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Abstract. This paper investigates the problem of switching performance optimal con-
trol for continuous-time controller switched systems. An extended bumpless switching
technique is proposed via linear quadratic (LQ) optimal control and internal model prin-
ciple. Then a sufficient condition for guaranteeing the switched closed-loop systems to be
stable under bumpless switching is developed. Dwell-time and multiple Lyapunov func-
tions methodologies are utilized for the stability analysis and switching law design. Sim-
ulations for the generic hypersonic vehicle model show the effectiveness of the proposed
design method.
Keywords: Controller switched systems, Bumpless switching, Dwell time, Hypersonic
vehicle model

1. Introduction. In recent years, there has been increasing interest in the stability anal-
ysis and design methodology of switched systems due to their significance both in theory
and applications [1]. Many researches have been presented on a wide range of topics,
including the modeling, optimization, stability analysis and control, among which the
stability issues have been a major focus [2-7]. In contrast, less attention has been paid
to the issue of switching control performance, which is very important in practical appli-
cations and is also a very challenging problem. For instance, in flight control, multiple
controllers are often used to control the same highly nonlinear flight vehicle, one for each
operating point or task. Nevertheless, switching among controllers implies control dis-
continuities and undesired transients. Moreover, these discontinuities might directly lead
to performance degradation, actuator saturation and even instability of the closed-loop
system. The solution of this problem is called bumpless switching (transfer).

Generally, bumpless switching arises in several cases of practical interests. The first case
is switching between manual and automatic mode [8]. Another case is switching among
several linear controllers by gain scheduling [9, 10]. The third case is the improvement
of system performance via switching between controllers with different properties [11].
Finally, switching can result from the need for online testing and evaluation of different
control law designs. Bumpless switching is often performed in the steady state to meet
safety requirements [12]. Approaches that focus on bumpless switching are mainly as
follows: anti-windup bumpless transfer (AWBT) scheme [13], optimal linear quadratic
control methods [12, 14], L2 norm methods [8, 15], interpolation [9, 11], and observer-
based technique [16], etc. In these mentioned works, the AWBT method [13] represents
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an AWBT operator forcing the output of the off-line controller to track that of the online
one. Nevertheless, the input of off-line controller is conditioned by the operator and
thus is not necessarily close to that of the online one at the switching instant [17]. The
L2 method [8, 15] is to design a compensator ensuring an L2 bound on the mismatch
between the actual plant output and that of the ideal closed-loop behavior. This method,
unfortunately, is only applicable to linear plant with a sufficiently accurate model [10].
Moreover, as the authors themselves point out in [11], the interpolation algorithm relies
only on stability considerations with the controller switched sufficiently slowly.
In fact, the LQ technique [14] stands out as a convenient tool for the steady-state

bumpless switching synthesis. It has been applied to many physical systems such as ver-
tical/short take-off land aircraft [10], coal-fired boiler/turbine [18] and magnetic bearings
[19]. The central feature of LQ approach is the compensator F (in [14]), which is a static
matrix and can drive the output of the off-line controller to track that of the online con-
troller. However, because the matrix F is obtained by adjusting two weighting matrices
and they have only limited amplitude of adjustment, the method does not produce an
adequate solution. Nevertheless, the conceptual clarity and the computational simplicity
of this method give a strong motivation to extend it.
In this paper, we present a new extended scheme for the bumpless switching of a

controller switched system. Firstly, we will design a set of compensatory controllers
(CCs) for the off-line controllers respectively. With the effect of CC, at the instant of
switching, the output of online controller and that of the off-line controller are as close as
possible so as to reduce the magnitude of the discontinuity (or error). We refer to [14], the
LQ framework and the input weighting of off-line controller is used for design. However,
the proposed method is mainly different from that in [14]. In our scheme, these CCs,
designed based on internal model principle, can make the off-line controllers track the
output of online controller with nearly zero steady state error such that the “continuity”
of plant input becomes much stricter at switching instants. Furthermore, an integral
action is introduced to eliminate the (tracking) error. By considering the integral of error
as an extra set of state, the error minimization problem is transformed into an augmented
system stability problem. It indicates that once the augmented system is stable, the
tracking error will asymptotically converge to zero, or be reduced to an acceptable value
as close to zero as possible in finite time. And based on this fact, a CC can be obtained.
In addition, based on the multiple Lyapunov functions combined with the dwell time

technique, a switching law design and a condition rendering switched closed-loop systems
exponentially stable are given. Note that this condition is developed in the switched
systems framework, which only a few articles have addressed [20]. The paper is organized
as follows. Section 2 gives the problem formulation and some preliminaries. In Section 3,
we present the CC design. The switching law design and stability analysis are given in
Section 4. An algorithm is then presented in Section 5. Simulations are shown in Section
6. Conclusions are given in Section 7.

