in idling condition with neutral
gear provides the grounds for such diagnosis experimentation. This practice is termed as
Active Diagnosis and generally used to execute FDP algorithms [22].

The experiment was performed during idling as the throttle angle was kept at 9.8° and
with neutral gear. No extra loads were induced on engine except the nominal load. The
nominal load on engine was around 30% and contributed by: engine rotating mass, e.g.,
crank shaft, fly wheel, power train components engaged. The operating temperature dur-
ing the experimentation was around 89°C. The steady state conditions (manifold pressure
= 30 kPa and angular speed = 750 — 800 RPM) were ensured during the experiment as
coolant fan was in off condition and other disturbances were avoided.

For the training of HMMs, the data was logged with different leakages with aforemen-
tioned experimental conditions. As the leakage diameter was increased the angular speed
and manifold deviated from their nominal values, though the throttle angle was at 9.8°.
Figure 5 shows the actual stages that correspond to hidden states of HMM for air leakage
used for training of HMMs. As the data against each leakage is ensured in steady state
conditions, this limits the data length to 100 to 150 samples for each stage. Hence, the
data contains 600 training samples, as each data set was acquired 4 times.

After the HMMs are trained, the evaluation of the proposed scheme is carried out for
three different scenarios.
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FIGURE 5. Scatter plot of data showing all 4 stages of air leakage

e Normal/ Healthy Inlet Manifold
e Inlet Manifold with Incipient Air Leaks
e Inlet Manifold with Abrupt Air Leaks

4.2. Healthy air intake system. By healthy AIS, it is meant that there were no air
leaks in the inlet manifold. The data was acquired from OBD-II scanner and fed into FDP
scheme. After vector quantization, the codebook was supplied to all the three HMMs. The
normalized P(O|\.) produced by each HMM is shown in Figure 6. It can be observed that
HMM for healthy manifold () produces maximum value of P(O|);), that characterizes
the system as healthy. When the scheme has announced the system as healthy, no useful
information can be extracted from observing the hidden state sequence of any HMM as
there is no air leakage in the manifold.

4.3. Inlet manifold with air leaks. In this experiment, the proposed FDP scheme
have been evaluated under the presence of air leakages. The respective data can be
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Ficure 6. Each HMM outcome for healthy intake manifold
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FiGurE 8. Experimental data acquired from 1.3L Honda city engine
through OBD-II scanner for incipient air leakages

visualized in Figure 8 and Figure 10. In the first step, the codebook generated by vector
quantization of sensor data was used to evaluate HMMs. Figure 7 shows the normalized
P(O]\.) generated by each HMM. It can be observed that in the presence of air leakages,
HMM for manifold air leakage (\2), produced maximum P(O|);). This characterizes the
system under faulty status. Once the HMM based classifier has announced the engine inlet
manifold as faulty, a detailed investigation of the manifold health becomes mandatory.
The in-depth analysis of the faulty system can be carried out keeping in view the nature
of fault, i.e., Incipient and Abrupt Fault.

4.3.1. Incipient air leakages in inlet manifold. In the first phase of FDP scheme assess-
ment, air leakages were gradually introduced in pressure manifold. This gradual intro-
duction replicates Incipient Fault in nature. It was observed in the beginning that minor
air leakages of around 1 — 2% of WOT were catered for by ECU installed in the vehicle.
It was observed, after a small fluctuation in engine angular speed and manifold pressure,
the engine returned to its normal operating condition. But as the air leaks were increased,
the engine control unit was unable to handle them. The performance of engine started to
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FiGure 10. Experimental data acquired from 1.3L Honda city engine
through OBD-II scanner for abrupt air leaks

decline. The leakage area was increased until the impaired engine performance was un-
bearable. This shows that the installed ECU was unable to handle air leaks and detecting
air leak at early stage becomes mandatory for engine health.

Remark 4.2. It can be visualized that when the leakage area was increased at 58" sample
in Figure 8, the pressure sensor started to generate false readings. One possible reason can
be the location of installed sensor is at 6 inches away from the leakage in manifold (One
can visualize the leakage location in Figure 1, the leakage was introduced near power brake
hose). The performance of the engine started to decline and ECU was unable to detect €
announce malfunctioning of engine as malfunction Indication Light (MIL) remained off.

The experiment data is acquired from the installed sensors through OBD-II scanner as
shown in Figure 8. The leakage diameter was approximately increased to .25cm at 34",
Sem at 57" and 1em at 92" sample. This data was supplied to FDP scheme in Figure
3. The classified HMM (\;) was further investigated for Air Leaks prognosis. Figure 9
demonstrates the incipient fault progression. It can be observed that HMM (\;) changes



MANIFOLD LEAKAGE DETECTION 4673

HMM for MAP Leakage (Abrupt Fault)

yi T
1

Minor Air Leaks stage 2
DR LeAE SlAge \ Major Air Leaks
A
4

3 !
w
2
]
w
=
(]
=]
=
o

2

No Air Leaks
5 X |
0 20 40 60 80 100 120

Samples

FIGURE 11. Fault progression in classified HMM, when air leaks were in-
troduced abruptly (abrupt fault)

its states gradually with the increase in air leakage size. One can easily comment that s, is
unnoticeable/ignorable but once A, is announcing ss, the end-user can easily be informed
about the leakage progression. This practice will help to avoid any serious maintenance
expenditures.

Remark 4.3. It can be seen that the FDP scheme, in the first phase, accurately diagnosed
the air leakage in the manifold. However, when the respective HMM (\s) is analyzed in
detail, some of the samples were mis-quantified. This mis-quantification is harmless as
the scheme is not declaring the system healthy.

4.3.2. Abrupt air leakages in inlet manifold. In the second phase of FDP scheme testing,
air leakage of 1em diameter introduced at 40" sample (Figure 10) crippled engine per-
formance at once. This action replicates abrupt fault in nature. The experiment data
shown in Figure 10 was acquired from engine rig, that is utilized for the diagnosis and
prognosis of abrupt air leaks. The classified HMM from scheme in Figure 3 was explored
for fault status, that helped in the prognosis of manifold health. Figure 11 shows in
Ay the fault traversed from s; (Normal Stage) to s3 (Intermediate Fault Stage 2) and
immediately jumps to s, (Faulty System). The behavior can be exploited for prognosis
as: the moment air leakage of s3 occurred, it can be informed that an abrupt air leaks
have occurred due to any of the reasons outlined in Section 1. Therefore, an immediate
checkup is mandatory for the intake pressure manifold.

5. Conclusion. In this paper, Discrete Hidden Markov Model is employed for the first
time to detect air leakage in pressure manifold at an early stage. The proposed scheme
requires measurements from crankshaft and pressure sensor installed in OBD-IT compliant
vehicle. As the proposed scheme requires data from OBD-II scanner, it can be easily in-
corporated in any OBD-II scanner software. This attribute makes it cheaper and readily
executable for every OBD-II compliant vehicle after minor changes. The sensors data is
used to classify AIS health status, after generating a codebook through vector quantiza-
tion. The classified HMM is further investigated to reveal information that can be helpful
for the prognosis of air leaks. A successful validation and experimentation is performed
on 1.3L production vehicle engine instead of lab setup. The results demonstrated that
the proposed FDP scheme accurately categorized and approrimately quantized the health
status of inlet manifold.
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