2. Problem Statement and Preliminaries. Consider the controller switched system

ẋ(t) =Ax(t) +Bu(t), x(t0) = x(0),

u(t) = uσ(t)(t),

y(t) =Cx(t),

(1)

where σ(t) : [0,+∞) → IN = {1, 2, . . . , N} is the switching signal to be designed, x(t) ∈
Rn is the state, u(t) ∈ Rm is the control input, ui(t) ∈ Rm are the sub-controllers outputs,
y(t) ∈ Rl is the vector of plant measurements. A, B and C are real constant matrices of
appropriate dimensions. Corresponding to the switching signal σ, we have the switching
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sequence Λ = {x0; (i0, t0), (i1, t1), . . . , (ik, tk), . . . , |ik ∈ IN}.When t ∈ [tk, tk+1), σ(t) = ik,
that is, the ik-th subsystem is activated.

Assumption 2.1. The pair (A, B) is stabilizable.

Remark 2.1. It should be noticed that this assumption is necessary for stabilizability of
a linear system. If a system is stabilizable, then its all unstable eigenvalues can be made
stable by means of a feedback gain.

A set of controllers can be designed in advance based on the method in [21] as follows:

Ci :

{
ẋci(t) = Acixci(t) +Bci1

x(t) +Bci2
rci(t),

ui(t) = Ccixci(t) +Dcix(t),
(2)

where xci(t) ∈ Rnc is the i-th controller state. For the online controller, rci = r(t) ∈ Rl

is the reference command signal. For the off-line one, rci(t) = r̄i(t) is the CC’s output to
be designed (see Figure 1). An off-line controller is closed by its CC to drive the control
signal close to the online one. Since the purpose of this article is to extend the results of
literature [14], the scope of this paper is to discuss the steady-state switching.
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Figure 1. The proposed bumpless switching scheme with IN = {p, q}

Assumption 2.2. Throughout the paper, we consider the situation that the system (1) is
under steady-state switching.

Remark 2.2. The closed-loop system under the initial implemented controller performs
a linear behavior before controller switching. Thus the steady-state switching here means
to start controller switching after the closed-loop system under the initial implemented
controller has reached its steady state. Here it is assumed that steady state is reached once
the closed-loop system outputs remain within 99% and 101% of the steady state values.

Integral action is used in classical control to eliminate steady state errors when tracking
signals. It can be introduced into the LQ framework by considering the integral of the
tracking error as an extra set of state variables. For any off-line controller Ci, i ∈ IN ,
define the error state as

ẇi(t) = u(t)− ui(t) = u(t)− Ccixci(t)−Dcix(t). (3)
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Definition 2.1. Given a positive scalar ε > 0, a switching (online) controller Cp (∀p ∈
IN) is said to perform a bumpless switching if, whenever controller is switched, there
exists a finite time Tε > 0 such that the output of a controller Cq (∀q ̸= p ∈ IN) to be
switched satisfies the condition limt→Tε |u(t)−uq(t)| ≤ ε, where u(t) = up(t). In particular,
Cp is said to perform a strictly bumpless switching if lim

t→∞
|u(t)− uq(t)| = 0.

Combining (2) and (3), we have the augmented system for the ith off-line controller:[
ẋci(t)

ẇi(t)

]
=

[
Aci 0

−Cci 0

][
xci(t)

wi(t)

]
+

[
Bci1

−Dci

]
x(t) +

[
Bci2

0

]
r̄i(t) +

[
0

I

]
u(t). (4)

For simplicity, the augmented system (4) is rewritten as

˙̄xi(t) = Āix̄i(t) + B̄i1x(t) + B̄i2 r̄i(t) + Fu(t), (5)

where x̄i =
[
xT
ci

wT
i

]T
is the augmented system state vector. The cost performance

index for the design of the ith bumpless switching CC is defined as

Ji =
1

2

∫ T

0

(
x̄T
i Qix̄i + ϑT

i Riϑi

)
dt, (6)

where Qi ≥ 0, Ri > 0, and ϑi = r̄i − r is the difference between CC output and switched
systems’ reference signal. Qi for state variables is standard in optimal control, while the
Ri is used for scaling ϑi. The size of ϑi will seriously influence the error size (3).

Remark 2.3. In a viewpoint of an optimal control, the relative magnitudes of Qi and Ri

may be selected to trade off requirements on the smallness of the state x̄i against that of
ϑi. For instance, a larger Ri will make it necessary for ϑi to be smaller. On the other
hand, to make x̄i go to zero more quickly with time, we may select a larger Qi.

Assumption 2.3.
[
Āi B̄i2

]
is stabilizable, Qi = ΠTΠ ≥ 0 and

[
Āi Π

]
is observable.

Remark 2.4. It is well known in the optimal control literature (for specific detail see [22])
that in order for the algebraic Riccati Equation (17) (in next Section), to have a positive
definite stabilizing solution, (Āi, B̄i2 ,Π) is required to be stabilizable and observable. In
addition, it will be shown that the stability of the off-line closed-loop system composed of
(5) and (20) is ensured as (17) has a constant, positive definite solution.

In this paper, we are interested in the following two problems.
Problem 1 (Bumpless Switching CC Design Problem) Given a set of controllers (2),

find a set of CCs respectively, each of which includes a compensator and a sub-tracking
controller such that augmented system (5) is stabilized and cost functional Ji is minimized.
Problem 2 (Closed-loop System Stability Analysis Problem) Given a set of controllers

(2) and their CCs, construct a switching law σ and derive a sufficient condition such
that the closed-loop system composed of (1), (2) and CC is asymptotically stable and
simultaneously guarantees the bumpless switching by switching controllers.

3. Bumpless Switching CC Design. Now based on the above discussion, we give
a solution to Problem 1. Suppose there exists a vector function λ(t), such that the
conditional extremum problem of (6) subject to constraints (5) can be transformed into
a non-conditional extremum problem with the performance index

Ji =
1

2

∫ T

0

(
H(t)− λT ˙̄xi

)
dt, (7)
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where the Hamiltonian function is given by H(t) = 1
2

[
x̄T
i Qix̄i + (r̄i − r)TRi(r̄i − r)

]
+

λT
(
Āix̄i + B̄i1x+ B̄i2 r̄i + Fu

)
. A necessary condition for minimizing the cost index (7)

is ∂H/∂λ = ˙̄xi, ∂H/∂x̄i = −λ̇, ∂H/∂r̄i = 0. Furthermore,

∂H/∂x̄i = Qix̄i + ĀT
i λ = −λ̇, (8)

∂H/∂r̄i = Ri (r̄i − r) + B̄T
i2
λ = 0. (9)

From (9), it follows that
r̄i = r −R−1

i B̄T
i2
λ. (10)

Substituting (10) into (5) yields

˙̄xi = Āix̄i + B̄i1x+ B̄i2

(
r −R−1

i B̄T
i2
λ
)
+ Fu. (11)

Defining
λ(t) = Pi(t)x̄i(t)− g(t), (12)

then we can get
λ̇(t) = Ṗi(t)x̄i(t) + Pi(t) ˙̄xi(t)− ġ(t). (13)

Moreover, by (12), Equation (8) can be written as

λ̇(t) = −Qix̄i(t)− ĀT
i (Pi(t)x̄i(t)− g(t)) = −

(
Qi + ĀT

i Pi(t)
)
x̄i(t) + ĀT

i g(t). (14)

In addition, applying (11) and (12) to (13) results in

λ̇(t) = Ṗi(t)x̄i(t) + Pi(t)
[
Āix̄i(t) + B̄i1x(t) + B̄i2r

− B̄i2R
−1
i B̄T

i2
(Pi(t)x̄i(t)− g(t)) + Fu

]
− ġ(t).

(15)

Then, from (14) and (15), it follows:[
Ṗi(t) + Pi(t)Āi + ĀT

i Pi(t)− Pi(t)B̄i2R
−1
i B̄T

i2
Pi(t) +Qi

]
x̄i(t)

= ġ(t) +
(
ĀT

i − Pi(t)B̄i2R
−1
i B̄T

i2

)
g(t)− Pi(t)B̄i1x(t)− Pi(t)B̄i2r − Pi(t)Fu(t).

(16)

Note that the left side of (16) is a product of a function of time and state variables x̄i(t),
while the right side is only a function of time. It means that for arbitrary t and x̄i(t), the
following two equations:

Ṗi(t) + Pi(t)Āi + ĀT
i Pi(t)− Pi(t)B̄i2R

−1
i B̄T

i2
Pi(t) +Qi = 0,

−ġ(t) = (ĀT
i − Pi(t)B̄i2R

−1
i B̄T

i2
)g(t)− Pi(t)B̄i1x(t)− Pi(t)B̄i2r − Pi(t)Fu(t).

must be satisfied. These two equations should be extended to infinite horizon (i.e., T →
∞) for practical engineering consideration [22], which are

PiĀi + ĀT
i Pi − PiB̄i2R

−1
i B̄T

i2
Pi +Qi = 0, (17)(

ĀT
i − PiB̄i2R

−1
i B̄T

i2

)
g − PiB̄i1x− PiB̄i2r − PiFu = 0. (18)

It follows from (17) and (18) that

g =
(
ĀT

i − PiB̄i2R
−1
i B̄T

i2

)−1 (
PiB̄i1x+ PiB̄i2r + PiFu

)
, (19)

in which the symmetric positive definite matrix Pi is the solution of algebraic Riccati
Equation (17). Thus using (10), (12) and (19), we have the CC of off-line controller Ci,
i ∈ IN for bumpless switching as follows:

r̄i = Krir +Kcixci +Kwi
wi +Kxi

x+Kui
u, (20)

where Kri = I +R−1
i B̄T

i2
Σ1, Kx̄i

= −R−1
i B̄T

i2
Pi, Kxi

= R−1
i B̄T

i2
Σ2, Kui

= R−1
i B̄T

i2
Σ3, Σ1 =

ΓB̄i2 , Σ2 = ΓB̄i1 , Σ3 = ΓF , Kx̄i
= [Kci Kwi

] and Γ =
(
ĀT

i − PiB̄i2R
−1
i B̄T

i2

)−1
Pi. Kci and

Kwi
are the sub-tracking controller gains, Kri , Kxi

and Kui
are the compensator gains.
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Remark 3.1. If Assumption 2.3 holds, then (17) has a unique solution, and the aug-
mented closed-loop system composed of (5) and (20) is stable [22] which guarantees the
bumpless switching of online controller. This will be discussed in the next section.

Remark 3.2. The derivation of compensator F in [14] is carried out through the mini-
mization of a functional that includes two differences. One is the difference between the
input signals of the controllers (both online and off-line), the other is the difference between

the output signals. The functional is given by Ji =
1
2

∫ T

0
(zu(t)

TWuzu(t)+ze(t)
TWeze(t))dt,

where zu(t) = u(t)−ui(t), ze(t) = r̄i− r, and Wu, We are weighting matrices. Especially,
zu(t) represents the error between the off-line controller output and the online one, thus
the smaller zu(t) is, the better the bumpless performance will be. Then, the key point
of [14] is to choose appropriate weighting matrices Wu and We such that the Ji can be
minimized under the effect of F . However, in Section 6, this technique will be found to
provide an incomplete convergence of the zu(t) and produce a pronounced non-vanishing
error of zu(t). In other words, the weighting matrices Wu and We have limited regulation
range or ability, they can not be regulated arbitrarily to further reduce the index Ji value
(i.e., Ji is bounded). That is the drawback or limitations of the LQ bumpless switching
design.
For this reason, the focus of our work is on “minimizing” the error to the maximum

extent, which is different from [14], and this is also the major contribution of our work.
From (3) and (4), the proposed approach reduces the realization of error minimizing to the
solving of the augmented system stability problem based on the internal model principle.
By introducing an integral action, the method can make the off-line controller achieve
zero-error tracking or even completely eliminate the error in theory (if t → ∞).

4. Switching Law Design and Stability Analysis. The objective of this section is to
derive a global exponential stability condition for the switched closed-loop systems under
bumpless switching and to design a dwell time dependent switching law.
Without loss of generality, we assume that two controllers Cp and Cq (∀q ̸= p ∈ IN) are

used for bidirectional switching. Substituting (20) into (2), we have the description of an
off-line controller Ci, i ∈ I2 = {p, q} with compensatory effect. That is

ẋci(t) =Aixci(t) +Biv(t),

ui(t) =Cixci(t) +Div(t),
(21)

where Ai = Aci + Bci2
Kci , Bi =

[
Ξ1 Ξ2 Ξ3 Ξ4

]
, Ci = Cci , Di =

[
Dci 0 0 0

]
,

Ξ1 = Bci1
+Bci2

Kxi
, Ξ2 = Bci2

Kri , Ξ3 = Bci2
Kwi

, Ξ4 = Bci2
Kui

and v =
[
xT rT wT

i uT
]T
.

Then, from (5) and (21), the augmented system for the off-line controller Ci is given by

˙̄xoffi
(t) = Ãix̄offi

(t) + B̃xi
x(t) + B̃ui

u(t) + B̃rir(t), (22)

where x̄offi
=

[
xT
ci
wT

i

]T
, Ãi =

[
Ai Ξ3

−Ci 0

]
, B̃xi

=

[
Ξ1

−Dci

]
, B̃ui

=

[
Ξ4

I

]
, B̃ri =

[
Ξ2

0

]
.

It follows from Remark 3.1 that the matrix Ãi is Hurwitz stable.
On the other hand, from (1) and (2), we obtain the augmented system for a controller

Cj, j ̸= i ∈ I2 when it is online. That is

˙̄xonj(t) = Âjx̄onj(t) + B̂rjr(t), (23)

where x̄onj =
[
xT xT

cj

]T
, Âj =

[
A+BDcj BCcj

Bcj1
Acj

]
, B̂rj =

[
0

Bcj2

]
.
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Remark 4.1. Matrix Âj is supposed to be Hurwitz, i.e., in the absence of controller
switching, the individual closed-loop systems under (1) and (2) would be globally stable.

Consequently, when Cp (j = p) is online and Cq (i = q) is off-line, the following individual
closed-loop system is obtained by augmenting (22) with (23):

ẋcl(t) = Aclpxcl(t) +Bclpr(t),

where xcl =
[
x̄T
onp x̄T

offq

]T
, matrices Aclp =

[
Âp 0

Ξ5 Ãq

]
, Bclp =

[
B̂rp

B̃rq

]
and Ξ5 =[

B̃xq + B̃uqDcp B̃uqCcp

]
. In the same way, when Cq (j = q) is online and Cp (i = p) is

off-line, we can have the other closed-loop system ẋcl(t) = Aclqxcl(t) +Bclqr(t). Thus, the
switched closed-loop system when r(t) = 0 can be given by

ẋcl(t) = Aclσ(t)
xcl(t), σ(t) ∈ I2. (24)

Definition 4.1. System (24) is said to be globally exponentially stable under a switching
signal σ(t), if all solutions xcl(t) of (24) starting from any initial condition xcl(t0) satisfy
∥ xcl(t) ∥≤ κ ∥ xcl(t0) ∥ e−η(t−t0), ∀t ≥ t0 for some constants κ ≥ 1 and η > 0.

The switching law design in terms of dwell time principles. We impose restrictions on
the set of admissible switching signals by defining the set ST = {σ(t) : tk+1 − tk ≥ T},
where tk are the commutation instants and T > 0. In other words, for the positive
constant T , ST denotes the set of all switching signals with interval between consecutive
discontinuities no smaller than T . The constant T is called the dwell time [1]. Then find
the minimum T for which (24) is exponentially stable for all possible σ(t) ∈ ST .

Theorem 4.1. (Bumpless Switching) Consider the system (24). Given controllers Ci,
i ∈ I2, their associated closed-loop system matrices Acli and a scalar ϵ > 0, if there exists
a scalar β > 0 such that the following inequalities

dVi(xcl(t))

dt

∣∣∣∣Aclixcl < −βVi(xcl(t)), i ∈ I2 (25)

have positive definite matrices Pi > 0, then for every σ ∈ Sτd with the dwell time of Cj,
j ̸= i ∈ I2 satisfying τd = max{Ts, Tϵ}, the switched closed-loop system (24) is globally
exponentially stable and the controller Cj performs a bumpless switching.

Proof: (i) For any switching signal σ ∈ ST , let 0 = t0, t1, t2, . . . be the corresponding
switching time series. For any t > 0, there exists an integer i such that t ∈ [ti, ti+1). Let
Nσ(t0, t) denote the number of switchings of σ over the internal [t0, t]. Also suppose that
during [ti, ti+1), mode i is active, where i ∈ I2.

For the given positive definite matrices Pi, i ∈ I2, let Vi(xcl) = xT
clPixcl be a Lyapunov

candidate corresponding to mode i. It is obvious that there exist positive constants a > 0
and b > 0 such that

a∥xcl∥2 ≤ Vi(xcl) ≤ b∥xcl∥2, (26)

where a = inf
i∈I2

{λmin(Pi)}, b = sup
i∈I2

{λmax(Pi)}. Then it follows from (25) that V̇i(xcl) <

−βVi(xcl), which yields Vi(xcl(t)) ≤ e−β(t−ti)Vi(xcl(ti)). Therefore, from (26), we obtain

∥xcl(t)∥2 ≤ χe−β(t−ti)∥xcl(ti)∥2, (27)

where χ = b
a
. By this fact, a similar inequality can be derived as ∥xcl(ti)∥2 ≤ χe−β(ti−ti−1)×

∥xcl(ti−1)∥2. Iterating the inequality results in

∥xcl(ti)∥2 ≤ χNσ(0,t) × e−β(ti−ti−1) × e−β(ti−1−ti−2) · · · e−β(t1−t0) × ∥xcl(t0)∥2

≤ χNσ(0,t)e−Nσ(0,t)βT∥xcl(t0)∥2.
(28)
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In view of the inequalities (27) and (28), we deduce the following inequality

∥xcl(t)∥ ≤
√

χ(Nσ(0,t)+1)e−
(Nσ(0,t)+1)βT

2 ∥xcl(t0)∥.

Hence, when
√
χ(Nσ(0,t)+1)e−

(Nσ(0,t)+1)βT
2 < 1, that is, the minimum dwell time satisfies

τd ≥ Ts > T ∗ =
lnχ

β
, (29)

where Ts = inf{T : T > T ∗}, the system (24) is globally exponentially stable.
(ii) In addition, for steady-state switching, due to the fact that the signals x(t), u(t)

and r(t) have reached their steady states, then taking the derivative on both sides of
Equation (22) with respect to time, we have

¨̄xoffi
(t) = Ãi ˙̄xoffi

(t). (30)

Since matrix Ãi is stable, the state of (30) must satisfy ˙̄xoffi
(t) =

[
ẋci(t)

T ẇi(t)
T
]T → 0,

t → ∞ for i ∈ I2. Then by (3) and Definition 2.1, the online controller Cj, j ̸= i ∈ I2

performs a strictly bumpless switching. However, we also see that the switched system
achieves strictly bumpless switching only when time approaches infinity. In order to
facilitate implementation in practice, choose an appropriate scalar ϵ > 0 that can meets
the needs of Cj for performing bumpless switching in a finite time interval Tϵ. Thus, we
have ẇi(t) → ϵτd , t → τd, where 0 < ϵτd ≤ ϵ. This completes the proof.

5. Algorithm of Bumpless Switching. According to Theorem 4.1, the detailed algo-
rithm is given as follows.
Step 1: Given a scalar β > 0. Find two positive definite matrices Pi, i ∈ I2 satisfying

AT
cli
Pi + PiAcli + βPi < 0, (31)

then calculate λmin(Pi) and λmax(Pi), to obtain a χ.
Step 2: Calculate T ∗ according to (29).
Step 3: Repeat Steps 1 to 2 until a satisfactory small value of T ∗ is obtained and then

give an estimate Ts = inf{T : T > T ∗}.
Step 4: Based on linear system theory, the state response of system (30) is ˙̄xoffi

(t) =

eÃit ˙̄xoffi0
, where ˙̄xoffi0

is the initial state of (30) for the off-line controller Ci. Accordingly,
the error state is ẇi(t) =

[
ẇi1(t) · · · ẇim(t)

]T
, where

ẇih(t) = Ch ×
[
eÃit ˙̄xoffi0

]
(32)

and Ch, h = 1, 2, . . . ,m are appropriate dimensional matrices whose elements are either
one or zero. Furthermore, choose a scalar ϵ > 0 and solve ẇih(Tϵi)−ε = 0 to obtainmmin-
imum time with Tϵ1 , · · · , Tϵm that guarantees bumpless switching for the m components
of online controller Cj, j ̸= i ∈ I2 respectively. Thus, define Tϵ = sup{Tϵ1 , . . . , Tϵm}.
Step 5: Then τd = max{Ts, Tϵ} is a feasible minimum dwell time for both the switched

closed-loop system (24) stability and the bumpless switching of Cj.

Remark 5.1. (i) In the algorithm, one can obtain Ts by the stability of Acli, i ∈ I2.
Moreover, suppose that ˙̄xoffi0

is available, then for a given ε > 0, Tε can always be solved.
(ii) The key point of the algorithm is the selection of β in Step 1. Apparently, it dose not
seem to be possible to know beforehand which selection features the best rate of convergence.
One can practically give an initial value of β > 0 with a small step length and decide to
stop the process if there is no significant variation of T ∗. In addition, to select a scalar
ϵ > 0 experientially in Step 4, for instance, one can give 0 < ϵ ≤ 10−2.
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6. Simulations. In this section, the nonlinear longitudinal model of the generic hyper-
sonic flight vehicle [23] is considered. The linearized equations at the trim state and
trim input (V = 3000m/s, γ = 0rad, h = 30000m, α = 0.0056rad, q̄ = 0rad/s, δT =

0.0710, δe = –0.1588rad) are obtained as (1), where x(t) =
[
VT γT hT αT q̄T

]T
,

u(t) =
[
δTT δTe

]T
, y(t) =

[
VT hT

]T
, V , γ, h, α and q̄ are the velocity, flight path

angle, altitude, angle of attack and pitch rate, respectively. Fuel equivalence ratio (δT )
and pitch control surface deflection (δe). And

A = 1.0× 10−4 ×


−10.3070 −315133 −0.5413 −583366 0

0.0018 0 −0.0012 1047.5000 0
0 98426600 0 0 0

−0.0018 0 0.0012 −1047.5000 10000
1.2263 0 −0.0185 66236 0

 ,

B =

[
94.7710 0.0212 0 −0.0212 −7.8789
5.9407 −0.0072 0 0.0072 3.5803

]T
, C =

[
1 0 0 0 0
0 0 1 0 0

]
.

Remark 6.1. Note that (1) is a general linear system. It can be simulated to illustrate the
usefulness and effectiveness of the obtained results in general, and be verified numerically.

Here we consider the situation that the physical system including two controllers (one
for the nominal tracking control, one for the hot standby control). The control objective is
to make the output y(t) track the command r(t) even with degraded control effectiveness
such as actuator fault. Suppose that the loss of control effectiveness or failure of the
actuator takes place at a certain time. Then the primary controller fails to work properly,
meanwhile, a switching action arises and forces the standby controller to take over.

6.1. Example: comparison between the non-bumpless switching and the pro-
posed bumpless switching. For system (1), controllers (33) and (34) are obtained
by using the algorithm in [21]. We select two sets of weighting matrices as Q1 =
diag(10, 12, 10, 8000), R1 = diag(2, 3) and Q2 = diag(0.1, 0.1, 100, 8000), R2 = 10−6 ×
diag(2, 10000), respectively. Then by solving (17) and using Equation (20), CCs (35) and
(36) are obtained, respectively. Consequently, we can easily have the individual closed-
loop system matrices of (24). The switching strategy σ(t) is: controller (33) is used first
and then authority is switched to controller (34) after the first dwell time τd1 (suppose
that the actuator fault happens at τd1s). Furthermore, to verify the bidirectional switching
performance, the authority is changed again, and (34) is switched to (33) after τd2 .

According to the algorithm in Section 5, for β = 0.176, solving (31) can give two positive
definite matrices P1 and P2. Then calculating (29) obtains Ts > T ∗ = lnχ

β
= 122.66. Let

T ∗ ≤ Ts = 123. Furthermore, choosing ϵ = 0.01, a simple calculation shows that the
dwell time for bumpless switching in the two stages are Tϵ1 = 184.02 and Tϵ2 = 100.64,

by letting the initial state of (32) in the two switching moments be
[
5 5 0.48 0.01

]T
and[

811.87 1603.62 −566.57 61.12
]T

respectively. Consequently, the minimum dwell time
for the above two goals is given as τd1 = 184.02 and τd2 = 123.

The simulation results by direct implementation of switch are depicted in Figure 2(a).
The results indicate that the system experiences an undesirable transient in control input,
which seriously deteriorates the tracking performance after switching. Figure 2(b) shows
the results by using the proposed bumpless switching scheme. By forcing the difference
between off-line controller and plant input to a very small size, a “smooth” transition is
allowed and the tracking performance is assured with minimized undesirable transients.
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Figure 2. Response to the 500(m) altitude step order and 150(m/s) ve-
locity step order (upper figure); control inputs (lower figure): (a) directly
switch and (b) the proposed bumpless switching scheme

6.2. Example: comparison between the scheme of [14] and the proposed bump-
less switching. For an accurate comparison between the method of [14] and the proposed
method, we define a bumpless performance index that is a measurement of the bump size
of plant control input. ϱ = |u(tmax) − u(ts)|/u(ts), where u(tmax) is the first peak value
of control input at the switching moment, and u(ts) is the steady-state value of control
input. The smaller the index is, the better the bumpless performance will be. Without
loss of generality, we make the performance analysis only at the first switch.
By method [14], we select two sets of weighting matrices as Wu1 = 105×diag(1, 10), We1

= 103×diag(10, 1) andWu2 = 105×diag(1, 10), We2 = 103×diag(2, 1), respectively. Then,
the bumpless switching compensatory gains (37) and (38) corresponding to (33) and (34)

are obtained, respectively. The gain corresponds to the vector Θ =
[
xT
ci

xT uT
]T

.

Bc11
=

[
−1 0 0 0 0
0 0 −1 0 0

]
, Bc12

=

[
1 0
0 1

]
, Cc1 =

[
0.0051 −0.0132
0.0076 0.0029

]
, (33)

Dc1 =

[
−0.0256 310.0800 0.0507 12.5450 2.3023
−0.0382 −64.0150 −0.0112 −3.0220 −0.8751

]
;

Bc21
=

[
−1 0 0 0 0
0 0 −1 0 0

]
, Bc22

=

[
1 0
0 1

]
, Cc2 =

[
0.0176 −0.1300
0.0237 0.0321

]
, (34)

Dc2 =

[
−0.0344 555.9000 0.1283 18.3950 3.0869
−0.0450 −121.1200 −0.0294 −4.5301 −1.1499

]
.

Kr1 = 1.0× 10−14 ×
[
0 0.0220
0 −0.0220

]
, Kc1 =

[
−2.6433 −0.4784
−0.3189 −2.5622

]
, (35)

Kw1 =

[
1.6105 43.8760

−1.2666 37.1930

]
, Kx1 =

[
1 0 0 0 0
0 0 1 0 0

]
, Ku1 =

[
20.1300 96.4360

−13.8540 23.6950

]
;

Kr2 = 1.0× 10−13 ×
[
0 0.8470
0 0

]
, Kc2 =

[
−2238.2000 −548.6100

0 −0.9614

]
, (36)

Kw2 =

[
9870 626260
−20 20

]
, Kx2 =

[
1 0 0 0 0
0 0 1 0 0

]
, Ku2 =

[
20720 279950
−60 40

]
.
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F1 =

[
0.2266 −0.0285 1.4312 −10.6160 0.0094 3.9339 3.8581 1.8071 8.2063

−0.2847 −1.6472 0.5298 6750.7000 2.5840 232.8200 46.1120 −8.2063 18.0710

]
,

(37)

F2 =

[
−0.1708 −0.0238 1.8564 457.3500 0.0888 27.3920 11.6200 2.7719 20.5710
−0.0477 −0.1578 0.2373 3646.2000 1.6048 152.8700 32.0280 −9.1996 12.3960

]
.

(38)
The simulation results by method [14] are shown in Figure 3. Note that the tracking

performance is not bad, which, unfortunately, is at the cost of serious deterioration of the
plant control input. Furthermore, we can obtain the detailed characterization. As shown
in Tables 1 and 2, the bumpless performance indices of fuel equivalence ratio and pitch
surface deflection got by [14] are 44.24% and 242.02%, respectively. However, the indices
obtained by our method are much smaller, which are 3.17% and 2.93%, respectively. Thus,
it clearly demonstrates that the proposed method achieves a better bumpless performance.
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Figure 3. Response to the 500(m) altitude step order and 150(m/s) ve-
locity step order with the bumpless switching scheme of [14] (upper figure);
control inputs with the bumpless switching scheme of [14] (lower figure)

Table 1. Comparison of δT

Method u(tmax) u(ts) ϱ
Non-bumpless switching 54.2050 0.2085 25897.60%
Turner and Walker [14] 0.2918 0.2023 44.24%
The proposed method 0.2086 0.2022 3.17%

7. Conclusions. In this paper, we have dealt with the problem of bumpless switching
performance optimal control for continuous-time switched linear systems. Regarding the
bumpy phenomenon, firstly, a new extended bumpless switching scheme has been proposed
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Table 2. Comparison of δe (rad)

Method u(tmax) u(ts) ϱ
Non-bumpless switching –26.4745 0.0376 70310.90%
Turner and Walker [14] –0.1286 0.0376 242.02%
The proposed method 0.0387 0.0376 2.93%

based on the optimal theory and the internal model principle. After that, we adopt
multiple Lyapunov functions method and dwell time theory to obtain an estimate of the
minimum dwell time and derive a sufficient condition for both the exponential stability
of switched closed-loop systems and the bumpless switching accordingly. Finally, two
examples have confirmed the effectiveness of the proposed bumpless switching approach.
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